|   | 
Details
   web
Records
Author Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Reniers, F.; Bogaerts, A.
Title DBD in burst mode: solution for more efficient CO2conversion? Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 055005
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the

conversion from 16–26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the process time for the duty cycles <70%, while a higher duty cycle or the usual pure AC mode leads to a clear voltage decay by more than 500 V, over approximately 90 s, before reaching a steady state regime. The higher plasma voltage in the burst mode yields a higher electric field. This causes the increasing the electron energy, and therefore their

involvement in the CO2 dissociation process, which is an additional explanation for the higher CO2 conversion and energy efficiency in the burst mode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403945500005 Publication Date (down) 2016-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 17 Open Access
Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A. Ozkan would also like to thank financial support given by ‘Fonds David et Alice Van Buuren’. Approved Most recent IF: 3.302
Call Number c:irua:134841 Serial 4107
Permanent link to this record
 

 
Author Meerburg, F.A.; Boon, N.; Van Winckel, T.; Pauwels, K.T.G.; Vlaeminck, S.E.
Title Live Fast, Die Young: Optimizing Retention Times in High-Rate Contact Stabilization for Maximal Recovery of Organics from Wastewater Type A1 Journal article
Year 2016 Publication Environmental science and technology Abbreviated Journal
Volume 50 Issue 17 Pages 9781-9790
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Wastewater is typically treated by the conventional activated sludge process, which suffers from an inefficient overall energy balance. The high-rate contact stabilization (HiCS) has been proposed as a promising primary treatment technology with which to maximize redirection of organics to sludge for subsequent energy recovery. It utilizes a feast famine cycle to select for bioflocculation, intracellular storage, or both. We optimized the HiCS process for organics recovery and characterized different biological pathways of organics removal and recovery. A total of eight HiCS reactors were operated at 15 degrees C at short solids retention times (SRT; 0.24-2.8 days), hydraulic contact times (t(c); 8 and 15 min), and stabilization times (t(s); 15 and 40 min). At an optimal SRT between 0.5 and 1.3 days and t(c) of 15 min and t(s) of 40 min, the HiCS system oxidized only 10% of influent chemical oxygen demand (COD) and recovered up to 55% of incoming organic matter into sludge. Storage played a minor role in the overall COD removal, which was likely dominated by aerobic biomass growth, bioflocculation onto extracellular polymeric substances, and settling. The HiCS process recovers enough organics to potentially produce 28 kWh of electricity per population equivalent per year by anaerobic digestion and electricity generation. This inspires new possibilities for energy-neutral wastewater treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000382805800097 Publication Date (down) 2016-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:138270 Serial 8176
Permanent link to this record
 

 
Author De Baere, K.; Verstraelen, H.; Willemen, R.; Smet, J.-P.; Tchuindjang, J.T.; Lecomte-Beckers, J.; Lenaerts, S.; Meskens, R.; Jung, H.G.; Potters, G.
Title Assessment of corrosion resistance, material properties, and weldability of alloyed steel for ballast tanks Type A1 Journal article
Year 2017 Publication Journal of marine science and technology Abbreviated Journal J Mar Sci Tech-Japan
Volume 22 Issue 1 Pages 176-199
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Ballast tanks are of great importance in the lifetime of modern merchant ships. Making a ballast tank less susceptible to corrosion can, therefore, prolong the useful life of a ship and, thereby, lower its operational cost. An option to reinforce a ballast tank is to construct it out of a corrosion-resistant steel type. Such steel was recently produced by POSCO Ltd., South Korea. After 6 months of permanent immersion, the average corrosion rate of A and AH steel (31 samples) was 535 g m(-2) year(-1), while the Korean CRS was corroding with 378 g m(-2) year(-1). This entails a gain of 29 %. Follow-up measurements after 10, 20, and 24 months confirmed this. The results after 6 months exposure to alternating wet/dry conditions are even more explicit. Furthermore, the physical and metallurgical properties of this steel show a density of 7.646 t/m(3), the elasticity modulus 209.3 GPa, the tensile strength 572 MPa, and the hardness 169HV10. Microscopically, the metal consists of equiaxed and recrystallized grains (ferrite and pearlite), with an average size of between 20 and 30 A mu m (ASTM E 112-12 grain size number between 7 and 8) with a few elongated pearlitic grains. The structure is banded ferrite/pearlite. On the basis of a series of energy dispersive X-ray spectrometer measurements the lower corrosion rate of the steel can be attributed to the interplay of Al, Cr, their oxides, and the corroding steel. In addition, the role of each element in the formation of oxide layers and the mechanisms contributing to the corrosion resistance are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000395006400015 Publication Date (down) 2016-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-4280 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.838 Times cited 3 Open Access
Notes ; This paper is published with the explicit permission of POSCO Ltd., original source of the corrosion resistant steel. Due to the creativity of the POSCO engineers and scientists, we could have our challenge, presented in this manuscript. The authors wish to thank the BOF funding received from the University of Antwerp and the Maritime Academy. We also wish to express our gratitude towards to the American Bureau of Shipping for their assistance in procuring the CRS plates, their moral and financial support, as well as to OCAS (Arcelor Mittal, Zelzate, Belgium) for their assistance in a number of measurements. ; Approved Most recent IF: 0.838
Call Number UA @ admin @ c:irua:142509 Serial 5928
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A.
Title Modeling of plasma-based CO2conversion: lumping of the vibrational levels Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 045022
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although CO2 conversion by plasma technology is gaining increasing interest, the

underlying mechanisms for an energy-efficient process are still far from understood. In this work, a reduced non-equilibrium CO2 plasma chemistry set, based on level lumping of the vibrational levels, is proposed and the reliability of this level-lumping method is tested by a self-consistent zero-dimensional code. A severe reduction of the number of equations to be solved is achieved, which is crucial to be able to model non-equilibrium CO2 plasmas by 2-dimensional models. Typical conditions of pressure and power used in a microwave plasma for CO2 conversion are investigated. Several different sets, using different numbers of lumped groups, are considered. The lumped models with 1, 2 or 3 groups are able to reproduce the gas temperature, electron density and electron temperature profiles, as calculated by the full model treating all individual excited levels, in the entire pressure range investigated. Furthermore, a 3-groups model is also able to reproduce the shape of the vibrational distribution function (VDF) and gives the most reliable prediction of the CO2 conversion. A strong influence of the vibrational excitation on the plasma characteristics is observed. Finally, the limitations of the lumped-levels method are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380380200036 Publication Date (down) 2016-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 33 Open Access
Notes This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 606889 and it was also carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (PSI-IAP7) supported by the Belgian Science Policy Office (BELSPO). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302
Call Number c:irua:134397 Serial 4101
Permanent link to this record
 

 
Author Tomak, A.; Bacaksiz, C.; Mendirek, G.; Sahin, H.; Hur, D.; Gorgun, K.; Senger, R.T.; Birer, O.; Peeters, F.M.; Zareie, H.M.
Title Structural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip Type A1 Journal article
Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 27 Issue 27 Pages 335601
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000383780500012 Publication Date (down) 2016-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 2 Open Access
Notes ; The authors acknowledge financial support from TUBITAK (PROJECT NO: 112T507). This work was also supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid-Infrastructure). HS is supported by an FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:137155 Serial 4363
Permanent link to this record
 

 
Author De Vrieze, J.; Smet, D.; Klok, J.; Colsen, J.; Angenent, L.T.; Vlaeminck, S.E.
Title Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants Type A1 Journal article
Year 2016 Publication Bioresource technology Abbreviated Journal
Volume 218 Issue Pages 1237-1245
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The conventional treatment of municipal wastewater by means of activated sludge is typically energy demanding. Here, the potential benefits of: (1) the optimization of mesophilic digestion; and (2) transitioning to thermophilic sludge digestion in three wastewater treatment plants (Tilburg-Noord, Land van Cuijk and Bath) in the Netherlands is evaluated, including a full-scale trial validation in Bath. In Tilburg-Noord, thermophilic sludge digestion covered the energy requirements of the plant (102%), whereas 111% of sludge operational treatment costs could be covered in Bath. Thermophilic sludge digestion also resulted in a strong increase in nutrient release. The potential for nutrient recovery was evaluated via: (1) stripping/absorption of ammonium; (2) autotrophic removal of ammonium via partial nitritation/anammox; and (3) struvite precipitation. This research shows that optimization of sludge digestion may lead to a strong increase in energy recovery, sludge treatment costs reduction, and the potential for advanced nutrient management in full-scale sewage treatment plants. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384710500155 Publication Date (down) 2016-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:137236 Serial 8666
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Bogaerts, A.; Reniers, F.
Title How do the barrier thickness and dielectric material influence the filamentary mode and CO2conversion in a flowing DBD? Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 045016
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Dielectric barrier discharges (DBDs) are commonly used to generate cold plasmas at

atmospheric pressure. Whatever their configuration (tubular or planar), the presence of a dielectric barrier is mandatory to prevent too much charge build up in the plasma and the formation of a thermal arc. In this article, the role of the barrier thickness (2.0, 2.4 and 2.8 mm) and of the kind of dielectric material (alumina, mullite, pyrex, quartz) is investigated on the filamentary behavior in the plasma and on the CO2 conversion in a tubular flowing DBD, by means of mass spectrometry measurements correlated with electrical characterization and IR imaging. Increasing the barrier thickness decreases the capacitance, while preserving the electrical charge. As a result, the voltage over the dielectric increases and a larger number of microdischarges is generated, which enhances the CO2 conversion. Furthermore, changing the dielectric material of the barrier, while keeping the same geometry and dimensions, also affects the CO2 conversion. The highest CO2 conversion and energy efficiency are obtained for quartz and alumina, thus not following the trend of the relative permittivity. From the

electrical characterization, we clearly demonstrate that the most important parameters are the somewhat higher effective plasma voltage (yielding a somewhat higher electric field and electron energy in the plasma) for quartz, as well as the higher plasma current (and thus larger electron density) and the larger number of microdischarge filaments (mainly for alumina, but also for quartz). The latter could be correlated to the higher surface roughness for alumina and to the higher voltage over the dielectric for quartz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380380200030 Publication Date (down) 2016-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 24 Open Access
Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A. Ozkan would like to thank the financial support given by ‘Fonds David et Alice Van Buuren’. Approved Most recent IF: 3.302
Call Number c:irua:134396 Serial 4100
Permanent link to this record
 

 
Author Van Havenbergh, K.; Turner, S.; Marx, N.; Van Tendeloo, G.
Title The mechanical behavior during (de)lithiation of coated silicon nanoparticles as anode material for lithium-ion batteries studied by InSitu transmission electron microscopy Type A1 Journal article
Year 2016 Publication Energy technology Abbreviated Journal Energy Technol-Ger
Volume 4 Issue 4 Pages 1005-1012
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract One approach to cope with the continuous irreversible capacity loss in Si-based electrodes, attributed to lithiation-induced volume changes and the formation of a solid-electrolyte interface (SEI), is by coating silicon nanoparticles. A coating can improve the conductivity of the electrode, form a chemical shield against the electrolyte, or provide mechanical confinement to reduce the volume increase. The influence of such a coating on the mechanical behavior of silicon nanoparticles during Li insertion and Li extraction was investigated by insitu transmission electron microscopy. The type of coating was shown to influence the size of the unreacted core that remains after reaction of silicon with lithium. Furthermore, two mechanisms to relieve the stress generated during volume expansion are reported: the initiation of cracks and the formation of nanovoids. Both result in a full reaction of the silicon nanoparticles, whereas with the formation of cracks, additional surface area is created, on which an SEI can be formed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000382549500012 Publication Date (down) 2016-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4296; 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.789 Times cited 6 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:137167 Serial 4406
Permanent link to this record
 

 
Author Jacobs, W.; Reynaerts, C.; Andries, S.; van den Akker, S.; Moonen, N.; Lamoen, D.
Title Analyzing the dispersion of cargo vapors around a ship’s superstructure by means of wind tunnel experiments Type A1 Journal article
Year 2016 Publication Journal of marine science and technology Abbreviated Journal J Mar Sci Tech-Japan
Volume 21 Issue 21 Pages 758-766
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In a previous study, it was found that cargo tank operations like cleaning and venting, lead to higher cargo vapor concentrations around the ship’s superstructure. Can wind tunnel experiments confirm these findings? Is there an improvement when using higher outlets at high velocities compared to lower outlets with a low outlet velocity? Is there a relation between relative wind speed and measured concentration? These questions were investigated in the Peutz wind tunnel. By using a tracer gas for the wind tunnel experiments, concentration coefficients have been calculated for various settings. The study shows that using high-velocity outlets is an efficient way to keep concentrations as low as possible. The only exception is for relative wind directions from the bow. In this last case using a manhole as ventilation outlet leads to lower concentrations. With increasing wind speeds the building downwash effect resulted in higher concentration coefficients near the main deck. This study confirms our on-board measurements and suggests the lowering of the ventilation inlet of the accommodation, so that the high-velocity outlet can be used safely at all times.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388260200015 Publication Date (down) 2016-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-4280 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.838 Times cited 2 Open Access
Notes The authors would like to thank Peutz bv. at Molenhoek, the Netherlands, for providing the wind tunnel facilities and their assistance during the various stages of this research. Approved Most recent IF: 0.838
Call Number EMAT @ emat @ c:irua:138728 Serial 4326
Permanent link to this record
 

 
Author Han, M.; De Clippeleir, H.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Bott, C.; Murthy, S.
Title Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification Type A1 Journal article
Year 2016 Publication Water science and technology Abbreviated Journal
Volume 74 Issue 2 Pages 375-384
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract While deammonification of high-strength wastewater in the sludge line of sewage treatment plants has become well established, the potential cost savings spur the development of this technology for mainstream applications. This study aimed at identifying the effect of aeration and organic carbon on the deammonification process. Two 10 L sequencing bath reactors with different aeration frequencies were operated at 25 degrees C. Real wastewater effluents from chemically enhanced primary treatment and high-rate activated sludge process were fed into the reactors with biodegradable chemical oxygen demand/nitrogen (bCOD/N) of 2.0 and 0.6, respectively. It was found that shorter aerobic solids retention time (SRT) and higher aeration frequency gave more advantages for aerobic ammonium-oxidizing bacteria (AerAOB) than nitrite oxidizing bacteria (NOB) in the system. From the kinetics study, it is shown that the affinity for oxygen is higher for NOB than for AerAOB, and higher dissolved oxygen set-point could decrease the affinity of both AerAOB and NOB communities. After 514 days of operation, it was concluded that lower organic carbon levels enhanced the activity of anoxic ammonium-oxidizing bacteria (AnAOB) over denitrifiers. As a result, the contribution of AnAOB to nitrogen removal increased from 40 to 70%. Overall, a reasonably good total removal efficiency of 66% was reached under a low bCOD/N ratio of 2.0 after adaptation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380765500011 Publication Date (down) 2016-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:135032 Serial 8062
Permanent link to this record
 

 
Author Verstraete, W.; Clauwaert, P.; Vlaeminck, S.E.
Title Used water and nutrients : recovery perspectives in a 'panta rhei' context Type A1 Journal article
Year 2016 Publication Bioresource technology Abbreviated Journal
Volume 215 Issue Pages 199-208
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract There is an urgent need to secure global supplies in safe water and proteinaceous food in an eco-sustainable manner, as manifested from tensions in the nexus Nutrients-Energy-Water-Environment-Land. This paper is concept based and provides solutions based on resource recovery from municipal and industrial wastewater and from manure. A set of decisive factors is reviewed facilitating an attractive business case. Our key message is that a robust barrier must clear the recovered product from its original status. Besides refined inorganic fertilizers, a central role for five types of microbial protein is proposed. A resource cycling solution for the extremely confined environment of space habitation should serve as an incentive to assimilate a new user mindset. To achieve the ambitious goal of sustainable food security, the solutions suggested here need a broad implementation, hand in hand with minimizing losses along the entire fertilizer-feed-food-fork chain. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000377935100022 Publication Date (down) 2016-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:134591 Serial 8726
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Bogaerts, A.
Title A 3D model of a reverse vortex flow gliding arc reactor Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 035014
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this computational study, a gliding arc plasma reactor with a reverse-vortex flow stabilization is modelled for the first time by a fluid plasma description. The plasma reactor operates with argon gas at atmospheric pressure. The gas flow is simulated using the k-ε Reynolds-averaged Navier–Stokes turbulent model. A quasi-neutral fluid plasma model is used for computing the plasma properties. The plasma arc movement in the reactor is observed, and the results for the gas flow, electrical characteristics, plasma density, electron temperature, and gas temperature are analyzed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000376557400022 Publication Date (down) 2016-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 20 Open Access
Notes This research was carried out in the framework of the network on Physical Chemistry of Plasma–Surface Interactions— Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO), and it was also funded by the Fund for Scientific Research Flanders (FWO). Grant number: 11U5316N. Approved Most recent IF: 3.302
Call Number c:irua:132888 c:irua:132888 Serial 4063
Permanent link to this record
 

 
Author Van Aelst, J.; Philippaerts, A.; Bartholomeeusen, E.; Fayad, E.; Thibault-Starzyk, F.; Lu, J.; Schryvers, D.; Ooms, R.; Verboekend, D.; Jacobs, P.; Sels, B.
Title Towards biolubricant compatible vegetable oils by pore mouth hydrogenation with shape-selective Pt/ZSM-5 catalysts Type A1 Journal article
Year 2016 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol
Volume 6 Issue 6 Pages 2820-2828
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Pt/ZSM-5 catalysts with various crystal sizes were prepared via competitive ion-exchange, followed by a slow activation procedure. Even when using very large ZSM-5 crystals, highly dispersed Pt nano-clusters were contained within the zeolite crystal's voids, as ascertained by 2D pressure-jump IR spectroscopy of adsorbed CO and focussed ion-beam transmission electron microscopy. The shape-selective properties of the Pt/ZSM-5 catalysts were evaluated in the partial hydrogenation of soybean oil. Unique hydrogenation selectivities were observed, as the fatty acids located at the central position of the triacylglycerol (TAG) molecules were preferentially hydrogenated. The resulting oil has therefore high levels of intermediately melting TAGs, which are compatible with biolubricants due to their improved oxidative stability and still appropriate low-temperature fluidity. The TAG distribution in the partially hydrogenated soybean oil samples was independent from the zeolite crystal size, while the hydrogenation activity linearly increases with the crystal's external surface area. This trend was confirmed with a Pt loaded mesoporous ZSM-5 zeolite, obtained via a mild alkaline treatment. These observations imply and confirm a genuine pore mouth catalysis mechanism, in which only one fatty acid chain of the TAG is able to enter the micropores of ZSM-5, where the double bonds are hydrogenated by the crystal encapsulated Pt-clusters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000374790200031 Publication Date (down) 2016-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.773 Times cited 5 Open Access
Notes The research was funded through a PhD grant to J. V. A. of the Agency for Innovation by Science and Technology in Flanders (IWT). A. P. and D. V. acknowledge the F. W. O.-Vlaanderen (Research Foundation Flanders) for a post-doctoral fellowship. E. B. was kindly funded by an F. W. O.-Vlaanderen project. This work was performed in the framework of an Associated International Laboratory between FWO and CNRS. Approved Most recent IF: 5.773
Call Number EMAT @ emat @ c:irua:138981 Serial 4335
Permanent link to this record
 

 
Author Grunert, O.; Reheul, D.; Van Labeke, M.-C.; Perneel, M.; Hernandez-Sanabria, E.; Vlaeminck, S.E.; Boon, N.
Title Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture Type A1 Journal article
Year 2016 Publication Microbial Biotechnology Abbreviated Journal
Volume 9 Issue 3 Pages 389-399
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Vegetables and fruits are an important part of a healthy food diet, however, the eco-sustainability of the production of these can still be significantly improved. European farmers and consumers spend an estimated Euro15.5 billion per year on inorganic fertilizers and the production of N-fertilizers results in a high carbon footprint. We investigated if fertilizer type and medium constituents determine microbial nitrogen conversions in organic growing media and can be used as a next step towards a more sustainable horticulture. We demonstrated that growing media constituents showed differences in urea hydrolysis, ammonia and nitrite oxidation and in carbon dioxide respiration rate. Interestingly, mixing of the growing media constituents resulted in a stimulation of the function of the microorganisms. The use of organic fertilizer resulted in an increase in amoA gene copy number by factor 100 compared to inorganic fertilizers. Our results support our hypothesis that the activity of the functional microbial community with respect to nitrogen turnover in an organic growing medium can be improved by selecting and mixing the appropriate growing media components with each other. These findings contribute to the understanding of the functional microbial community in growing media and its potential role towards a more responsible horticulture.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000374662600009 Publication Date (down) 2016-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-7907 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:133617 Serial 8013
Permanent link to this record
 

 
Author Cagnetta, C.; Coma, M.; Vlaeminck, S.E.; Rabaey, K.
Title Production of carboxylates from high rate activated sludge through fermentation Type A1 Journal article
Year 2016 Publication Bioresource technology Abbreviated Journal
Volume 217 Issue Pages 165-172
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141 mg C g−1 VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35 °C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380226300023 Publication Date (down) 2016-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:139912 Serial 8421
Permanent link to this record
 

 
Author Coppens, J.; Lindeboom, R.; Muys, M.; Coessens, W.; Alloul, A.; Meerbergen, K.; Lievens, B.; Clauwaert, P.; Boon, N.; Vlaeminck, S.E.
Title Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine Type A1 Journal article
Year 2016 Publication Bioresource technology Abbreviated Journal
Volume 211 Issue Pages 41-50
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Urine contains the majority of nutrients in urban wastewaters and is an ideal nutrient recovery target. In this study, stabilization of real undiluted urine through nitrification and subsequent microalgae cultivation were explored as strategy for biological nutrient recovery. A nitrifying inoculum screening revealed a commercial aquaculture inoculum to have the highest halotolerance. This inoculum was compared with municipal activated sludge for the start-up of two nitrification membrane bioreactors. Complete nitrification of undiluted urine was achieved in both systems at a conductivity of 75 mS cm−1 and loading rate above 450 mg N L−1 d−1. The halotolerant inoculum shortened the start-up time with 54%. Nitrite oxidizers showed faster salt adaptation and Nitrobacter spp. became the dominant nitrite oxidizers. Nitrified urine as growth medium for Arthrospira platensis demonstrated superior growth compared to untreated urine and resulted in a high protein content of 62%. This two-stage strategy is therefore a promising approach for biological nutrient recovery.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375186700006 Publication Date (down) 2016-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:139913 Serial 8307
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Bogaerts, A.; Reniers, F.
Title The influence of power and frequency on the filamentary behavior of a flowing DBD—application to the splitting of CO2 Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 025013
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this experimental study, a flowing dielectric barrier discharge operating at atmospheric pressure is used for the splitting of CO2 into O2 and CO. The influence of the applied frequency and plasma power on the microdischarge properties is investigated to understand their role on the CO2 conversion. Electrical measurements are carried out to explain the conversion trends and to characterize the microdischarges through their number, their lifetime,

their intensity and the induced electrical charge. Their influence on the gas and electrode temperatures is also evidenced through optical emission spectroscopy and infrared imaging. It is shown that, in our configuration, the conversion depends mostly on the charge delivered in the plasma and not on the effective plasma voltage when the applied power is modified. Similarly, at constant total current, a better conversion is observed at low frequencies, where a less filamentary discharge regime with a higher effective plasma voltage than that at a higher

frequency is obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372337900015 Publication Date (down) 2016-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 40 Open Access
Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A Ozkan would like to thank the financial support given by ‘Fonds David et Alice Van Buuren’. N Britun is a postdoctoral researcher of the F.R.S.-FNRS, Belgium. Approved Most recent IF: 3.302
Call Number c:irua:131904 Serial 4021
Permanent link to this record
 

 
Author Zhang, Q.; De Clippeleir, H.; Su, C.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Murthy, S.
Title Deammonification for digester supernatant pretreated with thermal hydrolysis : overcoming inhibition through process optimization Type A1 Journal article
Year 2016 Publication Applied microbiology and biotechnology Abbreviated Journal
Volume 100 Issue 12 Pages 5595-5606
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The thermal hydrolysis process (THP) has been proven to be an excellent pretreatment step for an anaerobic digester (AD), increasing biogas yield and decreasing sludge disposal. The goal of this work was to optimize deammonification for efficient nitrogen removal despite the inhibition effects caused by the organics present in the THP-AD sludge filtrate (digestate). Two sequencing batch reactors were studied treating conventional digestate and THP-AD digestate, respectively. Improved process control based on higher dissolved oxygen set-point (1 mg O-2/L) and longer aeration times could achieve successful treatment of THP-AD digestate. This increased set-point could overcome the inhibition effect on aerobic ammonium-oxidizing bacteria (AerAOB), potentially caused by particulate and colloidal organics. Moreover, based on the mass balance, anoxic ammonium-oxidizing bacteria (AnAOB) contribution to the total nitrogen removal decreased from 97 +/- A 1 % for conventional to 72 +/- A 5 % for THP-AD digestate treatment, but remained stable by selective AnAOB retention using a vibrating screen. Overall, similar total nitrogen removal rates of 520 +/- A 28 mg N/L/day at a loading rate of 600 mg N/L/day were achieved in the THP-AD reactor compared to the conventional digestate treatment operating at low dissolved oxygen (DO) (0.38 +/- A 0.10 mg O-2/L).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000376456700033 Publication Date (down) 2016-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0175-7598; 1432-0614 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:134166 Serial 7755
Permanent link to this record
 

 
Author Nguyen Thi Tuyet; Nguyen Phuoc Dan; Nguyen Cong Vu; Nguyen Le Hoang Trung; Bui Xuan Thanh; De Wever, H.; Goemans, M.; Diels, L.
Title Laboratory-scale membrane up-concentration and co-anaerobic digestion for energy recovery from sewage and kitchen waste Type A1 Journal article
Year 2016 Publication Water science and technology Abbreviated Journal
Volume 73 Issue 3 Pages 597-606
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This study assessed an alternative concept for co-treatment of sewage and organic kitchen waste in Vietnam. The goal was to apply direct membrane filtration for sewage treatment to generate a permeate that is suitable for discharge. The obtained chemical oxygen demand (COD) concentrations in the permeate of ultrafiltration tests were indeed under the limit value (50 mg/L) of the local municipal discharge standards. The COD of the concentrate was 5.4 times higher than that of the initial feed. These concentrated organics were then co-digested with organic kitchen wastes at an organic loading rate of 2.0 kg VS/m(3).d. The volumetric biogas production of the digester was 1.94 +/- 0.34 m(3)/m(3).d. The recovered carbon, in terms of methane gas, accounted for 50% of the total carbon input of the integrated system. Consequently, an electrical production of 64 Wh/capita/d can be obtained when applying the proposed technology with the current wastes generated in Ho Chi Minh City. Thus, it is an approach with great potential in terms of energy recovery and waste treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000374396300018 Publication Date (down) 2016-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144749 Serial 8144
Permanent link to this record
 

 
Author Milovanovic, S.P.; Peeters, F.M.
Title Characterization of the size and position of electron-hole puddles at a graphene p-n junction Type A1 Journal article
Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 27 Issue 27 Pages 105203
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The effect of an electron-hole puddle on the electrical transport when governed by snake states in a bipolar graphene structure is investigated. Using numerical simulations we show that information on the size and position of the electron-hole puddle can be obtained using the dependence of the conductance on magnetic field and electron density of the gated region. The presence of the scatterer disrupts snake state transport which alters the conduction pattern. We obtain a simple analytical formula that connects the position of the electron-hole puddle with features observed in the conductance. The size of the electron-hole puddle is estimated from the magnetic field and gate potential that maximizes the effect of the puddle on the electrical transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369849200003 Publication Date (down) 2016-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 3 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. We acknowledge interesting correspondence with Thiti Taychatanapat. Approved Most recent IF: 3.44
Call Number c:irua:131907 Serial 4025
Permanent link to this record
 

 
Author Seuntjens, D.; Bundervoet, B.L.M.; Mollen, H.; De Mulder, C.; Wypkema, E.; Verliefde, A.; Nopens, I.; Colsen, J.G.M.; Vlaeminck, S.E.
Title Energy efficient treatment of A-stage effluent : pilot-scale experiences with short-cut nitrogen removal Type A1 Journal article
Year 2016 Publication Water science and technology Abbreviated Journal
Volume 73 Issue 9 Pages 2150-2158
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000376285300013 Publication Date (down) 2016-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:130442 Serial 7908
Permanent link to this record
 

 
Author Van Eynde, E.; Lenaerts, B.; Tytgat, T.; Blust, R.; Lenaerts, S.
Title Valorization of flue gas by combining photocatalytic gas pretreatment with microalgae production Type A1 Journal article
Year 2016 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol
Volume 50 Issue 5 Pages 2538-2545
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Utilization of flue gas for algae cultivation seems to be a promising route because flue gas from fossil-fuel combustion processes contains the high amounts of carbon (CO2) and nitrogen (NO) that are required for algae growth. NO is a poor nitrogen source for algae cultivation because of its low reactivity and solubility in water and its toxicity for algae at high concentrations. Here, we present a novel strategy to valorize NO from flue gas as feedstock for algae production by combining a photocatalytic gas pretreatment unit with a microalgal photobioreactor. The photocatalytic air pretreatment transforms NO gas into NO2 gas and thereby enhances the absorption of NO in the cultivation broth. The absorbed NOx will form NO2- and NO3- that can be used as a nitrogen source by algae. The effect of photocatalytic air pretreatment on the growth and biomass productivity of the algae Thalassiosira weissflogii in a semicontinuous system aerated with a model flue gas (1% CO2 and 50 ppm of NO) is investigated during a long-term experiment. The integrated system makes it possible to produce algae with NO from flue gas as the sole nitrogen source and reduces the NOx content in the exhaust gas by 84%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371371700048 Publication Date (down) 2016-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.198 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 6.198
Call Number UA @ admin @ c:irua:132348 Serial 6003
Permanent link to this record
 

 
Author Belov, I.; Paulussen, S.; Bogaerts, A.
Title Appearance of a conductive carbonaceous coating in a CO2dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 015023
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This work examines the properties of a dielectric barrier discharge (DBD) reactor, built for CO2 decomposition, by means of electrical characterization, optical emission spectroscopy and gas chromatography. The discharge, formed in an electronegative gas (such as CO2, but also O2), exhibits clearly different electrical characteristics, depending on the surface conductivity of the reactor walls. An asymmetric current waveform is observed in the metaldielectric (MD) configuration, with sparse high-current pulses in the positive half-cycle (HC) and a more uniform regime in the negative HC. This indicates that the discharge is operating in two alternating regimes with rather different properties. At high CO2 conversion regimes, a conductive coating is deposited on the dielectric. This so-called coated MD configuration yields a symmetric current waveform, with current peaks in both the positive and negative HCs. In a double-dielectric (DD) configuration, the current waveform is also symmetric, but without current peaks in both the positive and negative HC. Finally, the DD configuration with conductive coating on the inner surface of the outer dielectric, i.e. so-called coated DD, yields again an asymmetric current waveform, with current peaks in the negative HC. These different electrical characteristics are related to the presence of the conductive coating on the dielectric wall of the reactor and can be explained by an increase of the local barrier capacitance available for charge transfer. The different discharge regimes affect the CO2 conversion, more specifically, the CO2 conversion is lowest in the clean DD configuration. It is somewhat higher in the coated DD configuration, and still higher in the MD configuration. The clean and coated MD configuration, however, gave similar CO2 conversion. These results indicate that the conductivity of the dielectric reactor walls can highly promote the development of the high-amplitude discharge current pulses and subsequently the CO2 conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370974800030 Publication Date (down) 2016-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 25 Open Access
Notes The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013-ITN) under Grant Agreement № 606889 (RAPID—Reactive Atmospheric Plasma processIng—eDucation network). Approved Most recent IF: 3.302
Call Number c:irua:130790 Serial 4006
Permanent link to this record
 

 
Author Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Suslu, A.; Wu, K.; Peeters, F.; Meng, X.; Tongay, S.
Title Exciton pumping across type-I gallium chalcogenide heterojunctions Type A1 Journal article
Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 27 Issue 27 Pages 065203
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Quasi-two-dimensional gallium chalcogenide heterostructures are created by transferring exfoliated few-layer GaSe onto bulk GaTe sheets. Luminescence spectroscopy measurements reveal that the light emission from underlying GaTe layers drastically increases on heterojunction regions where GaSe layers make contact with the GaTe. Density functional theory (DFT) and band offset calculations show that conduction band minimum (CBM) (valance band maximum (VBM)) values of GaSe are higher (lower) in energy compared to GaTe, forming type-I band alignment at the interface. Consequently, GaSe layers provide photo-excited electrons and holes to GaTe sheets through relatively large built-in potential at the interface, increasing overall exciton population and light emission from GaTe. Observed results are not specific to the GaSe/GaTe system but observed on GaS/GaSe heterolayers with type-I band alignment. Observed experimental findings and theoretical studies provide unique insights into interface effects across dissimilar gallium chalcogenides and offer new ways to boost optical performance by simple epitaxial coating.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000368897100008 Publication Date (down) 2016-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 15 Open Access
Notes ; This work was supported by the Arizona State University seeding program, the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus-short Marie Curie Fellowship. We acknowledge the use of the John M Cowley Center for High Resolution Electron Microscopy at Arizona State University. The authors thank Anupum Pant for useful discussions. We gratefully acknowledge the use of the facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University. S Tongay acknowledges support from DMR-1552220. ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:131570 Serial 4179
Permanent link to this record
 

 
Author Van Laer, K.; Bogaerts, A.
Title Fluid modelling of a packed bed dielectric barrier discharge plasma reactor Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 015002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A packed bed dielectric barrier discharge plasma reactor is computationally studied with a fluid model. Two different complementary axisymmetric 2D geometries are used to mimic the intrinsic 3D problem. It is found that a packing enhances the electric field strength and electron temperature at the contact points of the dielectric material due to polarization of the beads by the applied potential. As a result, these contact points prove to be of direct importance to initiate the plasma. At low applied potential, the discharge stays at the contact points, and shows the properties of a Townsend discharge. When a high enough potential is applied, the plasma will be able to travel through the gaps in between the beads from wall to wall, forming a kind of glow discharge. Therefore, the inclusion of a so-called ‘channel of voids’ is indispensable in any type of packed bed modelling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370974800009 Publication Date (down) 2015-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 50 Open Access
Notes The authors gratefully thank St Kolev for the many interesting discussions and the useful advise in setting up the models. This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions— Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO). K Van Laer is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support. Approved Most recent IF: 3.302
Call Number c:irua:129802 Serial 3982
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A.
Title Similarities and differences between gliding glow and gliding arc discharges Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 065023
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work we have analyzed the properties of a gliding dc discharge in argon at atmospheric pressure. Despite the usual designation of these discharges as ‘gliding arc discharges’, it was found previously that they operate in two different regimes—glow and arc. Here we analyze the differences in both regimes by means of two dimensional fluid modeling. In order to address different aspects of the discharge operation, we use two models—Cartesian and axisymmetric in a cylindrical coordinate system. The obtained results show that the two types of discharges produce a similar plasma column for a similar discharge current. However, the different mechanisms of plasma channel attachment to the cathode could produce certain differences in the plasma parameters (i.e. arc elongation), and this can affect gas treatments applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368117100028 Publication Date (down) 2015-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 12 Open Access
Notes This work is financially supported by the Methusalem financing and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:129214 Serial 3952
Permanent link to this record
 

 
Author Cayado, P.; De Keukeleere, K.; Garzón, A.; Perez-Mirabet, L.; Meledin, A.; De Roo, J.; Vallés, F.; Mundet, B.; Rijckaert, H.; Pollefeyt, G.; Coll, M.; Ricart, S.; Palau, A.; Gázquez, J.; Ros, J.; Van Tendeloo, G.; Van Driessche, I.; Puig, T.; Obradors, X.
Title Epitaxial YBa2Cu3O7−xnanocomposite thin films from colloidal solutions Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 124007
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A methodology of general validity to prepare epitaxial nanocomposite films based on the use of colloidal solutions containing different crystalline preformed oxide nanoparticles ( ex situ nanocomposites) is reported. The trifluoroacetate (TFA) metal–organic chemical solution deposition route is used with alcoholic solvents to grow epitaxial YBa 2 Cu 3 O 7 (YBCO) films. For this reason stabilizing oxide nanoparticles in polar solvents is a challenging goal. We have used scalable nanoparticle synthetic methodologies such as thermal and microwave-assisted solvothermal techniques to prepare CeO 2 and ZrO 2 nanoparticles. We show that stable and homogeneous colloidal solutions with these nanoparticles can be reached using benzyl alcohol, triethyleneglycol, nonanoic acid, trifluoroacetic acid or decanoic acid as protecting ligands, thereby allowing subsequent mixing with alcoholic TFA solutions. An elaborate YBCO film growth analysis of these nanocomposites allows the identification of the different relevant growth phenomena, e.g. nanoparticles pushing towards the film surface, nanoparticle reactivity, coarsening and nanoparticle accumulation at the substrate interface. Upon mitigation of these effects, YBCO nanocomposite films with high self-field critical currents ( J c ∼ 3–4 MA cm −2 at 77 K) were reached, indicating no current limitation effects associated with epitaxy perturbation, while smoothed magnetic field dependences of the critical currents at high magnetic fields and decreased effective anisotropic pinning behavior confirm the effectiveness of the novel developed approach to enhance vortex pinning. In conclusion, a novel low cost solution-derived route to high current nanocomposite superconducting films and coated conductors has been developed with very promising features.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366288100009 Publication Date (down) 2015-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 32 Open Access
Notes All authors acknowledge the EU (EU-FP7 NMP-LA-2012-280432 EUROTAPES project). ICMAB acknowledges MINECO (MAT2014-51778-C2-1-R) and Generalitat de Catalunya (2014SGR 753 and Xarmae). UGhent acknowledges the Special Research Fund (BOF), the Research Foundation Flanders (FWO) and the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT). TEM microscopy work was conducted in the Catalan Institute of Nanoscience and Nanotechnology (ICN2). The authors acknowledge the ICN2 Electron Microscopy Division for offering access to their instruments and expertise. Part of the STEM microscopy work was conducted in 'Laboratorio de Microscopias Avanzadas' at the Instituto de Nanociencia de Aragon—Universidad de Zaragoza. The authors acknowledge the LMA-INA for offering access to their instruments and expertise. JG and MC also acknowledge the Ramon y Cajal program (RYC-2012-11709 and RYC-2013-12448 respectively). Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:129593 Serial 3966
Permanent link to this record
 

 
Author Forsh, E.A.; Abakumov, A.M.; Zaytsev, V.B.; Konstantinova, E.A.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K.
Title Optical and photoelectrical properties of nanocrystalline indium oxide with small grains Type A1 Journal article
Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 595 Issue 595 Pages 25-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Optical properties, spectral dependence of photoconductivity and photoconductivity decay in nanocrystalline indium oxide In2O3 are studied. A number of nanostructured In2O3 samples with various nanocrystals size are prepared by sol-gel method and characterized using various techniques. The mean nanocrystals size varies from 7 to 8 nm to 39-41 nm depending on the preparation conditions. Structural characterization of the In2O3 samples is performed by means of transmission electron microscopy and X-ray powder diffraction. The combined analysis of ultraviolet-visible absorption spectroscopy and diffuse reflectance spectroscopy shows that nanostructuring leads to the change in optical band gap: optical band gap of the In2O3 samples (with an average nanocrystal size from 7 to 41 nm) is equal to 2.8 eV. We find out the correlation between spectral dependence of photoconductivity and optical properties of nanocrystalline In2O3: sharp increase in photoconductivity was observed to begin at 2.8 eV that is equal to the optical bandgap in the In2O3 samples, and reached its maximum at 3.2-3.3 eV. The combined analysis of the slow photoconductivity decay in air, vacuum and argon, that was accurately fitted by a stretched-exponential function, and electron paramagnetic resonance (EPR) measurements shows that the kinetics of photoconductivity decay is strongly depended on the presence of oxygen molecules in the ambient of In2O3 nanocrystals. There is the quantitative correlation between EPR and photoconductivity data. Based on the obtained data we propose the model clearing up the phenomenon of permanent photoconductivity decay in nanocrystalline In2O3. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000365812400005 Publication Date (down) 2015-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 18 Open Access
Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
Call Number UA @ lucian @ c:irua:130254 Serial 4219
Permanent link to this record
 

 
Author Li, T.; Piltz, B.; Podola, B.; Dron, A.; de Beer, D.; Melkonian, M.
Title Microscale profiling of photosynthesis-related variables in a highly productive biofilm photobioreactor Type A1 Journal article
Year 2016 Publication Biotechnology and bioengineering Abbreviated Journal
Volume 113 Issue 5 Pages 1046-1055
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In the present study depth profiles of light, oxygen, pH and photosynthetic performance in an artificial biofilm of the green alga Halochlorella rubescens in a porous substrate photobioreactor (PSBR) were recorded with microsensors. Biofilms were exposed to different light intensities (50-1,000mol photons m(-2) s(-1)) and CO2 levels (0.04-5% v/v in air). The distribution of photosynthetically active radiation showed almost identical trends for different surface irradiances, namely: a relatively fast drop to a depth of about 250 mu m, (to 5% of the incident), followed by a slower decrease. Light penetrated into the biofilm deeper than the Lambert-Beer Law predicted, which may be attributed to forward scattering of light, thus improving the overall light availability. Oxygen concentration profiles showed maxima at a depth between 50 and 150m, depending on the incident light intensity. A very fast gas exchange was observed at the biofilm surface. The highest oxygen concentration of 3.2mM was measured with 1,000mol photons m(-2) s(-1) and 5% supplementary CO2. Photosynthetic productivity increased with light intensity and/or CO2 concentration and was always highest at the biofilm surface; the stimulating effect of elevated CO2 concentration in the gas phase on photosynthesis was enhanced by higher light intensities. The dissolved inorganic carbon concentration profiles suggest that the availability of the dissolved free CO2 has the strongest impact on photosynthetic productivity. The results suggest that dark respiration could explain previously observed decrease in growth rate over cultivation time in this type of PSBR. Our results represent a basis for understanding the complex dynamics of environmental variables and metabolic processes in artificial phototrophic biofilms exposed to a gas phase and can be used to improve the design and operational parameters of PSBRs. Biotechnol. Bioeng. 2016;113: 1046-1055. (c) 2015 Wiley Periodicals, Inc.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373476700013 Publication Date (down) 2015-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3592 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:133255 Serial 8248
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Poelman, H.; Galvita, V.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B.
Title One-pot synthesis of Pt catalysts based on layered double hydroxides: an application in propane dehydrogenation Type A1 Journal article
Year 2016 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol
Volume 6 Issue 6 Pages 1863-1869
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Simple methods for producing noble metal catalysts with well-defined active sites and improved performance are highly desired in the chemical industry. However, the development of such methods still presents a formidable synthetic challenge. Here, we demonstrate a one-pot synthesis route for the controlled production of bimetallic Pt–In catalysts based on the single-step formation of Mg,Al,Pt,In-containing layered double hydroxides (LDHs). Besides their simple synthesis, these Pt–In catalysts exhibit superior propane dehydrogenation activity compared to their multi-step synthesized analogs. The presented material serves as a showcase for the one-pot synthesis of a broader class of LDH-derived mono- and multimetallic Pt catalysts. The compositional flexibility provided by LDH materials can pave the way towards highperforming Pt-based catalysts with tunable physicochemical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372172800031 Publication Date (down) 2015-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.773 Times cited 12 Open Access
Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) by supplying financing of beam time at the DUBBLE beamline of the ESRF and travel costs and a post-doctoral fellowship for S. T. The authors acknowledge the assistance from the DUBBLE (XAS campaign 26-01-979) and SuperXAS staff (Proposal 20131191). E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to O. Janssens for performing ex situ XRD characterization. Approved Most recent IF: 5.773
Call Number c:irua:133167 Serial 4057
Permanent link to this record