|   | 
Details
   web
Records
Author Wang, Y.; Chen, Y.; Harding, J.; He, H.; Bogaerts, A.; Tu, X.
Title Catalyst-free single-step plasma reforming of CH4 and CO2 to higher value oxygenates under ambient conditions Type A1 Journal article
Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 450 Issue Pages 137860
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Direct conversion of CH4 and CO2 to liquid fuels and chemicals under mild conditions is appealing for biogas conversion and utilization but challenging due to the inert nature of both gases. Herein, we report a promising plasma process for the catalyst-free single-step conversion of CH4 and CO2 into higher value oxygenates (i.e., methanol, acetic acid, ethanol, and acetone) at ambient pressure and room temperature using a water-cooled dielectric barrier discharge (DBD) reactor, with methanol being the main liquid product. The distribution of liquid products could be tailored by tuning the discharge power, reaction temperature and residence time. Lower discharge powers (10–15 W) and reaction temperatures (5–20 ◦ C) were favourable for the production of liquid products, achieving the highest methanol selectivity of 43% at 5 ◦ C and 15 W. A higher discharge power and reaction temperature, on the other hand, produced more gaseous products, particularly H2 (up to 26% selec­tivity) and CO (up to 33% selectivity). In addition, varying these process parameters (discharge power, reaction temperature and residence time) resulted in a simultaneous change in key discharge properties, such as mean electron energy (Ee), electron density (ne) and specific energy input (SEI), all of which are essential determiners of plasma chemical reactions. According to the results of artificial neural network (ANN) models, the relative importance of these process parameters and key discharge indicators on reaction performance follows the order: discharge power > reaction temperature > residence time, and SEI > ne > Ee, respectively. This work provides new insights into the contributions and tuning mechanism of multiple parameters for optimizing the reaction performance (e.g., liquid production) in the plasma gas conversion process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000830813300004 Publication Date (down) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SklodowskaCurie grant agreement No. 813393. Approved Most recent IF: 15.1
Call Number PLASMANT @ plasmant @c:irua:189502 Serial 7100
Permanent link to this record
 

 
Author De Backer, J.; Lin, A.; Berghe, W.V.; Bogaerts, A.; Hoogewijs, D.
Title Cytoglobin inhibits non-thermal plasma-induced apoptosis in melanoma cells through regulation of the NRF2-mediated antioxidant response Type A1 Journal article
Year 2022 Publication Redox Biology Abbreviated Journal Redox Biol
Volume 55 Issue Pages 102399
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)
Abstract Melanoma arises from pigment-producing cells called melanocytes located in the basal layers of the epidermis of the skin. Cytoglobin (CYGB) is a ubiquitously expressed hexacoordinated globin that is highly enriched in me­lanocytes and frequently downregulated during melanomagenesis. Previously, we showed that non-thermal plasma (NTP)-produced reactive oxygen and nitrogen species (RONS) lead to the formation of an intra­ molecular disulfide bridge that would allow CYGB to function as a redox-sensitive protein. Here, we investigate the cytotoxic effect of indirect NTP treatment in two melanoma cell lines with divergent endogenous CYGB expression levels, and we explore the role of CYGB in determining treatment outcome. Our findings are consistent with previous studies supporting that NTP cytotoxicity is mediated through the production of RONS and leads to apoptotic cell death in melanoma cells. Furthermore, we show that NTP-treated solutions elicit an antioxidant response through the activation of nuclear factor erythroid 2–related factor 2 (NRF2). The knock­ down and overexpression of CYGB respectively sensitizes and protects melanoma cells from RONS-induced apoptotic cell death. The presence of CYGB enhances heme-oxygenase 1 (HO-1) and NRF2 protein expression levels, whereas the absence impairs their expression. Moreover, analysis of the CYGB-dependent transcriptome demonstrates the tumor suppressor long non-coding RNA maternally expressed 3 (MEG3) as a hitherto unde­ scribed link between CYGB and NRF2. Thus, the presence of CYGB, at least in melanoma cells, seems to play a central role in determining the therapeutic outcome of RONS-inducing anticancer therapies, like NTP-treated solutions, possessing both tumor-suppressive and oncogenic features. Hence, CYGB expression could be of in­ terest either as a biomarker or as a candidate for future targeted therapies in melanoma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000844595100002 Publication Date (down) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.4 Times cited Open Access OpenAccess
Notes This work was funded in part by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work include: 12S9221 N (Abraham Lin) and G044420 N (Abraham Lin and Annemie Bogaerts). Joey De Backer acknowledges a visiting fellowship from the University of Fribourg. David Hoogewijs acknowledges support by the Swiss National Science Foundation (grants 31003A173000 and 310030207460). Approved Most recent IF: 11.4
Call Number PLASMANT @ plasmant @c:irua:190635 Serial 7101
Permanent link to this record
 

 
Author Osorio-Tejada, J.; van't Veer, K.; Long, N.V.D.; Tran, N.N.; Fulcheri, L.; Patil, B.S.; Bogaerts, A.; Hessel, V.
Title Sustainability analysis of methane-to-hydrogen-to-ammonia conversion by integration of high-temperature plasma and non-thermal plasma processes Type A1 Journal article
Year 2022 Publication Energy Conversion And Management Abbreviated Journal Energ Convers Manage
Volume 269 Issue Pages 116095
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The Covid era has made us aware of the need for resilient, self-sufficient, and local production. We are likely willing to pay an extra price for that quality. Ammonia (NH3) synthesis accounts for 2 % of global energy production and is an important point of attention for the development of green energy technologies. Therefore, we propose a thermally integrated process for H2 production and NH3 synthesis using plasma technology, and we evaluate its techno-economic performance and CO2 footprint by life cycle assessment (LCA). The key is to integrate energy-wise a high-temperature plasma (HTP) process, with a (low-temperature) non-thermal plasma (NTP) process and to envision their joint economic potential. This particularly means raising the temperature of the NTP process, which is typically below 100 ◦ C, taking advantage of the heat released from the HTP process. For that purpose, we proposed the integrated process and conducted chemical kinetics simulations in the NTP section to determine the thermodynamically feasible operating window of this novel combined plasma process. The results suggest that an NH3 yield of 2.2 mol% can be attained at 302 ◦ C at an energy yield of 1.1 g NH3/kWh. Cost calculations show that the economic performance is far from commercial, mainly because of the too low energy yield of the NTP process. However, when we base our costs on the best literature value and plausible future scenarios for the NTP energy yield, we reach a cost prediction below 452 $/tonne NH3, which is competitive with conventional small-scale Haber-Bosch NH3 synthesis for distributed production. In addition, we demonstrate that biogas can be used as feed, thus allowing the proposed integrated reactor concept to be part of a biogas-to-ammonia circular concept. Moreover, by LCA we demonstrate the environmental benefits of the pro­posed plant, which could cut by half the carbon emissions when supplied by photovoltaic electricity, and even invert the carbon balance when supplied by wind power due to the avoided emissions of the carbon black credits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000880662100007 Publication Date (down) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0196-8904 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.4 Times cited Open Access OpenAccess
Notes European Research Council; European Commission, 810182 ; The authors acknowledge support from the ERC Synergy Grant “Surface-COnfined fast modulated Plasma for process and Energy intensification” (SCOPE), from the European Commission, with Grant No. 810182. Approved Most recent IF: 10.4
Call Number PLASMANT @ plasmant @c:irua:191785 Serial 7103
Permanent link to this record
 

 
Author Vertongen, R.; Trenchev, G.; Van Loenhout, R.; Bogaerts, A.
Title Enhancing CO2 conversion with plasma reactors in series and O2 removal Type A1 Journal article
Year 2022 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util
Volume 66 Issue Pages 102252
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, we take a crucial step towards the industrial readiness of plasma-based CO2 conversion. We present a stepwise method to study plasma reactors in series as a first approach to a recycle flow. By means of this procedure, the CO2 conversion is enhanced by a factor of 3, demonstrating that a single-pass plasma treatment performs far below the optimal capacity of the reactor. Furthermore, we explore the effect of O2 in the mixture with our flexible procedure. Addition of O2 in the mixture has a clear detrimental effect on the conversion, in agreement with other experiments in atmospheric pressure plasmas. O2 removal is however highly beneficial, demonstrating a conversion per pass that is 1.6 times higher than the standard procedure. Indeed, extracting one of the products prevents recombination reactions. Based on these insights, we discuss opportunities for further improvements, especially in the field of specialised separation techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000872550900003 Publication Date (down) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.7 Times cited Open Access OpenAccess
Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221 N), the Flemish Agency for Innovation and Entrepreneurship (VLAIO) (Grant ID HBC.2021.0251), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). We also thank L. Hollevoet, K. Rouwenhorst, F. Girard-Sahun, B. Wanten and I. Tsonev for the inter­esting discussions and practical help with the experiments. Approved Most recent IF: 7.7
Call Number PLASMANT @ plasmant @c:irua:191467 Serial 7111
Permanent link to this record
 

 
Author Oliveira, M.C.; Verswyvel, H.; Smits, E.; Cordeiro, R.M.; Bogaerts, A.; Lin, A.
Title The pro- and anti-tumoral properties of gap junctions in cancer and their role in therapeutic strategies Type A1 Journal article
Year 2022 Publication Redox Biology Abbreviated Journal Redox Biol
Volume 57 Issue Pages 102503
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Gap junctions (GJs), essential structures for cell-cell communication, are made of two hemichannels (commonly called connexons), one on each adjacent cell. Found in almost all cells, GJs play a pivotal role in many physi­ological and cellular processes, and have even been linked to the progression of diseases, such as cancer. Modulation of GJs is under investigation as a therapeutic strategy to kill tumor cells. Furthermore, GJs have also been studied for their key role in activating anti-cancer immunity and propagating radiation- and oxidative stress-induced cell death to neighboring cells, a process known as the bystander effect. While, gap junction (GJ)based therapeutic strategies are being developed, one major challenge has been the paradoxical role of GJs in both tumor progression and suppression, based on GJ composition, cancer factors, and tumoral context. Therefore, understanding the mechanisms of action, regulation, and the dual characteristics of GJs in cancer is critical for developing effective therapeutics. In this review, we provide an overview of the current under­ standing of GJs structure, function, and paradoxical pro- and anti-tumoral role in cancer. We also discuss the treatment strategies to target these GJs properties for anti-cancer responses, via modulation of GJ function.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000871090800004 Publication Date (down) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record
Impact Factor 11.4 Times cited Open Access OpenAccess
Notes We thank Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted, and the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Founda­tion, the Flemish Government (department EWI) and the University of Antwerp, for providing the computational resources needed for running the simulations. This work was also funded in part by the funded by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work include: 12S9221N (Abraham Lin), G044420N (Abraham Lin and Annemie Bogaerts), and 1S67621N (Hanne Verswyvel). Figs. 1, 4 and 5 were created in BioRender.com. Approved Most recent IF: 11.4
Call Number PLASMANT @ plasmant @c:irua:191362 Serial 7112
Permanent link to this record
 

 
Author Ivanov, V.; Paunska, T.; Lazarova, S.; Bogaerts, A.; Kolev, S.
Title Gliding arc/glow discharge for CO2 conversion: Comparing the performance of different discharge configurations Type A1 Journal Article;CO2 conversion
Year 2023 Publication Journal of CO2 Utilization Abbreviated Journal
Volume 67 Issue Pages 102300
Keywords A1 Journal Article;CO2 conversion; CO2 dissociation; Low current gliding arc; Magnetic stabilization; Magnetically stabilized discharge; Gliding glow discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract We studied the use of low current (hundreds of milliamperes) gliding arc/glow discharges for CO2 dissociation, at atmospheric pressure, in three different configurations. All of these are based on the gliding arc design with flat diverging electrodes. The discharge is mainly in the normal glow regime with contracted positive column. The CO2 gas is injected from a nozzle, at the closest separation between the electrodes. A pair of quartz glasses is placed on both sides of the electrodes, so that the gas flow is restricted to the active plasma area, between the electrodes. For two of the tested configurations, an external magnetic field was applied, to create a magnetic force, both in the direction of the gas flow, and opposite to the gas flow. In the first case, the arc is accelerated, shortening the period between ignition and extinction, while in the second case, it is stabilized (magneticallystabilized). We studied two quantities, namely the CO2 conversion and the energy efficiency of the conversion. Generally, the CO2 conversion decreases with increasing flow rate and increases with power. The energy effi­ciency increases with the flow rate, for all configurations. The magnetically-stabilized configuration is more stable and efficient at low gas flow rates, but has poor performance at high flow rates, while the non-stabilized configurations exhibit good conversion for a larger range of flow rates, but they are generally more unstable and less efficient.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000891249700001 Publication Date (down) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.7 Times cited Open Access Not_Open_Access
Notes This work was supported by the Bulgarian National Science Fund, Ministry of Education and Science, research grant KP-06-OPR 04/4 from 14.12.2018 and by the European Regional Development Fund within the Operational Programme “Science and Education for Smart Growth 2014 – 2020″ under the Project CoE “National center of mechatronics and clean technologies” BG05M2OP001-1.001-0008. Approved Most recent IF: 7.7; 2023 IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:191816 Serial 7117
Permanent link to this record
 

 
Author Verheyen, C.; van ’t Veer, K.; Snyders, R.; Bogaerts, A.
Title Atomic oxygen assisted CO2 conversion: A theoretical analysis Type A1 Journal article
Year 2023 Publication Journal of CO2 utilization Abbreviated Journal
Volume 67 Issue Pages 102347
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract With climate change still a pressing issue, there is a great need for carbon capture, utilisation and storage (CCUS)

methods. We propose a novel concept where CO2 conversion is accomplished by O2 splitting followed by the

addition of O atoms to CO2. The latter is studied here by means of kinetic modelling. In the first instance, we

study various CO2/O ratios, and we observe an optimal CO2 conversion of around 30–40% for 50% O addition.

Gas temperature also has a large influence, with a minimum temperature of around 1000 K to a maximum of

2000 K for optimal conversion. In the second instance, we study various CO2/O/O2 ratios, due to O2 being a

starting gas. Also here we define optimal regions for CO2 conversion, which reach maximum conversion for a

CO2 fraction of 50% and an O/O2 ratio bigger than 1. Those can be expanded by heating on one hand, for low

atomic oxygen availability, and by quenching after reaction on the other hand, for cases where the temperatures

are too high. Our model predictions can serve as a guideline for experimental research in this domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000908384000005 Publication Date (down) 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.7 Times cited Open Access OpenAccess
Notes This research was supported by FWO – PhD fellowship-aspirant, Grant 1184820N. We also want to thank Bj¨orn Loenders and Joachim Slaets. Approved Most recent IF: 7.7; 2023 IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:192321 Serial 7231
Permanent link to this record
 

 
Author Somers, W.
Title Atomic scale simulations of the interactions of plasma species on nickel catalyst surfaces Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:127915 Serial 4142
Permanent link to this record
 

 
Author Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kozák, T.
Title Computer modeling of a microwave discharge used for CO2 splitting Type P2 Proceeding
Year 2015 Publication Abbreviated Journal
Volume Issue Pages 41-50
Keywords P2 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher UCO Press Place of Publication Cordoba Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-9927-187-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:135096 Serial 4154
Permanent link to this record
 

 
Author Berthelot, A.; Kolev, S.; Bogaerts, A.
Title Different pressure regimes of a surface-wave discharge in argon : a modelling investigation Type P2 Proceeding
Year 2015 Publication Abbreviated Journal
Volume Issue Pages 57-62
Keywords P2 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher UCO Press Place of Publication Cordoba Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-9927-187-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:135094 Serial 4160
Permanent link to this record
 

 
Author Bogaerts, A.; Aghaei, M.
Title What modeling reveals about the properties of an inductively coupled plasma Type A1 Journal article
Year 2016 Publication Spectroscopy Abbreviated Journal Spectroscopy-Us
Volume 31 Issue 1 Pages 52-59
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract To get better performance from inductively coupled plasma (ICP)-based methods, it is informative to study the properties of the ICP under different conditions. Annemie Bogaerts and Maryam Aghaei at the University of Antwerp, Belgium, are using computational modeling to examine how various properties of the ICP, such as gas flow path lines and velocity, temperature changes, and ionization effects, are affected by numerous factors, such as the gas flow rates of injector and auxiliary gas, applied power, and even the very presence of a mass spectrometry (MS) sampler. They have also applied their models to study particle transport through the ICP. Using their developed model, it is now possible to predict optimum conditions for specific analyses. Bogaerts and Aghaei spoke to us about this work.
Address
Corporate Author Thesis
Publisher Place of Publication Springfield, Or. Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0887-6703 ISBN Additional Links UA library record; WoS full record
Impact Factor 0.466 Times cited Open Access
Notes Approved Most recent IF: 0.466
Call Number UA @ lucian @ c:irua:131601 Serial 4278
Permanent link to this record
 

 
Author De Bie, C.
Title Fluid modeling of the plasma-assisted conversion of greenhouse gases to value-added chemicals in a dielectric barrier discharge Type Doctoral thesis
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:138591 Serial 4466
Permanent link to this record
 

 
Author Ozkan, A.
Title CO2 splitting in a dielectric barrier discharge plasma : understanding of physical and chemical aspects Type Doctoral thesis
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Université Libre de Bruxelles/Universiteit Antwerpen Place of Publication Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:136265 Serial 4470
Permanent link to this record
 

 
Author Neyts, E.
Title Algemene chemie : van atomen tot thermodynamica Type MA2 Book as author
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 317 p.
Keywords MA2 Book as author; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Acco Place of Publication Leuven Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-334-9628-8 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:128094 Serial 4514
Permanent link to this record
 

 
Author Adams, F.; Gijbels, R.; Van Grieken, R.; Dachang, Z.
Title Inorganic mass spectrometry Type MA3 Book as author
Year 1993 Publication Abbreviated Journal
Volume Issue Pages 391 p.
Keywords MA3 Book as author; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Fudan University Press Place of Publication Shanghai Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:34086 Serial 4522
Permanent link to this record
 

 
Author Adams, F.; Gijbels, R.; Van Grieken, R.
Title Inorganic mass spectrometry Type ME3 Book as editor
Year 1988 Publication Abbreviated Journal
Volume Issue Pages 404 p.
Keywords ME3 Book as editor; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Wiley Place of Publication Chichester Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:117469 Serial 4523
Permanent link to this record
 

 
Author Van Laer, K.
Title Numerical and experimental study of a packed bed plasma reactor for environmental applications Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:144061 Serial 4675
Permanent link to this record
 

 
Author Snoeckx, R.
Title Plasma technology : a novel solution for CO2 conversion? Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:143110 Serial 4680
Permanent link to this record
 

 
Author Huygh, S.
Title Towards a fundamental understanding of plasma : TiO2 catalyst interaction for greenhouse gas conversion Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Universiteit Antwerpen Place of Publication Antwerpen Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:143954 Serial 4698
Permanent link to this record
 

 
Author Dabaghmanesh, S.
Title Atomistic modeling of the structural and electronic properties of Cr-based oxides and their potential application as TCO materials Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:146070 Serial 4738
Permanent link to this record
 

 
Author Berthelot, A.
Title Modeling of microwave plasmas for carbon dioxide conversion Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher University of Antwerp Place of Publication Antwerp Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:150338 Serial 4944
Permanent link to this record
 

 
Author Sun, S.
Title Study of carbon dioxide dissociation mechanisms in a gliding arc discharge Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Beihang University, School of Astronautics Place of Publication Beijing Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:149824 Serial 4950
Permanent link to this record
 

 
Author Bal, K.
Title New ways to bridge the gap between microscopic simulations and macroscopic chemistry Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:154836 Serial 5118
Permanent link to this record
 

 
Author Verlackt, C.
Title The behavior of plasma-generated reactive species in plasma medicine Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:155115 Serial 5079
Permanent link to this record
 

 
Author Ghorbanfekr Kalashami, H.
Title Graphene-based membranes and nanoconfined water : molecular dynamics simulation study Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 243 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:160548 Serial 5216
Permanent link to this record
 

 
Author Razzokov, J.
Title Molecular level simulations for plasma medicine applications Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 173 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:159654 Serial 5277
Permanent link to this record
 

 
Author Michielsen, I.
Title Plasma catalysis : study of packing materials on CO2 reforming in a DBD reactor Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 215 p.
Keywords Doctoral thesis; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:160087 Serial 5278
Permanent link to this record
 

 
Author Ramakers, M.
Title Using a gliding arc plasmatron for CO2 conversion : the future in industry? Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 235 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158254 Serial 5282
Permanent link to this record
 

 
Author Trenchev, G.
Title Computational modelling of atmospheric DC discharges for CO2 conversion Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 206 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:163986 Serial 6290
Permanent link to this record
 

 
Author Van der Paal, J.
Title Generation, transport and molecular interactions of reactive species in plasma medicine Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 237 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (down)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:162591 Serial 6297
Permanent link to this record