|   | 
Details
   web
Records
Author Neyts, E.C.; Bogaerts, A.
Title Formation of endohedral Ni@C60 and exohedral NiC60 metallofullerene complexes by simulated ion implantation Type A1 Journal article
Year 2009 Publication Carbon Abbreviated Journal Carbon
Volume 47 Issue 4 Pages 1028-1033
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The interaction of thermal and hyperthermal Ni ions with gas-phase C60 fullerene was investigated at two temperatures with classical molecular dynamics simulations using a recently developed interatomic many-body potential. The interaction between Ni and C60 is characterized in terms of the NiC60 binding sites, complex formation, and the collision and temperature induced deformation of the C60 cage structure. The simulations show how ion implantation theoretically allows the synthesis of both endohedral Ni@C60 and exohedral NiC60 metallofullerene complexes.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Oxford Editor
Language Wos 000264252900012 Publication Date 2008-12-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 15 Open Access
Notes Approved Most recent IF: 6.337; 2009 IF: 4.504
Call Number UA @ lucian @ c:irua:76434 Serial 1260
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.; Gijbels, R.; van der Mullen, J.
Title Gas discharge plasmas and their applications Type A1 Journal article
Year 2002 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 57 Issue Pages 609-658
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Oxford Editor
Language Wos 000175779700001 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 462 Open Access
Notes Approved Most recent IF: 3.241; 2002 IF: 2.695
Call Number UA @ lucian @ c:irua:40181 Serial 1317
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
Title Ion irradiation for improved graphene network formation in carbon nanotube growth Type A1 Journal article
Year 2014 Publication Carbon Abbreviated Journal Carbon
Volume 77 Issue Pages 790-795
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ion irradiation of carbon nanotubes very often leads to defect formation. However, we have recently shown that Ar ion irradiation in a limited energy window of 1025 eV may enhance the initial cap nucleation process, when the carbon network is in contact with the metal nanocatalyst. Here, we employ reactive molecular dynamics simulations to demonstrate that ion irradiation in a higher energy window of 1035 eV may also heal network defects after the nucleation stage through a non-metal-mediated mechanism, when the carbon network is no longer in contact with the metal nanocatalyst. The results demonstrate the possibility of beneficially utilizing ions in e.g. plasma-enhanced chemical vapour deposition of carbon nanotubes.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Oxford Editor
Language Wos 000340689400083 Publication Date 2014-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 7 Open Access
Notes Approved Most recent IF: 6.337; 2014 IF: 6.196
Call Number UA @ lucian @ c:irua:118062 Serial 1745
Permanent link to this record
 

 
Author Neyts, E.; Eckert, M.; Mao, M.; Bogaerts, A.
Title Numerical simulation of hydrocarbon plasmas for nanoparticle formation and the growth of nanostructured thin films Type A1 Journal article
Year 2009 Publication Plasma physics and controlled fusion Abbreviated Journal Plasma Phys Contr F
Volume 51 Issue Pages 124034,1-124034,8
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper outlines two different numerical simulation approaches, carried out by our group, used for describing hydrocarbon plasmas in their applications for either nanoparticle formation in the plasma or the growth of nanostructured thin films, such as nanocrystalline diamond (NCD). A plasma model based on the fluid approach is utilized to study the initial mechanisms giving rise to nanoparticle formation in an acetylene plasma. The growth of NCD is investigated by molecular dynamics simulations, describing the interaction of the hydrocarbon species with a substrate.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Oxford Editor
Language Wos 000271940800045 Publication Date 2009-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3335;1361-6587; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.392 Times cited 2 Open Access
Notes Approved Most recent IF: 2.392; 2009 IF: 2.409
Call Number UA @ lucian @ c:irua:79132 Serial 2405
Permanent link to this record
 

 
Author Shariat, M.; Hosseini, S.I.; Shokri, B.; Neyts, E.C.
Title Plasma enhanced growth of single walled carbon nanotubes at low temperature : a reactive molecular dynamics simulation Type A1 Journal article
Year 2013 Publication Carbon Abbreviated Journal Carbon
Volume 65 Issue Pages 269-276
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Low-temperature growth of carbon nanotubes (CNTs) has been claimed to provide a route towards chiral-selective growth, enabling a host of applications. In this contribution, we employ reactive molecular dynamics simulations to demonstrate how plasma-based deposition allows such low-temperature growth. We first show how ion bombardment during the growth affects the carbon dissolution and precipitation process. We then continue to demonstrate how a narrow ion energy window allows CNT growth at 500 K. Finally, we also show how CNTs in contrast cannot be grown in thermal CVD at this low temperature, but only at high temperature, in agreement with experimental data. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Oxford Editor
Language Wos 000326773200031 Publication Date 2013-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 21 Open Access
Notes Approved Most recent IF: 6.337; 2013 IF: 6.160
Call Number UA @ lucian @ c:irua:112697 Serial 2635
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.; Han, Z.J.; Kumar, S.; van Duin, A.C.T.; Bogaerts, A.
Title Defect healing and enhanced nucleation of carbon nanotubes by low-energy ion bombardment Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 110 Issue 6 Pages 065501-65505
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Structural defects inevitably appear during the nucleation event that determines the structure and properties of single-walled carbon nanotubes. By combining ion bombardment experiments with atomistic simulations we reveal that ion bombardment in a suitable energy range allows these defects to be healed resulting in an enhanced nucleation of the carbon nanotube cap. The enhanced growth of the nanotube cap is explained by a nonthermal ion-induced graphene network restructuring mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication (down) New York, N.Y. Editor
Language Wos 000314687300022 Publication Date 2013-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 50 Open Access
Notes Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:105306 Serial 616
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M.
Title Effect of hydrogen on the growth of thin hydrogenated amorphous carbon films from thermal energy radicals Type A1 Journal article
Year 2006 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 88 Issue Pages 141922
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication (down) New York, N.Y. Editor
Language Wos 000236612000037 Publication Date 2006-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 35 Open Access
Notes Approved Most recent IF: 3.411; 2006 IF: 3.977
Call Number UA @ lucian @ c:irua:57642 Serial 817
Permanent link to this record
 

 
Author Dumpala, S.; Broderick, S.R.; Khalilov, U.; Neyts, E.C.; van Duin, A.C.T.; Provine, J.; Howe, R.T.; Rajan, K.
Title Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation Type A1 Journal article
Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 106 Issue 106 Pages 011602
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication (down) New York, N.Y. Editor
Language Wos 000347976900008 Publication Date 2015-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 19 Open Access
Notes Approved Most recent IF: 3.411; 2015 IF: 3.302
Call Number c:irua:122300 Serial 1679
Permanent link to this record
 

 
Author Gou, F.; Neyts, E.; Eckert, M.; Tinck, S.; Bogaerts, A.
Title Molecular dynamics simulations of Cl+ etching on a Si(100) surface Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 107 Issue 11 Pages 113305,1-113305,6
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations using improved TersoffBrenner potential parameters were performed to investigate Cl+ etching of a {2×1} reconstructed Si(100) surface. Steady-state Si etching accompanying the Cl coverage of the surface is observed. Furthermore, a steady-state chlorinated reaction layer is formed. The thickness of this reaction layer is found to increase with increasing energy. The stoichiometry of SiClx species in the reaction layer is found to be SiCl:SiCl2:SiCl3 = 1.0:0.14:0.008 at 50 eV. These results are in excellent agreement with available experimental data. While elemental Si products are created by physical sputtering, most SiClx (0<x<4) etch products are produced by chemical-enhanced physical sputtering.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication (down) New York, N.Y. Editor
Language Wos 000278907100018 Publication Date 2010-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 15 Open Access
Notes Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:82663 Serial 2175
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title On the time scale associated with Monte Carlo simulations Type A1 Journal article
Year 2014 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 141 Issue 20 Pages 204104
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.
Address
Corporate Author Thesis
Publisher Place of Publication (down) New York, N.Y. Editor
Language Wos 000345641400005 Publication Date 2014-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 26 Open Access
Notes Approved Most recent IF: 2.965; 2014 IF: 2.952
Call Number UA @ lucian @ c:irua:120667 Serial 2459
Permanent link to this record
 

 
Author Neyts, E.; Yan, M.; Bogaerts, A.; Gijbels, R.
Title Particle-in-cell/Monte Carlo simulations of a low-pressure capacitively coupled radio-frequency discharge: effect of adding H2 to an Ar discharge Type A1 Journal article
Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 93 Issue Pages 5025-5033
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication (down) New York, N.Y. Editor
Language Wos 000182296700010 Publication Date 2003-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 15 Open Access
Notes Approved Most recent IF: 2.068; 2003 IF: 2.171
Call Number UA @ lucian @ c:irua:44012 Serial 2562
Permanent link to this record
 

 
Author Neyts, E.C.
Title PECVD growth of carbon nanotubes : from experiment to simulation Type A1 Journal article
Year 2012 Publication Journal of vacuum science and technology: B: micro-electronics processing and phenomena Abbreviated Journal
Volume 30 Issue 3 Pages 030803-030803,17
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nanostructured carbon materials show a tremendous variety in atomic structure, morphology, properties, and applications. As all properties are ultimately determined by the structure of the material, a thorough understanding of the growth mechanisms that give rise to the particular structure is critical. On many occasions, it has been shown that plasma enhanced growth can be strongly beneficial. This review will describe the authors current understanding of plasma enhanced growth of carbon nanotubes, the prototypical example of nanostructured carbon materials, as obtained from experiments, simulations, and modeling. Specific emphasis is put on where experiments and computational approaches correspond, and where they differ. Also, the current status on simulating PECVD growth of some other carbon nanomaterials is reviewed, including amorphous carbon, graphene, and metallofullerenes. Finally, computational challenges with respect to the simulation of PECVD growth are identified.
Address
Corporate Author Thesis
Publisher Place of Publication (down) New York, N.Y. Editor
Language Wos 000305042000010 Publication Date 2012-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-2746; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 42 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:97166 Serial 2570
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M.
Title Unraveling the deposition mechanism in a-C:H thin-film growth: a molecular-dynamics study for the reaction behavior of C3 and C3H radicals with a-C:H surfaces Type A1 Journal article
Year 2006 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 99 Issue 1 Pages 014902,1-8
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication (down) New York, N.Y. Editor
Language Wos 000234607200071 Publication Date 2006-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 25 Open Access
Notes Approved Most recent IF: 2.068; 2006 IF: 2.316
Call Number UA @ lucian @ c:irua:55831 Serial 3815
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Radu, I.; Neyts, E.C.; De Gendt, S.
Title Thermal recrystallization of short-range ordered WS2 films Type A1 Journal article
Year 2018 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 36 Issue 5 Pages 05g501
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The integration of van der Waals materials in nanoelectronic devices requires the deposition of few-layered MX2 films with excellent quality crystals covering a large area. In recent years, astonishing progress in the monolayer growth of WS2 and MoS2 was demonstrated, but multilayer growth resulted often in separated triangular or hexagonal islands. These polycrystalline films cannot fully employ the specific MX2 properties since they are not connected in-plane to the other domains. To coalesce separated islands, ultrahigh-temperature postdeposition anneals in H2S are applied, which are not compatible with bare silicon substrates. Starting from the deposition of stoichiometric short-ordered films, the present work studies different options for subsequent high-temperature annealing in an inert atmosphere to form crystalline films with large grains from stoichiometric films with small grains. The rapid thermal annealing, performed over a few seconds, is compared to excimer laser annealing in the nanosecond range, which are both able to crystallize the thin WS2. The WS2 recrystallization temperature can be lowered using metallic crystallization promoters (Co and Ni). The best result is obtained using a Co cap, due to the circumvention of Co and S binary phase formation below the eutectic temperature. The recrystallization above a critical temperature is accompanied by sulfur loss and 3D regrowth. These undesired effects can be suppressed by the application of a dielectric capping layer prior to annealing. A SiO2 cap can suppress the sulfur loss successfully during annealing and reveals improved material quality in comparison to noncapped films Published by the AVS.
Address
Corporate Author Thesis
Publisher Place of Publication (down) New York, N.Y. Editor
Language Wos 000444033200002 Publication Date 2018-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 1.374
Call Number UA @ lucian @ c:irua:153671 Serial 5134
Permanent link to this record
 

 
Author Hoon Park, J.; Kumar, N.; Hoon Park, D.; Yusupov, M.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A.; Ho Kang, M.; Sup Uhm, H.; Ha Choi, E.; Attri, P.;
Title A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue 5 Pages 13849
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication (down) London Editor
Language Wos 000360909000001 Publication Date 2015-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 32 Open Access
Notes Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number c:irua:127410 Serial 419
Permanent link to this record
 

 
Author Bogaerts, A.; Eckert, M.; Mao, M.; Neyts, E.
Title Computer modelling of the plasma chemistry and plasma-based growth mechanisms for nanostructured materials Type A1 Journal article
Year 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 44 Issue 17 Pages 174030-174030,16
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this review paper, an overview is given of different modelling efforts for plasmas used for the formation and growth of nanostructured materials. This includes both the plasma chemistry, providing information on the precursors for nanostructure formation, as well as the growth processes itself. We limit ourselves to carbon (and silicon) nanostructures. Examples of the plasma modelling comprise nanoparticle formation in silane and hydrocarbon plasmas, as well as the plasma chemistry giving rise to carbon nanostructure formation, such as (ultra)nanocrystalline diamond ((U)NCD) and carbon nanotubes (CNTs). The second part of the paper deals with the simulation of the (plasma-based) growth mechanisms of the same carbon nanostructures, i.e. (U)NCD and CNTs, both by mechanistic modelling and detailed atomistic simulations.
Address
Corporate Author Thesis
Publisher Place of Publication (down) London Editor
Language Wos 000289512700030 Publication Date 2011-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 25 Open Access
Notes Approved Most recent IF: 2.588; 2011 IF: 2.544
Call Number UA @ lucian @ c:irua:88364 Serial 463
Permanent link to this record
 

 
Author Neyts, E.C.; Yusupov, M.; Verlackt, C.C.; Bogaerts, A.
Title Computer simulations of plasmabiomolecule and plasmatissue interactions for a better insight in plasma medicine Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 29 Pages 293001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma medicine is a rapidly evolving multidisciplinary field at the intersection of chemistry, biochemistry, physics, biology, medicine and bioengineering. It holds great potential in medical, health care, dentistry, surgical, food treatment and other applications. This multidisciplinary nature and variety of possible applications come along with an inherent and intrinsic complexity. Advancing plasma medicine to the stage that it becomes an everyday tool in its respective fields requires a fundamental understanding of the basic processes, which is lacking so far. However, some major advances have already been made through detailed experiments over the last 15 years. Complementary, computer simulations may provide insight that is difficultif not impossibleto obtain through experiments. In this review, we aim to provide an overview of the various simulations that have been carried out in the context of plasma medicine so far, or that are relevant for plasma medicine. We focus our attention mostly on atomistic simulations dealing with plasmabiomolecule interactions. We also provide a perspective and tentative list of opportunities for future modelling studies that are likely to further advance the field.
Address
Corporate Author Thesis
Publisher Place of Publication (down) London Editor
Language Wos 000338860300001 Publication Date 2014-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 28 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:117853 Serial 472
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M.
Title Densification of thin a-C: H films grown from low-kinetic energy hydrocarbon radicals under the influence of H and C particle fluxes: a molecular dynamics study Type A1 Journal article
Year 2006 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 39 Issue 9 Pages 1948-1953
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) London Editor
Language Wos 000238233900035 Publication Date 2006-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 3 Open Access
Notes Approved Most recent IF: 2.588; 2006 IF: 2.077
Call Number UA @ lucian @ c:irua:57254 Serial 634
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Neyts, E.; Bogaerts, A.
Title The effect of hydrogen on the electronic and bonding properties of amorphous carbon Type A1 Journal article
Year 2006 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 18 Issue 48 Pages 10803-10815
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) London Editor
Language Wos 000242650600008 Publication Date 2006-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 13 Open Access
Notes Approved Most recent IF: 2.649; 2006 IF: 2.038
Call Number UA @ lucian @ c:irua:60468 Serial 816
Permanent link to this record
 

 
Author Van der Paal, J.; Aernouts, S.; van Duin, A.C.T.; Neyts, E.C.; Bogaerts, A.
Title Interaction of O and OH radicals with a simple model system for lipids in the skin barrier : a reactive molecular dynamics investigation for plasma medicine Type A1 Journal article
Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 46 Issue 39 Pages 395201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma medicine has been claimed to provide a novel route to heal wounds and regenerate skin, although very little is currently known about the elementary processes taking place. We carried out a series of ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of O and OH radicals with lipids, more specifically with α-linolenic acid as a model for the free fatty acids present in the upper skin layer. Our calculations predict that the O and OH radicals most typically abstract a H atom from the fatty acids, which can lead to the formation of a conjugated double bond, but also to the incorporation of alcohol or aldehyde groups, thereby increasing the hydrophilic character of the fatty acids and changing the general lipid composition of the skin. Within the limitations of the investigated model, no formation of possibly toxic products was observed.
Address
Corporate Author Thesis
Publisher Place of Publication (down) London Editor
Language Wos 000324810400007 Publication Date 2013-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 36 Open Access
Notes Approved Most recent IF: 2.588; 2013 IF: 2.521
Call Number UA @ lucian @ c:irua:109904 Serial 1684
Permanent link to this record
 

 
Author Bogaerts, A.; De Bie, C.; Eckert, M.; Georgieva, V.; Martens, T.; Neyts, E.; Tinck, S.
Title Modeling of the plasma chemistry and plasmasurface interactions in reactive plasmas Type A1 Journal article
Year 2010 Publication Pure and applied chemistry Abbreviated Journal Pure Appl Chem
Volume 82 Issue 6 Pages 1283-1299
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, an overview is given of modeling activities going on in our research group, for describing the plasma chemistry and plasmasurface interactions in reactive plasmas. The plasma chemistry is calculated by a fluid approach or by hybrid Monte Carlo (MC)fluid modeling. An example of both is illustrated in the first part of the paper. The example of fluid modeling is given for a dielectric barrier discharge (DBD) in CH4/O2, to describe the partial oxidation of CH4 into value-added chemicals. The example of hybrid MCfluid modeling concerns an inductively coupled plasma (ICP) etch reactor in Ar/Cl2/O2, including also the description of the etch process. The second part of the paper deals with the treatment of plasmasurface interactions on the atomic level, with molecular dynamics (MD) simulations or a combination of MD and MC simulations.
Address
Corporate Author Thesis
Publisher Place of Publication (down) London Editor
Language Wos 000279063900010 Publication Date 2010-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1365-3075;0033-4545; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.626 Times cited 13 Open Access
Notes Approved Most recent IF: 2.626; 2010 IF: 2.134
Call Number UA @ lucian @ c:irua:82108 Serial 2134
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A.
Title On the reaction behaviour of hydrocarbon species at diamond (1 0 0) and (1 1 1) surfaces: a molecular dynamics investigation Type A1 Journal article
Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 41 Issue Pages 032006,1-3
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) London Editor
Language Wos 000253177800006 Publication Date 2008-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 17 Open Access
Notes Approved Most recent IF: 2.588; 2008 IF: 2.104
Call Number UA @ lucian @ c:irua:66107 Serial 2449
Permanent link to this record
 

 
Author Ostrikov, K.; Neyts, E.C.; Meyyappan, M.
Title Plasma nanoscience : from nano-solids in plasmas to nano-plasmas in solids Type A1 Journal article
Year 2013 Publication Advances in physics Abbreviated Journal Adv Phys
Volume 62 Issue 2 Pages 113-224
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The unique plasma-specific features and physical phenomena in the organization of nanoscale soild-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter to nano-plasma effects and nano-plasmas of different states of matter.
Address
Corporate Author Thesis
Publisher Place of Publication (down) London Editor
Language Wos 000320913600001 Publication Date 2013-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-8732;1460-6976; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 21.818 Times cited 380 Open Access
Notes Approved Most recent IF: 21.818; 2013 IF: 18.062
Call Number UA @ lucian @ c:irua:108723 Serial 2639
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Simon, P.; Berdiyorov, G.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A.
Title Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 2 Pages 025205-25209
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of atmospheric pressure plasmas in medicine is increasingly gaining attention in recent years, although very little is currently known about the plasma-induced processes occurring on the surface of living organisms. It is known that most bio-organisms, including bacteria, are coated by a liquid film surrounding them, and there might be many interactions between plasma species and the liquid layer before the plasma species reach the surface of the bio-organisms. Therefore, it is essential to study the behaviour of the reactive species in a liquid film, in order to determine whether these species can travel through this layer and reach the biomolecules, or whether new species are formed along the way. In this work, we investigate the interaction of reactive oxygen species (i.e. O, OH, HO2 and H2O2) with water, which is assumed as a simple model system for the liquid layer surrounding biomolecules. Our computational investigations show that OH, HO2 and H2O2 can travel deep into the liquid layer and are hence in principle able to reach the bio-organism. Furthermore, O, OH and HO2 radicals react with water molecules through hydrogen-abstraction reactions, whereas no H-abstraction reaction takes place in the case of H2O2. This study is important to gain insight into the fundamental operating mechanisms in plasma medicine, in general, and the interaction mechanisms of plasma species with a liquid film, in particular.
Address
Corporate Author Thesis
Publisher Place of Publication (down) London Editor
Language Wos 000329108000013 Publication Date 2013-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 51 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:112286 Serial 2823
Permanent link to this record
 

 
Author Van der Paal, J.; Verlackt, C.C.; Yusupov, M.; Neyts, E.C.; Bogaerts, A.
Title Structural modification of the skin barrier by OH radicals : a reactive molecular dynamics study for plasma medicine Type A1 Journal article
Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 48 Issue 48 Pages 155202
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function.
Address
Corporate Author Thesis
Publisher Place of Publication (down) London Editor
Language Wos 000351856600007 Publication Date 2015-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 20 Open Access
Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
Call Number c:irua:124230 Serial 3242
Permanent link to this record
 

 
Author Dufour, T.; Minnebo, J.; Abou Rich, S.; Neyts, E.C.; Bogaerts, A.; Reniers, F.
Title Understanding polyethylene surface functionalization by an atmospheric He/O2 plasma through combined experiments and simulations Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 224007
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract High density polyethylene surfaces were exposed to the atmospheric post-discharge of a radiofrequency plasma torch supplied in helium and oxygen. Dynamic water contact angle measurements were performed to evaluate changes in surface hydrophilicity and angle resolved x-ray photoelectron spectroscopy was carried out to identify the functional groups responsible for wettability changes and to study their subsurface depth profiles, up to 9 nm in depth. The reactions leading to the formation of CO, C = O and OC = O groups were simulated by molecular dynamics. These simulations demonstrate that impinging oxygen atoms do not react immediately upon impact but rather remain at or close to the surface before eventually reacting. The simulations also explain the release of gaseous species in the ambient environment as well as the ejection of low molecular weight oxidized materials from the surface.
Address
Corporate Author Thesis
Publisher Place of Publication (down) London Editor
Language Wos 000336207900008 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 13 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116919 Serial 3804
Permanent link to this record
 

 
Author Bogaerts, A.; Khosravian, N.; Van der Paal, J.; Verlackt, C.C.W.; Yusupov, M.; Kamaraj, B.; Neyts, E.C.
Title Multi-level molecular modelling for plasma medicine Type A1 Journal article
Year 2016 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 49 Issue 5 Pages 054002-54019
Keywords A1 Journal article; Plasma, laser ablation and surface modeling – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record
Impact Factor 2.588 Times cited Open Access
Notes Approved Most recent IF: 2.588
Call Number UA @ lucian @ c:irua:129798 Serial 4467
Permanent link to this record
 

 
Author Neyts, E.
Title Algemene chemie : van atomen tot thermodynamica Type MA2 Book as author
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 317 p.
Keywords MA2 Book as author; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Acco Place of Publication (down) Leuven Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-334-9628-8 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:128094 Serial 4514
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; de Meyer, M.; van Gils, S.
Title Macroscale computer simulations to investigate the chemical vapor deposition of thin metal-oxide films Type A1 Journal article
Year 2007 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech
Volume 201 Issue 22/23 Pages 8838-8841
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Lausanne Editor
Language Wos 000249340400008 Publication Date 2007-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.589 Times cited 5 Open Access
Notes Approved Most recent IF: 2.589; 2007 IF: 1.678
Call Number UA @ lucian @ c:irua:64790 Serial 1859
Permanent link to this record
 

 
Author Samani, M.K.; Ding, X.Z.; Khosravian, N.; Amin-Ahmadi, B.; Yi, Y.; Chen, G.; Neyts, E.C.; Bogaerts, A.; Tay, B.K.
Title Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc Type A1 Journal article
Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 578 Issue 578 Pages 133-138
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A seriesof [TiN/TiAlN]nmultilayer coatingswith different bilayer numbers n=5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEMimaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Lausanne Editor
Language Wos 000351686500019 Publication Date 2015-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 41 Open Access
Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
Call Number c:irua:125517 Serial 3626
Permanent link to this record