|
Record |
Links |
|
Author |
Dumpala, S.; Broderick, S.R.; Khalilov, U.; Neyts, E.C.; van Duin, A.C.T.; Provine, J.; Howe, R.T.; Rajan, K. |
|
|
Title |
Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation |
Type |
A1 Journal article |
|
Year |
2015 |
Publication |
Applied physics letters |
Abbreviated Journal |
Appl Phys Lett |
|
|
Volume |
106 |
Issue |
106 |
Pages |
011602 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Institute of Physics |
Place of Publication |
New York, N.Y. |
Editor |
|
|
|
Language |
|
Wos |
000347976900008 |
Publication Date |
2015-01-06 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0003-6951;1077-3118; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.411 |
Times cited |
19 |
Open Access |
|
|
|
Notes |
|
Approved |
Most recent IF: 3.411; 2015 IF: 3.302 |
|
|
Call Number |
c:irua:122300 |
Serial |
1679 |
|
Permanent link to this record |