toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lu, X.P.; Bruggeman, P.J.; Reuter, S.; Naidis, G.; Bogaerts, A.; Laroussi, M.; Keidar, M.; Robert, E.; Pouvesle, J.-M.; Liu, D.W.; Ostrikov, K.(K.) url  doi
openurl 
  Title Grand challenges in low temperature plasmas Type A1 Journal article
  Year 2022 Publication Frontiers in physics Abbreviated Journal  
  Volume 10 Issue Pages 1040658-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low temperature plasmas (LTPs) enable to create a highly reactive environment at near ambient temperatures due to the energetic electrons with typical kinetic energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in applications ranging from plasma etching of electronic chips and additive manufacturing to plasma-assisted combustion. LTPs are at the core of many advanced technologies. Without LTPs, many of the conveniences of modern society would simply not exist. New applications of LTPs are continuously being proposed. Researchers are facing many grand challenges before these new applications can be translated to practice. In this paper, we will discuss the challenges being faced in the field of LTPs, in particular for atmospheric pressure plasmas, with a focus on health, energy and sustainability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000878212000001 Publication Date 2022-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:192173 Serial 7267  
Permanent link to this record
 

 
Author Laroussi, M.; Bekeschus, S.; Keidar, M.; Bogaerts, A.; Fridman, A.; Lu, X.; Ostrikov, K.; Hori, M.; Stapelmann, K.; Miller, V.; Reuter, S.; Laux, C.; Mesbah, A.; Walsh, J.; Jiang, C.; Thagard, S.M.; Tanaka, H.; Liu, D.; Yan, D.; Yusupov, M. pdf  url
doi  openurl
  Title Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap Type A1 Journal article
  Year 2022 Publication IEEE transactions on radiation and plasma medical sciences Abbreviated Journal IEEE Trans. Radiat. Plasma Med. Sci.  
  Volume 6 Issue 2 Pages 127-157  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma, the fourth and most pervasive state of matter in the visible universe, is a fascinating medium that is connected to the beginning of our universe itself. Man-made plasmas are at the core of many technological advances that include the fabrication of semiconductor devices, which enabled the modern computer and communication revolutions. The introduction of low temperature, atmospheric pressure plasmas to the biomedical field has ushered a new revolution in the healthcare arena that promises to introduce plasma-based therapies to combat some thorny and long-standing medical challenges. This article presents an overview of where research is at today and discusses innovative concepts and approaches to overcome present challenges and take the field to the next level. It is written by a team of experts who took an in-depth look at the various applications of plasma in hygiene, decontamination, and medicine, made critical analysis, and proposed ideas and concepts that should help the research community focus their efforts on clear and practical steps necessary to keep the field advancing for decades to come.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000750257400005 Publication Date 2021-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-7311 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Research Foundation—Flanders, 1200219N ; Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:185875 Serial 6907  
Permanent link to this record
 

 
Author Sun, J.; Qu, Z.; Gao, Y.; Li, T.; Hong, J.; Zhang, T.; Zhou, R.; Liu, D.; Tu, X.; Chen, G.; Brüser, V.; Weltmann, K.-D.; Mei, D.; Fang, Z.; Borras, A.; Barranco, A.; Xu, S.; Ma, C.; Dou, L.; Zhang, S.; Shao, T.; Chen, G.; Liu, D.; Lu, X.; Bo, Z.; Chiang, W.-H.; Vasilev, K.; Keidar, M.; Nikiforov, A.; Jalili, A.R.; Cullen, P.J.; Dai, L.; Hessel, V.; Bogaerts, A.; Murphy, A.B.; Zhou, R.; Ostrikov, K.(K.) pdf  url
doi  openurl
  Title Plasma power-to-X (PP2X): status and opportunities for non-thermal plasma technologies Type A1 Journal Article
  Year 2024 Publication Journal of Physics D: Applied Physics Abbreviated Journal J. Phys. D: Appl. Phys.  
  Volume 57 Issue 50 Pages 503002  
  Keywords A1 Journal Article; plasma power-to-X, non-thermal plasma, gas conversion, plasma catalysis, renewable energy; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This article discusses the ‘power-to-X’ (P2X) concept, highlighting the integral role of non-thermal plasma (NTP) in P2X for the eco-friendly production of chemicals and valuable fuels. NTP with unique thermally non-equilibrium characteristics, enables exotic reactions to occur under ambient conditions. This review summarizes the plasma-based P2X systems, including plasma discharges, reactor configurations, catalytic or non-catalytic processes, and modeling techniques. Especially, the potential of NTP to directly convert stable molecules including CO<sub>2</sub>, CH<sub>4</sub>and air/N<sub>2</sub>is critically examined. Additionally, we further present and discuss hybrid technologies that integrate NTP with photocatalysis, electrocatalysis, and biocatalysis, broadening its applications in P2X. It concludes by identifying key challenges, such as high energy consumption, and calls for the outlook in plasma catalysis and complex reaction systems to generate valuable products efficiently and sustainably, and achieve the industrial viability of the proposed plasma P2X strategy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date 2024-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links  
  Impact Factor 3.4 Times cited Open Access  
  Notes Alexander von Humboldt Foundation; National Science Foundation, 1747760 ; Australian Research Council; Approved Most recent IF: 3.4; 2024 IF: 2.588  
  Call Number PLASMANT @ plasmant @ Serial 9330  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: