|   | 
Details
   web
Records
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
Title Adsorption and desorption in confined geometries : a discrete hopping model Type A1 Journal article
Year 2014 Publication The European physical journal. Special topics Abbreviated Journal Eur Phys J-Spec Top
Volume 223 Issue 14 Pages 3243-3256
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the adsorption and desorption kinetics of interacting particles moving on a one-dimensional lattice. Confinement is introduced by limiting the number of particles on a lattice site. Adsorption and desorption are found to proceed at different rates, and are strongly influenced by the concentration-dependent transport diffusion. Analytical solutions for the transport and self-diffusion are given for systems of length 1 and 2 and for a zero-range process. In the last situation the self- and transport diffusion can be calculated analytically for any length.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000346416400015 Publication Date 2014-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1951-6355;1951-6401; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.862 Times cited 4 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government – department EWI. ; Approved Most recent IF: 1.862; 2014 IF: 1.399
Call Number UA @ lucian @ c:irua:122779 Serial 61
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; van den Broeck, C.
Title Diffusion of interacting particles in discrete geometries Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 11 Pages 110601
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We evaluate the self-diffusion and transport diffusion of interacting particles in a discrete geometry consisting of a linear chain of cavities, with interactions within a cavity described by a free-energy function. Exact analytical expressions are obtained in the absence of correlations, showing that the self-diffusion can exceed the transport diffusion if the free-energy function is concave. The effect of correlations is elucidated by comparison with numerical results. Quantitative agreement is obtained with recent experimental data for diffusion in a nanoporous zeolitic imidazolate framework material, ZIF-8.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000324233800001 Publication Date 2013-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 22 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:111176 Serial 699
Permanent link to this record
 

 
Author Saniz, R.; Partoens, B.; Peeters, F.M.
Title Confinement effects on electron and phonon degrees of freedom in nanofilm superconductors : a Green function approach Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 6 Pages 064510-64513
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Green function approach to the Bardeen-Cooper-Schrieffer theory of superconductivity is used to study nanofilms. We go beyond previous models and include effects of confinement on the strength of the electron-phonon coupling as well as on the electronic spectrum and on the phonon modes. Within our approach, we find that in ultrathin films, confinement effects on the electronic screening become very important. Indeed, contrary to what has been advanced in recent years, the sudden increases of the density of states when new bands start to be occupied as the film thickness increases, tend to suppress the critical temperature rather than to enhance it. On the other hand, the increase of the number of phonon modes with increasing number of monolayers in the film leads to an increase in the critical temperature. As a consequence, the superconducting critical parameters in such nanofilms are determined by these two competing effects. Furthermore, in sufficiently thin films, the condensate consists of well-defined subcondensates associated with the occupied bands, each with a distinct coherence length. The subcondensates can interfere constructively or destructively giving rise to an interference pattern in the Cooper pair probability density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315374100009 Publication Date 2013-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl). R.S. thanks M. R. Norman, B. Soree, and L. Komendova for useful comments. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107072 Serial 487
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M.
Title Electronic structure of InAs/GaSb core-shell nanowires Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 16 Pages 165439-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and optical properties of InAs/GaSb core-shell nanowires are investigated within the effective mass k . p approach. These systems have a broken band gap, which results in spatially separated confinement of electrons and holes. We investigated these structures for different sizes of the InAs and GaSb core and shell radius. We found that for certain configurations, the conduction band states penetrate into the valence band states resulting in a negative band gap (E-g < 0), which leads to a conduction band ground state that lies below the valence band ground state at the Gamma point. For certain core-shell wires, only one conduction band state penetrates into the valence band and in this case, a minigap Delta opens up away from the Gamma point and as a consequence the electronic properties of the nanowire now depend on both E-g and Delta values.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000310131400005 Publication Date 2012-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 26 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:102164 Serial 1014
Permanent link to this record
 

 
Author Peelaers, H.; Durgun, E.; Partoens, B.; Bilc, D.I.; Ghosez, P.; Van de Walle, C.G.; Peeters, F.M.
Title Ab initio study of hydrogenic effective mass impurities in Si nanowires Type A1 Journal article
Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 29 Issue 29 Pages 095303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of B and P dopants on the band structure of Si nanowires is studied using electronic structure calculations based on density functional theory. At low concentrations a dispersionless band is formed, clearly distinguishable from the valence and conduction bands. Although this band is evidently induced by the dopant impurity, it turns out to have purely Si character. These results can be rigorously analyzed in the framework of effective mass theory. In the process we resolve some common misconceptions about the physics of hydrogenic shallow impurities, which can be more clearly elucidated in the case of nanowires than would be possible for bulk Si. We also show the importance of correctly describing the effect of dielectric confinement, which is not included in traditional electronic structure calculations, by comparing the obtained results with those of G(0)W(0) calculations.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000395103900002 Publication Date 2017-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 1 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl), the NSF MRSEC Program under award No. DMR11-21053, and the Army Research Office (W911NF-13-1-0380). DIB acknowledges financial support from the grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project No. PN-II-RU-TE-2011-3-0085. Ph G acknowledges a research professorship of the Francqui foundation and financial support of the ARC project AIMED and FNRS project HiT4FiT. This research used resources of the Ceci HPC Center funded by F R S-FNRS (Grant No. 2.5020.1) and of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:142447 Serial 4584
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Tunable double Dirac cone spectrum in bilayer \alpha-graphyne Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue 1 Pages 013105-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Monolayer alpha-graphyne was recently proposed as a new all-carbon material having an electronic spectrum consisting of Dirac cones. Based on a first-principles investigation of bilayer alpha-graphyne, we show that the electronic band structure is qualitatively different from its monolayer form and depends crucially on the stacking mode of the two layers. Two stable stacking modes are found: a configuration with a gapless parabolic band structure, similar to AB stacked bilayer graphene, and another one which exhibits a doubled Dirac-cone spectrum. The latter can be tuned by an electric field with a gap opening rate of 0.3 eA. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000321497200032 Publication Date 2013-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 58 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the ESF EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:109821 Serial 3740
Permanent link to this record
 

 
Author Zarenia, M.; Partoens, B.; Chakraborty, T.; Peeters, F.M.
Title Electron-electron interactions in bilayer graphene quantum dots Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 24 Pages 245432-245435
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A parabolic quantum dot (QD) as realized by biasing nanostructured gates on bilayer graphene is investigated in the presence of electron-electron interaction. The energy spectrum and the phase diagram reveal unexpected transitions as a function of a magnetic field. For example, in contrast to semiconductor QDs, we find a valley transition rather than only the usual singlet-triplet transition in the ground state of the interacting system. The origin of these features can be traced to the valley degree of freedom in bilayer graphene. These transitions have important consequences for cyclotron resonance experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328688600010 Publication Date 2014-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), and the Methusalem foundation of the Flemish Government. T. C. is supported by the Canada Research Chairs program of the Government of Canada. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:113698 Serial 926
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M.
Title Electronic and dynamical properties of Si/Ge core-shell nanowires Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 11 Pages 113411-113411,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Full ab initio techniques are applied to study the electronic and dynamical properties of free standing, hydrogen-passivated Si/Ge core-shell nanowires oriented along the [110] direction. All studied wires exhibit a direct band gap and are found to be structurally stable. The different contributions of the core and shell atoms to the phonon spectra are identified. The acoustic phonon velocities and the frequencies of some typical optical modes are compared with those of pure Si and Ge nanowires. These depend either on the concentration or on the type of core material. Optical modes are hardened and longitudinal acoustic velocities are softened with decreasing wire diameter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282270000001 Publication Date 2010-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and NOI-BOF (University of Antwerp). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85421 Serial 995
Permanent link to this record
 

 
Author Kishore, V.V.R.; Čukarić, N.; Partoens, B.; Tadić, M.; Peeters, F.M.
Title Hole subbands in freestanding nanowires : six-band versus eight-band k.p modelling Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 13 Pages 135302-135302,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic structure of GaAs, InAs and InSb nanowires is studied using the six-band and the eight-band k.p models. The effect of the different Luttinger-like parameters (in the eight-band model) on the hole band structure is investigated. Although GaAs nanostructures are often treated within a six-band model because of the large bandgap, it is shown that an eight-band model is necessary for a correct description of its hole spectrum. The camel-back structure usually found in the six-band model is not always present in the eight-band model. This camel-back structure depends on the interaction between light and heavy holes, especially the ones with opposite spin. The latter effect is less pronounced in an eight-band model, but could be very sensitive to the Kane inter-band energy (E-P) value.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000302120100007 Publication Date 2012-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 13 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl), Belgian Science Policy (IAP) and the Ministry of Education and Science of Serbia. ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:97763 Serial 1479
Permanent link to this record
 

 
Author Zarenia, M.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Substrate-induced chiral states in graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 8 Pages 085451
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Unidirectional chiral states are predicted in single layer graphene which originate from the breaking of the sublattice symmetry due to an asymmetric mass potential. The latter can be created experimentally using boron-nitride (BN) substrates with a line defect (B-B or N-N) that changes the induced mass potential in graphene. Solving the Dirac-Weyl equation, the obtained energy spectrum is compared with the one calculated using ab initio density functional calculations. We found that these one-dimensional chiral states are very robust and they can even exist in the presence of a small gap between the mass regions. In the latter case additional bound states are found that are topologically different from those chiral states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000308005600015 Publication Date 2012-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the European Science Foundation (ESF) under the EUROCORES Program: EuroGRAPHENE (project CONGRAN). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101100 Serial 3347
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M.
Title Electric field tuning of the band gap in four layers of graphene with different stacking order Type P1 Proceeding
Year 2012 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – Conference on Photonics and Micro and Nano-structured Materials, JUN 28-30, 2011, Yerevan, ARMENIA Abbreviated Journal
Volume Issue Pages 84140-84148
Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We investigated the effect of different stacking order of the four graphene layer system on the induced band gap when positively charged top and negatively charged back gates are applied to the system. A tight-binding approach within a self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We show that the electric field does not open an energy gap if the multilayer graphene system contains a trilayer part with the ABA Bernal stacking.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303856600012 Publication Date 2012-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume 8414 Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the BelgianScience Policy (IAP). One of us (A.A.A.) was supported by a fellowship from the Belgian Federal Science Policy Office (BELSPO). ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:113046 Serial 886
Permanent link to this record
 

 
Author Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M.
Title First-principles investigation of B- and N-doped fluorographene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 3 Pages 035434-35435
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of substitutional doping of fluorographene with boron and nitrogen atoms on its electronic and magnetic properties is investigated using first-principles calculations. It is found that boron dopants can be readily incorporated in the fluorographene crystal where they act as shallow acceptors and cause hole doping, but no changes in the magnetic properties are observed. Nitrogen dopants act as deep donors and give rise to a magnetic moment, but the resulting system becomes chemically unstable. These results are opposite to what was found for substitutional doping of graphane, i.e., hydrogenated graphene, in which case B substituents induce magnetism and N dopants do not.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322083700002 Publication Date 2013-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109807 Serial 1210
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M.
Title Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene : stability and electronic and phonon properties Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 8 Pages 085444-85448
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ab initio calculations within the density-functional theory formalism are performed to investigate the chemical functionalization of a graphene-like monolayer of siliconsilicenewith B, N, Al, or P atoms. The structural, electronic, magnetic, and vibrational properties are reported. The most preferable adsorption sites are found to be valley, bridge, valley and hill sites for B, N, Al, and P adatoms, respectively. All the relaxed systems with adsorbed/substituted atoms exhibit metallic behavior with strongly bonded B, N, Al, and P atoms accompanied by an appreciable electron transfer from silicene to the B, N, and P adatom/substituent. The Al atoms exhibit opposite charge transfer, with n-type doping of silicene and weaker bonding. The adatoms/substituents induce characteristic branches in the phonon spectrum of silicene, which can be probed by Raman measurements. Using molecular dynamics, we found that the systems under study are stable up to at least T=500 K. Our results demonstrate that silicene has a very reactive and functionalizable surface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315482900007 Publication Date 2013-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 169 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107071 Serial 60
Permanent link to this record
 

 
Author Sahin, H.; Sivek, J.; Li, S.; Partoens, B.; Peeters, F.M.
Title Stone-Wales defects in silicene : formation, stability, and reactivity of defect sites Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 4 Pages 045434-45436
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract During the synthesis of ultrathin materials with hexagonal lattice structure Stone-Wales (SW) type of defects are quite likely to be formed and the existence of such topological defects in the graphenelike structures results in dramatic changes of their electronic and mechanical properties. Here we investigate the formation and reactivity of such SW defects in silicene. We report the energy barrier for the formation of SW defects in freestanding (similar to 2.4 eV) and Ag(111)-supported (similar to 2.8 eV) silicene and found it to be significantly lower than in graphene (similar to 9.2 eV). Moreover, the buckled nature of silicene provides a large energy barrier for the healing of the SW defect and therefore defective silicene is stable even at high temperatures. Silicene with SW defects is semiconducting with a direct band gap of 0.02 eV and this value depends on the concentration of defects. Furthermore, nitrogen substitution in SW-defected silicene shows that the defect lattice sites are the least preferable substitution locations for the N atoms. Our findings show the easy formation of SW defects in silicene and also provide a guideline for band gap engineering in silicene-based materials through such defects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322113300007 Publication Date 2013-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 93 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109805 Serial 3162
Permanent link to this record
 

 
Author Ravi Kishore, V.V.; Partoens, B.; Peeters, F.M.
Title Electronic and optical properties of core-shell nanowires in a magnetic field Type A1 Journal article
Year 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 26 Issue 9 Pages 095501-95512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and optical properties of zincblende nanowires are investigated in the presence of a uniform magnetic field directed along the [001] growth direction within the k . p method. We focus our numerical study on core-shell nanowires consisting of the III-V materials GaAs, AlxGa1-xAs and AlyGa1-y/0.51In0.49P. Nanowires with electrons confined in the core exhibit a Fock-Darwin-like spectrum, whereas nanowires with electrons confined in the shell show Aharonov-Bohm oscillations. Thus, by properly choosing the core and the shell materials of the nanowire, the optical properties in a magnetic field can be tuned in very different ways.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000331954500006 Publication Date 2014-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 10 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. ; Approved Most recent IF: 2.649; 2014 IF: 2.346
Call Number UA @ lucian @ c:irua:115845 Serial 998
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M.
Title Electronic structure and optical absorption of GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs core-shell nanowires Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 23 Pages 235425-235425,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic structure of GaAs/AlxGa1−xAs and AlxGa1−xAs/GaAs core-shell nanowires grown in the [001] direction is studied. The k⋅p method with the 6×6 Kohn-Lüttinger Hamiltonian, taking into account the split-off band is used. The variation in the energy level dispersion, the spinor contribution to the ground state and the optical interband absorption are studied. For some range of parameters the top of the valence band exhibits a camelback structure which results in an extra peak in the optical absorption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286769100008 Publication Date 2010-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:86911 Serial 1010
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; Peeters, F.M.
Title Influence of an ellipsoid on the angular order in a two-dimensional cluster Type A1 Journal article
Year 2011 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 84 Issue 3 Pages 031405,1-031405,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The influence of an ellipsoid on the angular order of two-dimensional classical clusters is investigated through Brownian dynamics simulations. We found the following: (1) The presence of an ellipsoid does not influence the start of the angular melting, but reduces the rate at which the inner rings can rotate with respect to each other. (2) Even a small eccentricity of the ellipsoid leads to a stabilization of the angular order of the system. (3) Depending on the position of the ellipsoid in the cluster, a reentrant behavior in the angular order is observed before full radial melting of the cluster sets in. (4) The ellipsoid can lead to a two-step angular melting process: First, the rotation of the inner rings with respect to each other is hindered by the ellipsoid, but on further increasing the kinetic energy of the system, the ellipsoid just starts to behave as a spherical particle with different mobility. The effect of an ellipsoid on the molten system does not depend crucially on the interparticle interaction, but a softer parabolic confinement reduces the angular stabilization.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000296495000007 Publication Date 2011-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.366 Times cited Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-Vl) and CNPq. ; Approved Most recent IF: 2.366; 2011 IF: 2.255
Call Number UA @ lucian @ c:irua:93612 Serial 1615
Permanent link to this record
 

 
Author Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M.
Title Electronic and magnetic properties of superlattices of graphene/graphane nanoribbons with different edge hydrogenation Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 16 Pages 165412-165412,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Zigzag graphene nanoribbons patterned on graphane are studied using spin-polarized ab initio calculations. We found that the electronic and magnetic properties of the graphene/graphane superlattice strongly depends on the degree of hydrogenation at the interfaces between the two materials. When both zigzag interfaces are fully hydrogenated, the superlattice behaves like a freestanding zigzag graphene nanoribbon, and the magnetic ground state is antiferromagnetic. When one of the interfaces is half hydrogenated, the magnetic ground state becomes ferromagnetic, and the system is very close to being a half metal with possible spintronics applications whereas the magnetic ground state of the superlattice with both interfaces half hydrogenated is again antiferromagnetic. In this last case, both edges of the graphane nanoribbon also contribute to the total magnetization of the system. All the spin-polarized ground states are semiconducting, independent of the degree of hydrogenation of the interfaces. The ab initio results are supplemented by a simple tight-binding analysis that captures the main qualitative features. Our ab initio results show that patterned hydrogenation of graphene is a promising way to obtain stable graphene nanoribbons with interesting technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282569500011 Publication Date 2010-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (FW/08/01). A. D. H. acknowledges also support from ANPCyT (under Grant No. PICT2008-2236) ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85030 Serial 996
Permanent link to this record
 

 
Author Leenaerts, O.; Peelaers, H.; Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M.
Title First-principles investigation of graphene fluoride and graphane Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 19 Pages 195436,1-195436,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Different stoichiometric configurations of graphane and graphene fluoride are investigated within density-functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various configurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Youngs moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000284399200004 Publication Date 2010-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 367 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-V1), the NOI-BOF of the University of Antwerp, the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Grant No. FW/08/01). A.D.H. also acknowledges support from ANPCyT (Grant No. PICT 2008-2236). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:86916 Serial 1212
Permanent link to this record
 

 
Author Peelaers, H.; Hernández-Nieves, A.D.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Vibrational properties of graphene fluoride and graphane Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue 5 Pages 051914
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The vibrational properties of graphene fluoride and graphane are studied using ab initio calculations. We find that both sp(3) bonded derivatives of graphene have different phonon dispersion relations and phonon densities of states as expected from the different masses associated with the attached atoms of fluorine and hydrogen, respectively. These differences manifest themselves in the predicted temperature behavior of the constant-volume specific heat of both compounds. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551712]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000286988400027 Publication Date 2011-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 66 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (FWO-V1), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Contract No. FW /08/01). A.D.H.-N. is also supported by ANPCyT (under Grant No. PICT2008-2236) ; Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:105604 Serial 3844
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
Title Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties Type A1 Journal article
Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 90 Issue 5 Pages 052139
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013)]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self-and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self-and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1/L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000345251500004 Publication Date 2014-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 8 Open Access
Notes (down) ; This work was supported by the Flemish Science Foundation (Fonds Wetenschappelijk Onderzoek), Project No. G.0388.11. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government, Department EWI. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:122134 Serial 700
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Sarmadian, N.; Neyts, E.C.; Partoens, B.
Title A first principles study of p-type defects in LaCrO3 Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 34 Pages 22870-22876
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Recently, Sr-doped LaCrO3 has been experimentally introduced as a new p-type transparent conducting oxide. It is demonstrated that substituting Sr for La results in inducing p-type conductivity in LaCrO3. Performing first principles calculations we study the electronic structure and formation energy of various point defects in LaCrO3. Our results for the formation energies show that in addition to Sr, two more divalent defects, Ca and Ba, substituting for La in LaCrO3, behave as shallow acceptors in line with previous experimental reports. We further demonstrate that under oxygen-poor growth conditions, these shallow acceptors will be compensated by intrinsic donor-like defects (an oxygen vacancy and Cr on an oxygen site), but in the oxygen-rich growth regime the shallow acceptors have the lowest formation energies between all considered defects and will lead to p-type conductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000408671600026 Publication Date 2017-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 16 Open Access OpenAccess
Notes (down) ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services were provided by the Flemish Supercomputer Center and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government. ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:145621 Serial 4735
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Saniz, R.; Neyts, E.; Partoens, B.
Title Sulfur-alloyed Cr2O3: a new p-type transparent conducting oxide host Type A1 Journal article
Year 2017 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 7 Issue 7 Pages 4453-4459
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Doped Cr2O3 has been shown to be a p-type transparent conducting oxide (TCO). Its conductivity, however, is low. As for most p-type TCOs, the main problem is the high effective hole mass due to flat valence bands. We use first-principles methods to investigate whether one can increase the valence band dispersion (i.e. reduce the hole mass) by anion alloying with sulfur, while keeping the band gap large enough for transparency. The alloying concentrations considered are given by Cr(4)SxO(6-x), with x = 1-5. To be able to describe the electronic properties of these materials accurately, we first study Cr2O3, examining critically the accuracy of different density functionals and methods, including PBE, PBE+U, HSE06, as well as perturbative approaches within the GW approximation. Our results demonstrate that Cr4S2O4 has an optical band gap of 3.08 eV and an effective hole mass of 1.8 m(e). This suggests Cr4S2O4 as a new p-type TCO host candidate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393751300030 Publication Date 2017-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 9 Open Access OpenAccess
Notes (down) ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 3.108
Call Number UA @ lucian @ c:irua:141543 Serial 4528
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Neek-Amal, M.; Partoens, B.; Neyts, E.C.
Title The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes Type A1 Journal article
Year 2017 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
Volume 687 Issue Pages 188-193
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000412453700030 Publication Date 2017-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.815 Times cited 2 Open Access Not_Open_Access: Available from 01.11.2019
Notes (down) ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 1.815
Call Number UA @ lucian @ c:irua:146646 Serial 4795
Permanent link to this record
 

 
Author Bekaert, J.; Khestanova, E.; Hopkinson, D.G.; Birkbeck, J.; Clark, N.; Zhu, M.; Bandurin, D.A.; Gorbachev, R.; Fairclough, S.; Zou, Y.; Hamer, M.; Terry, D.J.; Peters, J.J.P.; Sanchez, A.M.; Partoens, B.; Haigh, S.J.; Milošević, M.V.; Grigorieva, I., V
Title Enhanced superconductivity in few-layer TaS₂ due to healing by oxygenation Type A1 Journal article
Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 5 Pages 3808-3818
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract When approaching the atomically thin limit, defects and disorder play an increasingly important role in the properties of two-dimensional (2D) materials. While defects are generally thought to negatively affect superconductivity in 2D materials, here we demonstrate the contrary in the case of oxygenation of ultrathin tantalum disulfide (TaS2). Our first-principles calculations show that incorporation of oxygen into the TaS2 crystal lattice is energetically favorable and effectively heals sulfur vacancies typically present in these crystals, thus restoring the electronic band structure and the carrier density to the intrinsic characteristics of TaS2. Strikingly, this leads to a strong enhancement of the electron-phonon coupling, by up to 80% in the highly oxygenated limit. Using transport measurements on fresh and aged (oxygenated) few-layer TaS2, we found a marked increase of the superconducting critical temperature (T-c) upon aging, in agreement with our theory, while concurrent electron microscopy and electron-energy loss spectroscopy confirmed the presence of sulfur vacancies in freshly prepared TaS2 and incorporation of oxygen into the crystal lattice with time. Our work thus reveals the mechanism by which certain atomic-scale defects can be beneficial to superconductivity and opens a new route to engineer T-c in ultrathin materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000535255300114 Publication Date 2020-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 16 Open Access
Notes (down) ; This work was supported by Research Foundation-Flanders (FWO). J.Be. acknowledges support of a postdoctoral fellowship of the FWO. The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. S.J.H., D.H., and S.F. would like to thank the Engineering and Physical Sciences Research Council (EPSRC) U.K (grants EP/R031711/1, EP/P009050/1 and the Graphene NOWNANO CDT) and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement ERC-2016-STG-EvoluTEM-715502, the Hetero2D Synergy grant and EC-FET Graphene Flagship) for funding. We thank Diamond Light Source for access and support in use of the electron Physical Science Imaging Centre (Instrument E02 and proposal numbers EM19315 and MG21597) that contributed to the results presented here. ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:170264 Serial 6507
Permanent link to this record
 

 
Author Saniz, R.; Partoens, B.; Peeters, F.M.
Title Green function approach to superconductivity in nanowires Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 14 Pages 144504-144504,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superconductivity in nanowires made of weak coupling superconductor materials is investigated using a Green function approach. We show that these are multigap systems in which the ratio Delta(T)/k(B)T(c) is to a large extent similar to what is observed in some high-T-c two-gap systems, such as MgB2 and some of the Fe-based superconductors. On the other hand, because of confinement, the superfluid density has a temperature behavior of the form n(s)(T) = 1 – (T/T-c)(3) near T-c, thus deviating from the BCS behavior for bulk superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000302290700006 Publication Date 2012-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes (down) ; This work was supported by FWO-Vl and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97764 Serial 1381
Permanent link to this record
 

 
Author Zarenia, M.; Neilson, D.; Partoens, B.; Peeters, F.M.
Title Wigner crystallization in transition metal dichalcogenides : a new approach to correlation energy Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 95 Pages 115438
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We introduce a new approach for the correlation energy of one- and two-valley two-dimensional electron gas (2DEG) systems. Our approach is based on an interpolation between two limits, a random phase approximation at high densities and a classical approach at low densities which gives excellent agreement with available Quantum Monte Carlo (QMC) calculations. The two-valley 2DEG model is introduced to describe the electron correlations in monolayer transition metal dichalcogenides (TMDs). We study the zero-temperature transition from a Fermi liquid to a quantum Wigner crystal phase in monolayer TMDs. Consistent with QMC, we find that electrons crystallize at r(s) = 31 in one-valley 2DEG. For two valleys, we predict Wigner crystallization at r(s) = 30, implying that valley degeneracy has little effect on the critical r(s), in contrast to an earlier claim.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000399141200003 Publication Date 2017-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes (down) ; This work was partially supported by the Flanders Research Foundation (FWO) and the Methusalem program of the Flemish government. D.N. acknowledges support by the University of Camerino FAR project CESEMN. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:142428 Serial 4613
Permanent link to this record
 

 
Author Li, L.L.; Partoens, B.; Peeters, F.M.
Title Tuning the electronic properties of gated multilayer phosphorene : a self-consistent tight-binding study Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 15 Pages 155424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000430459400005 Publication Date 2018-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 26 Open Access
Notes (down) ; This work was financially supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:150752UA @ admin @ c:irua:150752 Serial 4988
Permanent link to this record
 

 
Author Li, L.L.; Partoens, B.; Xu, W.; Peeters, F.M.
Title Electric-field modulation of linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
Year 2019 Publication 2D materials Abbreviated Journal 2D Mater
Volume 6 Issue 1 Pages 015032
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electro-optical modulators, which use an electric voltage (or an electric field) to modulate a beam of light, are essential elements in present-day telecommunication devices. Using a self-consistent tight-binding approach combined with the standard Kubo formula, we show that the optical conductivity and the linear dichroism of few-layer phosphorene can be modulated by a perpendicular electric field. We find that the field-induced charge screening plays a significant role in modulating the optical conductivity and the linear dichroism. Distinct absorption peaks are induced in the conductivity spectrum due to the strong quantum confinement along the out-of-plane direction and to the field-induced forbidden-to-allowed transitions. The field modulation of the linear dichroism becomes more pronounced with increasing number of phosphorene layers. We also show that the Faraday rotation is present in few-layer phosphorene even in the absence of an external magnetic field. This optical Hall effect is induced by the reduced lattice symmetry of few-layer phosphorene. The Faraday rotation is greatly influenced by the field-induced charge screening and is strongly dependent on the strength of perpendicular electric field and on the number of phosphorene layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454321100002 Publication Date 2018-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 23 Open Access
Notes (down) ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 6.937
Call Number UA @ admin @ c:irua:156776 Serial 5207
Permanent link to this record
 

 
Author Sivek, J.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title First-principles investigation of bilayer fluorographene Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 36 Pages 19240-19245
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Ab initio calculations within the density functional theory formalism are performed to investigate the stability and electronic properties of fluorinated bilayer graphene (bilayer fluorographene). A comparison is made to previously investigated graphane, bilayer graphane, and fluorographene. Bilayer fluorographene is found to be a much more stable material than bilayer graphane. Its electronic band structure is similar to that of monolayer fluorographene, but its electronic band gap is significantly larger (about 1 eV). We also calculate the effective masses around the Gamma-point for fluorographene and bilayer fluorographene and find that they are isotropic, in contrast to earlier reports. Furthermore, it is found that bilayer fluorographene is almost as strong as graphene, as its 2D Young's modulus is approximately 300 N m(-1).
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000308631300022 Publication Date 2012-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 39 Open Access
Notes (down) ; This work is supported by the ESF-Eurocores program EuroGRAPHENE (project CONERAN) and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:101842 Serial 1211
Permanent link to this record