|   | 
Details
   web
Records
Author Deo, P.S.; Schweigert, V.A.; Peeters, F.M.; Geim, A.K.
Title Type of phase transitions in a mesoscopic superconducting disc Type A1 Journal article
Year 1997 Publication Physica: E Abbreviated Journal Physica E
Volume 1 Issue Pages 297-300
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000074364500064 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record;
Impact Factor 2.221 Times cited Open Access
Notes (up) Approved Most recent IF: 2.221; 1997 IF: NA
Call Number UA @ lucian @ c:irua:19299 Serial 3791
Permanent link to this record
 

 
Author Batenburg, K.J.; Bals, S.; Van Aert, S.; Roelandts, T.; Sijbers, J.
Title Ultra-high resolution electron tomography for materials science : a roadmap Type A1 Journal article
Year 2011 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 17 Issue S:2 Pages 934-935
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2011-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes (up) Approved Most recent IF: 1.891; 2011 IF: 3.007
Call Number UA @ lucian @ c:irua:96554 Serial 3792
Permanent link to this record
 

 
Author Bals, S.; Van Tendeloo, G.; Salluzzo, M.; Maggio-Aprile, I.
Title Why are sputter deposited Nd1+xBa2-xCu3O7-\delta thin films flatter than NdBa2Cu3O7-\delta films? Type A1 Journal article
Year 2001 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 79 Issue 22 Pages 3660-3662
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High-resolution electron microscopy and scanning tunneling microscopy have been used to compare the microstructure of NdBa2Cu3O7-delta and Nd1+xBa2-xCu3O7-delta thin films. Both films contain comparable amounts of Nd2CuO4 inclusions. Antiphase boundaries are induced by unit cell high steps at the substrate or by a different interface stacking. In Nd1+xBa2-xCu3O7-delta the antiphase boundaries tend to annihilate by the insertion of extra Nd layers. Stacking faults, which can be characterized as local Nd2Ba2Cu4O9 inclusions, also absorb the excess Nd. A correlation is made between the excess Nd and the absence of growth spirals at the surface of the Nd-rich films. (C) 2001 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000172204400034 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 13 Open Access
Notes (up) Approved Most recent IF: 3.411; 2001 IF: 3.849
Call Number UA @ lucian @ c:irua:54801 Serial 3916
Permanent link to this record
 

 
Author Bogaerts, A.; van de Sanden, R.
Title Special Issue of Papers by Plenary and Topical Invited Lecturers at the 22nd International Symposium on Plasma Chemistry (ISPC 22), 5–10 July 2015, Antwerp, Belgium: Introduction Type Editorial
Year 2016 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P
Volume 36 Issue 36 Pages 1-2
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370720800001 Publication Date 2016-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.355 Times cited Open Access
Notes (up) Approved Most recent IF: 2.355
Call Number c:irua:130713 Serial 4003
Permanent link to this record
 

 
Author Covaci, L.; Berciu, M.
Title Survival of the Dirac points in rippled graphene Type A1 Journal article
Year 2008 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 100 Issue 25 Pages 256405
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract We study the effects of the rippling of a graphene sheet on quasiparticle dispersion. This is achieved using a generalization to the honeycomb lattice of the momentum average approximation, which is accurate for all coupling strengths and at all energies. We show that even though the position of the Dirac points may move and the Fermi speed can be renormalized significantly, quasiparticles with very long lifetimes survive near the Dirac points even for very strong couplings.
Address Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000257230500047 Publication Date 2008-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links
Impact Factor 8.462 Times cited 15 Open Access
Notes (up) Approved Most recent IF: 8.462; 2008 IF: 7.180
Call Number UA @ lucian @ Serial 4010
Permanent link to this record
 

 
Author Covaci, L.; Marsiglio, F.
Title Proximity effect and Josephson current in clean strong/weak/strong superconducting trilayers Type A1 Journal article
Year 2006 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 73 Issue 1 Pages 014503
Keywords A1 Journal article
Abstract Recent measurements of the Josephson critical current through LSCO/LCO/LSCO thin films showed an unusually large proximity effect. Using the Bogoliubov-de Gennes equations for a tight-binding Hamiltonian we describe the proximity effect in weak links between a superconductor with critical temperature T-c and one with critical temperature T-c('), where T-c > T-c('). The weak link (N-') is therefore a superconductor above its own critical temperature and the superconducting regions are considered to have either s-wave or d-wave symmetry. We note that the proximity effect is enhanced due to the presence of superconducting correlations in the weak link. The dc Josephson current is calculated, and we obtain a nonzero value for temperatures greater than T-c(') for sizes of the weak links that can be almost an order of magnitude greater than the conventional coherence length. Considering pockets of superconductivity in the N-' layer, we show that this can lead to an even larger effect on the Josephson critical current by effectively shortening the weak link.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000235009000103 Publication Date 2006-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links
Impact Factor 3.836 Times cited 31 Open Access
Notes (up) Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ Serial 4427
Permanent link to this record
 

 
Author Ekimov, E.A.; Kudryavtsev, O.S.; Turner, S.; Korneychuk, S.; Sirotinkin, V.P.; Dolenko, T.A.; Vervald, A.M.; Vlasov, I.I.
Title The effect of molecular structure of organic compound on the direct high-pressure synthesis of boron-doped nanodiamond: Effect of organic compound on synthesis of boron-doped nanodiamond Type A1 Journal article
Year 2016 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 213 Issue 213 Pages 2582-2589
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Evolution of crystalline phases with temperature has been studied in materials produced by high-pressure high-temperature treatment of 9-borabicyclo[3.3.1]nonane dimer (9BBN), triphenylborane and trimesitylborane. The boron-doped diamond nanoparticles with a size below 10 nm were obtained at 8–9 GPa and temperatures 970–1250 °C from 9BBN only. Bridged structure and the presence of boron atom in the carbon cycle of 9BBN were revealed to be a key point for the direct synthesis of doped diamond nanocrystals. The diffusional transformation of the disordered carbon phase is suggested to be the main mechanism of the nanodiamond formation from 9BBN in the temperature range of 970–1400 °C. Aqueous suspensions of primary boron-doped diamond nanocrystals were prepared upon removal of non-diamond phases that opens wide opportunities for application of this new nanomaterial in electronics and biotechnologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388321500006 Publication Date 2016-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 8 Open Access
Notes (up) Approved Most recent IF: 1.775
Call Number EMAT @ emat @ c:irua:135175 Serial 4120
Permanent link to this record
 

 
Author Bogaerts, A.
Title Glow discharge optical spectroscopy and mass spectrometry Type H1 Book chapter
Year 2016 Publication Abbreviated Journal
Volume Issue Pages 1-31
Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Atomic Spectroscopy Optical (atomic absorption spectroscopy, AAS; atomic emission spectroscopy, AES; atomic fluorescence spectroscopy, AFS; and optogalvanic spectroscopy) and mass spectrometric (magnetic sector, quadrupole mass analyzer, QMA; quadrupole ion trap, QIT; Fourier transform ion cyclotron resonance, FTICR; and time-of-flight, TOF) instrumentation are well suited for coupling to the glow discharge (GD). The GD is a relatively simple device. A potential gradient (500–1500 V) is applied between an anode and a cathode. In most cases, the sample is also the cathode. A noble gas (mostly Ar) is introduced into the discharge region before power initiation. When a potential is applied, electrons are accelerated toward the anode. As these electrons accelerate, they collide with gas atoms. A fraction of these collisions are of sufficient energy to remove an electron from a support gas atom, forming an ion. These ions are, in turn, accelerated toward the cathode. These ions impinge on the surface of the cathode, sputtering sample atoms from the surface. Sputtered atoms that do not redeposit on the surface diffuse into the excitation/ionization regions of the plasma where they can undergo excitation and/or ionization via a number of collisional processes, and the photons or ions created in this way can be detected with optical emission spectroscopy or mass spectrometry. GD sources offer a number of distinct advantages that make them well suited for specific types of analyses. These sources afford direct analysis of solid samples, thus minimizing the sample preparation required for analysis. The nature of the plasma also provides mutually exclusive atomization and excitation processes that help to minimize the matrix effects that plague so many other elemental techniques. In recent years, there is also increasing interest for using GD sources for liquid and gas analyses. In this article, first, the principles of operation of the GD plasma are reviewed, with an emphasis on how those principles relate to optical spectroscopy and mass spectrometry. Basic applications of the GD techniques are considered next. These include bulk analysis, surface analysis, and the analysis of solution and gaseous samples. The requirements necessary to obtain optical information are addressed following the analytical applications. This article focuses on the instrumentation needed to make optical measurements using the GD as an atomization/excitation source. Finally, mass spectrometric instrumentation and interfaces are addressed as they pertain to the use of a GD plasma as an ion source. GD sources provide analytically useful gas-phase species from solid samples. These sources can be interfaced with a variety of spectroscopic and spectrometric instruments for both quantitative and qualitative analyses.
Address
Corporate Author Thesis
Publisher John Wiley & Sons Place of Publication Chichester Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-470-02731-8 Additional Links UA library record
Impact Factor Times cited Open Access
Notes (up) Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:132064 Serial 4187
Permanent link to this record
 

 
Author Lobato, I.; Van Dyck, D.
Title MULTEM : a new multislice program to perform accurate and fast electron diffraction and imaging simulations using graphics processing units with CUDA Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 156 Issue 156 Pages 9-17
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The main features and the GPU implementation of the MULTEM program are presented and described. This new program performs accurate and fast multislice simulations by including higher order expansion of the multislice solution of the high energy Schrodinger equation, the correct subslicing of the three-dimensional potential and top-bottom surfaces. The program implements different kinds of simulation for CTEM, STEM, ED, PED, CBED, ADF-TEM and ABF-HC with proper treatment of the spatial and temporal incoherences. The multislice approach described here treats the specimen as amorphous material which allows a straightforward implementation of the frozen phonon approximation. The generalized transmission function for each slice is calculated when is needed and then discarded. This allows us to perform large simulations that can include millions of atoms and keep the computer memory requirements to a reasonable level. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000361001800003 Publication Date 2015-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 32 Open Access
Notes (up) Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number UA @ lucian @ c:irua:127848 Serial 4209
Permanent link to this record
 

 
Author Lander, L.; Rousse, G.; Abakumov, A.M.; Sougrati, M.; Van Tendeloo, G.; Tarascon, J.-M.
Title Structural, electrochemical and magnetic properties of a novel KFeSO4F polymorph Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 19754-19764
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In the quest for sustainable and low-cost positive electrode materials for Li-ion batteries, we discovered, as reported herein, a new low temperature polymorph of KFeSO4F. Contrary to the high temperature phase crystallizing in a KTiOPO4-like structure, this new phase adopts a complex layer-like structure built on FeO4F2 octahedra and SO4 tetrahedra, with potassium cations located in between the layers, as solved using neutron and synchrotron diffraction experiments coupled with electron diffraction. The detailed analysis of the structure reveals an alternation of edge-and corner-shared FeO4F2 octahedra leading to a large monoclinic cell of 1771.774(7) angstrom(3). The potassium atoms are mobile within the structure as deduced by ionic conductivity measurements and confirmed by the bond valence energy landscape approach thus enabling a partial electrochemical removal of K+ and uptake of Li+ at an average potential of 3.7 V vs. Li+/Li-0. Finally, neutron diffraction experiments coupled with SQUID measurements reveal a long range antiferromagnetic ordering of the Fe2+ magnetic moments below 22 K with a possible magnetoelectric behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000362041300018 Publication Date 2015-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 11 Open Access
Notes (up) Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number UA @ lucian @ c:irua:132566 Serial 4253
Permanent link to this record
 

 
Author Bogaerts, A.
Title Glow discharge optical spectroscopy and mass spectrometry Type A1 Journal article
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; PLASMANT
Abstract Atomic Spectroscopy Optical (atomic absorption spectroscopy, AAS; atomic emission spectroscopy, AES; atomic fluorescence spectroscopy, AFS; and optogalvanic spectroscopy) and mass spectrometric (magnetic sector, quadrupole mass analyzer, QMA; quadrupole ion trap, QIT; Fourier transform ion cyclotron resonance, FTICR; and time-of-flight, TOF) instrumentation are well suited for coupling to the glow discharge (GD). The GD is a relatively simple device. A potential gradient (500–1500 V) is applied between an anode and a cathode. In most cases, the sample is also the cathode. A noble gas (mostly Ar) is introduced into the discharge region before power initiation. When a potential is applied, electrons are accelerated toward the anode. As these electrons accelerate, they collide with gas atoms. A fraction of these collisions are of sufficient energy to remove an electron from a support gas atom, forming an ion. These ions are, in turn, accelerated toward the cathode. These ions impinge on the surface of the cathode, sputtering sample atoms from the surface. Sputtered atoms that do not redeposit on the surface diffuse into the excitation/ionization regions of the plasma where they can undergo excitation and/or ionization via a number of collisional processes, and the photons or ions created in this way can be detected with optical emission spectroscopy or mass spectrometry. GD sources offer a number of distinct advantages that make them well suited for specific types of analyses. These sources afford direct analysis of solid samples, thus minimizing the sample preparation required for analysis. The nature of the plasma also provides mutually exclusive atomization and excitation processes that help to minimize the matrix effects that plague so many other elemental techniques. In recent years, there is also increasing interest for using GD sources for liquid and gas analyses. In this article, first, the principles of operation of the GD plasma are reviewed, with an emphasis on how those principles relate to optical spectroscopy and mass spectrometry. Basic applications of the GD techniques are considered next. These include bulk analysis, surface analysis, and the analysis of solution and gaseous samples. The requirements necessary to obtain optical information are addressed following the analytical applications. This article focuses on the instrumentation needed to make optical measurements using the GD as an atomization/excitation source. Finally, mass spectrometric instrumentation and interfaces are addressed as they pertain to the use of a GD plasma as an ion source. GD sources provide analytically useful gas-phase species from solid samples. These sources can be interfaced with a variety of spectroscopic and spectrometric instruments for both quantitative and qualitative analyses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2006-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor Times cited Open Access
Notes (up) Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @ Serial 4282
Permanent link to this record
 

 
Author Doğan, F.; Covaci, L.; Kim, W.; Marsiglio, F.
Title Emerging nonequilibrium bound state in spin-current–local-spin scattering Type A1 Journal article
Year 2009 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 80 Issue 10 Pages 104434
Keywords A1 Journal article
Abstract Magnetization reversal is a well-studied problem with obvious applicability in computer hard drives. One can accomplish a magnetization reversal in at least one of two ways: application of a magnetic field or through a spin current. The latter is more amenable to a fully quantum-mechanical analysis. We formulate and solve the problem whereby a spin current interacts with a ferromagnetic Heisenberg spin chain, to eventually reverse the magnetization of the chain. Spin flips are accomplished through both elastic and inelastic scattering. A consequence of the inelastic-scattering channel, when it is no longer energetically possible, is the occurrence of a nonequilibrium bound state, which is an emergent property of the coupled local plus itinerant spin system. For certain definite parameter values the itinerant spin lingers near the local spins for some time, before eventually leaking out as an outwardly diffusing state. This phenomenon results in spin-flip dynamics and filtering properties for this type of system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000270383100077 Publication Date 2009-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links
Impact Factor 3.836 Times cited Open Access
Notes (up) Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ Serial 4436
Permanent link to this record
 

 
Author Goodvin, G.L.; Covaci, L.; Berciu, M.
Title Holstein polarons near surfaces Type A1 Journal article
Year 2009 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 103 Issue 17 Pages 176402
Keywords A1 Journal article
Abstract We study the effects of a nearby surface on the spectral weight of a Holstein polaron, using the inhomogeneous momentum average approximation which is accurate over the entire range of electron-phonon (e-ph) coupling strengths. The broken translational symmetry is taken into account exactly. We find that the e-ph coupling gives rise to a large additional surface potential, with strong retardation effects, which may bind surface states even when they are not normally expected. The surface, therefore, has a significant effect and bulk properties are recovered only very far away from it. These results demonstrate that interpretation in terms of bulk quantities of spectroscopic data sensitive only to a few surface layers is not always appropriate.
Address Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000271164500042 Publication Date 2009-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links
Impact Factor 8.462 Times cited 8 Open Access
Notes (up) Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ Serial 4435
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Marsiglio, F.
Title Impurity scattering of wave packets on a lattice Type A1 Journal article
Year 2006 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 74 Issue 20 Pages 205120
Keywords A1 Journal article
Abstract Quantum transport in a lattice is distinct from its counterpart in continuum media. Even a free wave packet travels differently in a lattice than in the continuum. We describe quantum scattering in a one-dimensional lattice and illustrate characteristics of quantum transport such as resonant transmission. In particular we examine the transport characteristics of a random trimer model. We demonstrate the real-time propagation of a wave packet and its phase shift due to impurity configurations. Spin-flip scattering is also taken into account in a spin-chain system. We show how individual spins in the chain evolve as a result of a spin-flip interaction between an incoming electron and a spin chain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000242409400030 Publication Date 2006-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links
Impact Factor 3.836 Times cited 14 Open Access
Notes (up) Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ Serial 4428
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Marsiglio, F.
Title Hidden symmetries of electronic transport in a disordered one-dimensional lattice Type A1 Journal article
Year 2006 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 73 Issue 19 Pages 195109
Keywords A1 Journal article
Abstract Correlated, or extended, impurities play an important role in the transport properties of dirty metals. Here, we examine, in the framework of a tight-binding lattice, the transmission of a single electron through an array of correlated impurities. In particular we show that particles transmit through an impurity array in identical fashion, regardless of the direction of traversal. The demonstration of this fact is straightforward in the continuum limit, but requires a detailed proof for the discrete lattice. We also briefly demonstrate and discuss the time evolution of these scattering states, to delineate regions (in time and space) where the aforementioned symmetry is violated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000237950400042 Publication Date 2006-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links
Impact Factor 3.836 Times cited 5 Open Access
Notes (up) Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ Serial 4429
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Dogan, F.; Marsiglio, F.
Title Quantum mechanics of spin transfer in coupled electron-spin chains Type A1 Journal article
Year 2007 Publication Epl Abbreviated Journal Epl-Europhys Lett
Volume 79 Issue 6 Pages 67004
Keywords A1 Journal article
Abstract The manner in which spin-polarized electrons interact with a magnetized thin film is currently described by a semi-classical approach. This in turn provides our present understanding of the spin transfer, or spin torque phenomenon. However, spin is an intrinsically quantum-mechanical quantity. Here, we make the first strides towards a fully quantum-mechanical description of spin transfer through spin currents interacting with a Heisenberg-coupled spin chain. Because of quantum entanglement, this requires a formalism based on the density matrix approach. Our description illustrates how individual spins in the chain time-evolve as a result of spin transfer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000250409500023 Publication Date 2007-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links
Impact Factor 1.957 Times cited 3 Open Access
Notes (up) Approved Most recent IF: 1.957; 2007 IF: 2.206
Call Number UA @ lucian @ Serial 4430
Permanent link to this record
 

 
Author Covaci, L.; Berciu, M.
Title Holstein polaron: The effect of coupling to multiple-phonon modes Type A1 Journal article
Year 2007 Publication Epl Abbreviated Journal Epl-Europhys Lett
Volume 80 Issue 6 Pages 67001
Keywords A1 Journal article
Abstract We investigate the effects of coupling to multiple-phonon modes on the properties of a Holstein polaron. To this end, we generalize the Momentum Average approximations MA((0)) and MA((1)) to deal with multiple-phonon modes. As for a single-phonon mode, these approximations are found to be numerically very efficient. They become exact for very weak or very strong couplings, and are highly accurate in the intermediate regimes, e.g. the spectral weights obey exactly the first six, respectively eight, sum rules. Our results show that the effect on ground-state properties is cumulative in nature. As a result, if the effective coupling to one mode is much larger than to all the others, this mode effectively determines the ground-state properties. However, even very weak coupling to a second phonon mode has important non-perturbational effects on the higher-energy spectrum, in particular on the dispersion and the phonon statistics of the polaron band. This has important consequences on the analysis and interpretation of data for real materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000251648300016 Publication Date 2007-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links
Impact Factor 1.957 Times cited 9 Open Access
Notes (up) Approved Most recent IF: 1.957; 2007 IF: 2.206
Call Number UA @ lucian @ Serial 4431
Permanent link to this record
 

 
Author Marchand, D.; Covaci, L.; Berciu, M.; Franz, M.
Title Giant proximity effect in a phase-fluctuating superconductor Type A1 Journal article
Year 2008 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 101 Issue 9 Pages 097004
Keywords A1 Journal article
Abstract When a tunneling barrier between two superconductors is formed by a normal material that would be a superconductor in the absence of phase fluctuations, the resulting Josephson effect can undergo an enormous enhancement. We establish this novel proximity effect by a general argument as well as a numerical simulation and argue that it may underlie recent experimental observations of the giant proximity effect between two cuprate superconductors separated by a barrier made of the same material rendered normal by severe underdoping.
Address Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000259195800055 Publication Date 2008-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links
Impact Factor 8.462 Times cited 17 Open Access
Notes (up) Approved Most recent IF: 8.462; 2008 IF: 7.180
Call Number UA @ lucian @ Serial 4433
Permanent link to this record
 

 
Author Covaci, L.; Berciu, M.
Title Polaron formation in the presence of Rashba spin-orbit coupling: implications for spintronics Type A1 Journal article
Year 2009 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 102 Issue 18 Pages 186403
Keywords A1 Journal article
Abstract We study the effects of the Rashba spin-orbit coupling on polaron formation, using a suitable generalization of the momentum average approximation. While previous work on a parabolic band model found that spin-orbit coupling increases the effective mass, we show that the opposite holds for a tight-binding model, unless both the spin-orbit and the electron-phonon couplings are weak. It is thus possible to lower the effective mass of the polaron by increasing the spin-orbit coupling. We also show that when the spin-orbit coupling is large as compared to the phonon energy, the polaron retains only one of the spin-polarized bands in its coherent spectrum. This has major implications for the propagation of spin-polarized currents in such materials, and thus for spintronic applications.
Address Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000265948600049 Publication Date 2009-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links
Impact Factor 8.462 Times cited 25 Open Access
Notes (up) Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ Serial 4434
Permanent link to this record
 

 
Author Bogaerts, A.; Khosravian, N.; Van der Paal, J.; Verlackt, C.C.W.; Yusupov, M.; Kamaraj, B.; Neyts, E.C.
Title Multi-level molecular modelling for plasma medicine Type A1 Journal article
Year 2016 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 49 Issue 5 Pages 054002-54019
Keywords A1 Journal article; Plasma, laser ablation and surface modeling – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record
Impact Factor 2.588 Times cited Open Access
Notes (up) Approved Most recent IF: 2.588
Call Number UA @ lucian @ c:irua:129798 Serial 4467
Permanent link to this record
 

 
Author Neyts, E.C.; Brault, P.
Title Molecular Dynamics Simulations for Plasma-Surface Interactions: Molecular Dynamics Simulations… Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600145
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-surface interactions are in general highly complex due to the interplay of many concurrent processes. Molecular dynamics simulations provide insight in some of these processes, subject to the accessible time and length scales, and the availability of suitable force fields. In this introductory tutorial-style review, we aim to describe the current capabilities and limitations of molecular dynamics simulations in this field, restricting ourselves to low-temperature nonthermal plasmas. Attention is paid to the simulation of the various fundamental processes occurring, including sputtering, etching, implantation, and deposition, as well as to what extent the basic plasma components can be accounted for, including ground state and excited species, electric fields, ions, photons, and electrons. A number of examples is provided, giving an bird’s eye overview of the current state of the field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393184600009 Publication Date 2016-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 13 Open Access Not_Open_Access
Notes (up) Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:141758 Serial 4488
Permanent link to this record
 

 
Author Laroussi, M.; Bogaerts, A.; Barekzi, N.
Title Plasma processes and polymers third special issue on plasma and cancer Type Editorial
Year 2016 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 13 Issue 13 Pages 1142-1143
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393131600001 Publication Date 2016-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 1 Open Access
Notes (up) Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:141546 Serial 4474
Permanent link to this record
 

 
Author Belov, I.; Paulussen, S.; Bogaerts, A.
Title Analysis and comparison of the co2 and co dielectric barrier discharge solid products Type P1 Proceeding
Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The CO and CO2 Dielectric Barrier Discharges (DBD) and their solid products were analyzed keeping similar energy input regimes. Gas chromatography analysis revealed the presence of CO2, CO and O-2 mixture in the exhaust of the CO2 DBD, while no O-2 was found when CO was used as a feed gas. It was shown that the C-2 Swan lines observed with optical emission spectroscopy were distinct in the CO plasma while they were not observed in the CO2 emission spectrum. Also the solid products of the plasmas exhibited remarkable differences. Nanoparticles with a diameter between10 and 300 nm, composed of Fe, O and C (Fe: O: C similar to 13: 50: 30) were produced by the CO2 DBD, while microscopic dendrite-like carbon structure (C: O similar to 73: 27) were formed in the CO plasma. The growth rate in the CO2 and CO DBDs was evaluated to be on the level of 0.15 mg/min and 15 mg/min, respectively. The difference of the CO and CO2 discharges and their products might be attributed to the oxygen content in the latter (6.4 mol.% O-2 in the exhaust) and subsequent etching of the carbonaceous film.
Address
Corporate Author Thesis
Publisher Masarykova univ Place of Publication Brno Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-80-210-8318-9 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes (up) Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:141554 Serial 4516
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Berthelot, A.; Heijkers, S.; Wang, W.; Sun, S.; Van Laer, K.; Ramakers, M.; Michielsen, I.; Uytdenhouwen, Y.; Meynen, V.; Cool, P.
Title Plasma based co2 conversion: a combined modeling and experimental study Type P1 Proceeding
Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In recent years there is increased interest in plasma-based CO2 conversion. Several plasma setups are being investigated for this purpose, but the most commonly used ones are a dielectric barrier discharge (DBD), a microwave (MW) plasma and a gliding arc (GA) reactor. In this proceedings paper, we will show results from our experiments in a (packed bed) DBD reactor and in a vortex-flow GA reactor, as well as from our model calculations for the detailed plasma chemistry in a DBD, MW and GA, for pure CO2 as well as mixtures of CO2 with N-2, CH4 and H2O.
Address
Corporate Author Thesis
Publisher Masarykova univ Place of Publication Brno Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-80-210-8318-9 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes (up) Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:141553 Serial 4526
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title Two-dimensional hexagonal tin : ab initio geometry, stability, electronic structure and functionalization Type A1 Journal article
Year 2014 Publication 2D materials Abbreviated Journal 2D Mater
Volume 1 Issue Pages 021004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We study the structural, mechanical and electronic properties of the two-dimensional (2D) allotrope of tin: tinene/stanene using first-principles calculation within density functional theory, implemented in a set of computer codes. Continuing the trend of the group-IV 2D materials graphene, silicene and germanene; tinene is predicted to have a honeycomb lattice with lattice parameter of a(0) = 4.62 angstrom and a buckling of d(0) = 0.92 angstrom. The electronic dispersion shows a Dirac cone with zero gap at the Fermi energy and a Fermi velocity of v(F) = 0.97 x 10(6) m s(-1); including spin-orbit coupling yields a bandgap of 0.10 eV. The monolayer is thermally stable up to 700 K, as indicated by first-principles molecular dynamics, and has a phonon dispersion without imaginary frequencies. We explore applied electric field and applied strain as functionalization mechanisms. Combining these two mechanisms allows for an induced bandgap up to 0.21 eV, whilst retaining the linear dispersion, albeit with degraded electronic transport parameters.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000353650400004 Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 58 Open Access
Notes (up) Approved Most recent IF: 6.937; 2014 IF: NA
Call Number UA @ lucian @ c:irua:134432 Serial 4530
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Kiss’ovski, Z.
Title Modeling a Langmuir probe in atmospheric pressure plasma at different EEDFs Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 055013
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study, we present a computational model of a cylindrical electric probe in atmospheric pressure argon plasma. The plasma properties are varied in terms of density and electron temperature. Furthermore, results for plasmas with Maxwellian and non-Maxwellian electron energy distribution functions are also obtained and compared. The model is based on the fluid description of plasma within the COMSOL software package. The results for the ion saturation current are compared and show good agreement with existing analytical Langmuir probe theories. A strong dependence between the ion saturation current and electron transport properties was observed, and attributed to the effects of ambipolar diffusion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398327900002 Publication Date 2017-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 4 Open Access OpenAccess
Notes (up) Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:141914 Serial 4535
Permanent link to this record
 

 
Author Colin D. Judge, Nicolas Gauquelin, Lori Walters, Mike Wright, James I. Cole, James Madden, Gianluigi A. Botton, Malcolm Griffiths
Title Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen Type A1 Journal Article
Year 2015 Publication Journal of Nuclear Materials Abbreviated Journal
Volume 457 Issue 457 Pages 165-172
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract In recent years, it has been observed that Inconel X-750 spacers in CANDU reactors exhibits lower ductility with reduced load carrying capacity following irradiation in a reactor environment. The fracture behaviour of ex-service material was also found to be entirely intergranular at high doses. The thermalized flux spectrum in a CANDU reactor leads to transmutation of 58Ni to 59Ni. The 59Ni itself has unusually high thermal neutron reaction cross-sections of the type: (n, γ), (n, p), and (n, α). The latter two reactions, in particular, contribute to a significant enhancement of the atomic displacements in addition to creating high concentrations of hydrogen and helium within the material. Microstructural examinations by transmission electron microscopy (TEM) have confirmed the presence of helium bubbles in the matrix and aligned along grain boundaries and matrix–precipitate interfaces. Helium bubble size and density are found to be highly dependent on the irradiation temperature and material microstructure; the bubbles are larger within grain boundary precipitates. TEM specimens extracted from fracture surfaces and crack tips provide information that is consistent with crack propagation along grain boundaries due to the presence of He bubbles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000349169100022 Publication Date 2014-11-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor Times cited 29 Open Access
Notes (up) Approved Most recent IF: NA
Call Number EMAT @ emat @ Serial 4540
Permanent link to this record
 

 
Author Macke, S.; Radi, A.; Hamann-Borrero, J.E.; Verna, A.; Bluschke, M.; Brück, S.; Goering, E.; Sutarto, R.; He, F.; Cristiani, G.; Wu, M.; Benckiser, E.; Habermeier, H.-U.; Logvenov, G.; Gauquelin, N.; Botton, G.A; Kajdos, A.P.; Stemmer, S.; Sawatzky,G.A.; Haverkort, M.W.; Keimer, B.; Hinkov, V.
Title Element Specific Monolayer Depth Profiling Type A1 Journal Article
Year 2014 Publication Advanced Materials Abbreviated Journal Adv Mater
Volume 26 Issue 38 Pages 6554-6559
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)
Abstract The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000343763200004 Publication Date 2014-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1521-4095 ISBN Additional Links
Impact Factor 19.791 Times cited 34 Open Access
Notes (up) Approved Most recent IF: 19.791; 2014 IF: NA
Call Number EMAT @ emat @ Serial 4541
Permanent link to this record
 

 
Author N. Gauquelin, D. G. Hawthorn, G. A. Sawatzky, R. X. Liang, D. A. Bonn, W. N. Hardy & G.A. Botton
Title Atomic scale real-space mapping of holes in YBa2Cu3O6+δ Type A1 Journal Article
Year 2014 Publication Nature Communications Abbreviated Journal
Volume 5 Issue Pages 4275
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The high-temperature superconductor YBa2Cu3O6+δ consists of two main structural units—a bilayer of CuO2 planes that are central to superconductivity and a CuO2+δ chain layer. Although the functional role of the planes and chains has long been established, most probes integrate over both, which makes it difficult to distinguish the contribution of each. Here we use electron energy loss spectroscopy to directly resolve the plane and chain contributions to the electronic structure in YBa2Cu3O6 and YBa2Cu3O7. We directly probe the charge transfer of holes from the chains to the planes as a function of oxygen content, and show that the change in orbital occupation of Cu is large in the chain layer but modest in CuO2 planes, with holes in the planes doped primarily into the O 2p states. These results provide direct insight into the local electronic structure and charge transfers in this important high-temperature superconductor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000340615100002 Publication Date 2014-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor Times cited 22 Open Access
Notes (up) Approved Most recent IF: NA
Call Number EMAT @ emat @ Serial 4542
Permanent link to this record
 

 
Author Shuhui Sun, Gaixia Zhang, Nicolas Gauquelin, Ning Chen, Jigang Zhou, Songlan Yang, Weifeng Chen, Xiangbo Meng, Dongsheng Geng, Mohammad N. Banis, Ruying Li, Siyu Ye, Shanna Knights, Gianluigi A. Botton, Tsun-Kong Sham & Xueliang Sun
Title Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition Type A1 Journal Article
Year 2013 Publication Scientific Reports Abbreviated Journal
Volume 3 Issue Pages 1775
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Platinum-nanoparticle-based catalysts are widely used in many important chemical processes and

automobile industries. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize

their use efficiency, however, very challenging. Here we report a practical synthesis for isolated single Pt

atoms anchored to graphene nanosheet using the atomic layer deposition (ALD) technique. ALD offers the

capability of precise control of catalyst size span from single atom, subnanometer cluster to nanoparticle.

The single-atom catalysts exhibit significantly improved catalytic activity (up to 10 times) over that of the

state-of-the-art commercial Pt/C catalyst. X-ray absorption fine structure (XAFS) analyses reveal that the

low-coordination and partially unoccupied densities of states of 5d orbital of Pt atoms are responsible for the

excellent performance. This work is anticipated to form the basis for the exploration of a next generation of

highly efficient single-atom catalysts for various applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000318334300004 Publication Date 2013-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor Times cited 345 Open Access
Notes (up) Approved Most recent IF: NA
Call Number EMAT @ emat @ Serial 4543
Permanent link to this record