|   | 
Details
   web
Records
Author Piacente, G.; Hai, G.Q.; Peeters, F.M.
Title Continuous structural transitions in quasi-one-dimensional classical Wigner crystals Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 2 Pages
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the structural phase transitions in confined systems of strongly interacting particles. We consider infinite quasi-one-dimensional systems with different pairwise repulsive interactions in the presence of an external confinement following a power law. Within the framework of Landaus theory, we find the necessary conditions to observe continuous transitions and demonstrate that the only allowed continuous transition is between the single- and the double-chain configurations and that it only takes place when the confinement is parabolic. We determine analytically the behavior of the system at the transition point and calculate the critical exponents. Furthermore, we perform Monte Carlo simulations and find a perfect agreement between theory and numerics.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000274002100035 Publication Date 2010-01-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 37 Open Access
Notes (up) ; The authors acknowledge FAPESP and CNPq (Brazil), the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl) (Belgium) for financial support. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:81243 Serial 493
Permanent link to this record
 

 
Author Bousige, C.; Rols, S.; Cambedouzou, J.; Verberck, B.; Pekker, S.; Kováts, É.; Durkó, G.; Jalsovsky, I.; Pellegrini, É.; Launois, P.
Title Lattice dynamics of a rotor-stator molecular crystal: Fullerene-cubane C60\centerdot C8H8 Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 19 Pages 195413-195413,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dynamics of fullerene-cubane (C60⋅C8H8) cocrystal is studied combining experimental [x-ray diffuse scattering, quasielastic and inelastic neutron scattering (INS)] and simulation (molecular dynamics) investigations. Neutron scattering gives direct evidence of the free rotation of fullerenes and of the libration of cubanes in the high-temperature phase, validating the rotor-stator description of this molecular system. X-ray diffuse scattering shows that orientational disorder survives the order/disorder transition in the low-temperature phase, although the loss of fullerene isotropic rotational diffusion is featured by the appearance of a 2.2 meV mode in the INS spectra. The coupling between INS and simulations allows identifying a degeneracy lift of the cubane librations in the low temperature phase, which is used as a tool for probing the environment of cubane in this phase and for getting further insights into the phase transition mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000283923500004 Publication Date 2010-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes (up) ; The authors acknowledge P.-A. Albouy and S. Rouziere (LPS, Orsay) for fruitful discussions and for their support during diffuse scattering experiments. Work in Hungary was supported by the Hungarian Research Fund, OTKA under Grant No. K72954. The CS group at the ILL is acknowledged for their support during the MD simulations. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85801 Serial 1802
Permanent link to this record
 

 
Author Lipavsky, P.; Elmurodov, A.; Lin, P.-J.; Matlock, P.; Berdiyorov, G.R.
Title Effect of normal current corrections on the vortex dynamics in type-II superconductors Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 14 Pages 144516-144518
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Within the time-dependent Ginzburg-Landau theory we discuss the effect of nonmagnetic interactions between the normal current and supercurrent in the presence of electric and magnetic fields. The correction due to the current-current interactions is shown to have a transient character so that it contributes only when a system evolves. Numerical studies for thin current-carrying superconducting strips with no magnetic feedback show that the effect of the normal current corrections is more pronounced in the resistive state where fast-moving kinematic vortices are formed. Simulations also reveal that the largest contribution due to current-current interactions appears near the sample edges, where the vortices reach their maximal velocity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309809700007 Publication Date 2012-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes (up) ; The authors are grateful to Alex Gurevich and Tom Lemberger who brought the longitudinal f-sum rule to our attention. This work was supported by Grants GACR P204/10/0687 and P204/11/0015. We also acknowledge the support from the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). G.R.B. acknowledges individual support from FWO-Vl. P.-J.L. acknowledges support from Old Dominion University. P.M. acknowledges support through UA research index SR-614-1203. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:102168 Serial 827
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B.
Title Theory of rigid-plane phonon modes in layered crystals Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 9 Pages 094303-094303,11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The lattice dynamics of low-frequency rigid-plane modes in metallic (graphene multilayers, GML) and in insulating (hexagonal boron-nitride multilayers, BNML) layered crystals is investigated. The frequencies of shearing and compression (stretching) modes depend on the layer number N and are presented in the form of fan diagrams. The results for GML and BNML are very similar. In both cases, only the interactions (van der Waals and Coulomb) between nearest-neighbor planes are effective, while the interactions between more distant planes are screened. A comparison with recent Raman scattering results on low-frequency shear modes in GML [Tan et al., Nat. Mater., in press, doi: 10.1038/nmat3245, (2012)] is made. Relations with the low-lying rigid-plane phonon dispersions in the bulk materials are established. Master curves, which connect the fan diagram frequencies for any given N, are derived. Static and dynamic thermal correlation functions for rigid-layer shear and compression modes are calculated. The results might be of use for the interpretation of friction force experiments on multilayer crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000301646000006 Publication Date 2012-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes (up) ; The authors are indebted to J. Maultzsch for bringing Ref. 20 to their attention. They thank D. Lamoen, F.M. Peeters, B. Trauzettel, and C. Van Haesendonck for useful discussions. This work has been financially supported by the Research Foundation Flanders (FWO). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97787 Serial 3619
Permanent link to this record
 

 
Author Vansweevelt, R.; Mortet, V.; D' Haen, J.; Ruttens, bart; van Haesendonck, C.; Partoens, B.; Peeters, F.M.; Wagner, P.
Title Study on the giant positive magnetoresistance and Hall effect in ultrathin graphite flakes Type A1 Journal article
Year 2011 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 208 Issue 6 Pages 1252-1258
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this paper, we report on the electronic transport properties of mesoscopic, ultrathin graphite flakes with a thickness corresponding to a stack of 150 graphene layers. The graphite flakes show an unexpectedly strong positive magnetoresistance (PMR) already at room temperature, which scales in good approximation with the square of the magnetic field. Furthermore, we show that the resistivity is unaffected by magnetic fields oriented in plane with the graphene layers. Hall effect measurements indicate that the charge carriers are p-type and their concentration increases with increasing temperature while the mobility is decreasing. The Hall voltage is non-linear in higher magnetic fields. Possible origins of the observed effects are discussed. Ball and stick model of the two topmost carbon layers of the hexagonal graphite structure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000292945800008 Publication Date 2011-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 8 Open Access
Notes (up) ; The authors gratefully acknowledge the support by FWO – Research Foundation Flanders (project G.0159.07 “Structural and electronic properties of biologically modified, graphene-based layers”), by the Federal Belgian Interuniversity Attraction Poles Programme BELSPO (project TAP VI P6/42 “Quantum effects in clusters and nanowires”) and by the Methusalem network “NANO – Antwerp-Hasselt,” funded by the Flemish Community. Technical assistance by Stoffel D. Janssens (magnet calibration and software development), Dr. Hong Yin (AFM-based thickness studies), Dr. Ronald Thoelen (data analysis), and Prof. Hans-Gerd Boyen (XPS spectroscopy) is greatly appreciated. ; Approved Most recent IF: 1.775; 2011 IF: 1.463
Call Number UA @ lucian @ c:irua:91941 Serial 3343
Permanent link to this record
 

 
Author Čukarić, N.; Arsoski, V.; Tadić, M.; Peeters, F.M.
Title Hole states in nanocups in a magnetic field Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 23 Pages 235425-235425,11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The magnetic-field dependence of the hole states in a nanocup, which is composed of a ring (the nanocup rim) that surrounds a disk (the nanocup bottom), is obtained within the Luttinger-Kohn model for the unstrained GaAs/(Al,Ga) As and the strained (In,Ga) As/GaAs systems. Aharonov-Bohm oscillations due to angular momentum transitions of the hole ground state appear with periods that vary with the thickness of the disk. The strain in the (In, Ga) As/GaAs nanocup is sensitive to the disk thickness and favors the spatial localization of the heavy holes inside the disk. Therefore, the angular momentum transitions between the valence-band states disappear for much thinner disks than in the case of the unstrained GaAs/(Al, Ga) As nanocups. In both systems, the oscillations in the energy of the hole ground state are found to disappear for thinner inner layer than in the electron ground-state energy. This is due to the different confining potentials and the mixing between the heavy- and light-hole states. As a consequence, magnetization of the single hole is found to strongly depend on the bottom thickness of the strained (In, Ga) As/GaAs nanocup. Furthermore, we found that the strain can lead to a spatial separation of the electron and the hole, as in type-II band alignment, which is advantageous for the appearance of the excitonic Aharonov-Bohm effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305116700005 Publication Date 2012-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes (up) ; The authors thank B. Partoens for useful discussions. This work was supported by the EU NoE: SANDiE, the Ministry of Education and Science of Serbia, and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98906 Serial 1477
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M.; Partoens, B.; Pasek, W.J.
Title Tuning of the spin-orbit interaction in a quantum dot by an in-plane magnetic field Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 24 Pages 245324-245324,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using an exact-diagonalization approach we show that one- and two-electron InAs quantum dots exhibit an avoided crossing in the energy spectra that is induced by the spin-orbit coupling in the presence of an in-plane external magnetic field. The width of the avoided crossings depends strongly on the orientation of the magnetic field, which reveals the intrinsic anisotropy of the spin-orbit-coupling interactions. We find that for specific orientations of the magnetic field avoided crossings vanish. A value of this orientation can be used to extract the ratio of the strength of Rashba and Dresselhaus interactions. The spin-orbit anisotropy effects for various geometries and orientations of the confinement potential are discussed. Our analysis explains the physics behind the recent measurements performed on a gated self-assembled quantum dot [ S. Takahashi et al. Phys. Rev. Lett. 104 246801 (2010)].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000292254000005 Publication Date 2011-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes (up) ; The authors thank S. Takahashi for helpful discussions. This work was supported by the “Krakow Interdisciplinary PhD Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund, the Project No. N N202103938 supported by the Ministry of Science an Higher Education (MNiSW) for 2010-2013, and the Belgian Science Policy (IAP). W. J. P. has been partially supported by the EU Human Capital Operation Program, Polish Project No. POKL.04.0101-00-434/08-00. Calculations were performed in ACK-CYFRONET-AGH on the RackServer Zeus. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90923 Serial 3755
Permanent link to this record
 

 
Author Verberck, B.; Partoens, B.; Peeters, F.M.; Trauzettel, B.
Title Strain-induced band gaps in bilayer graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 12 Pages 125403-125403,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a tight-binding investigation of strained bilayer graphene within linear elasticity theory, focusing on the different environments experienced by the A and B carbon atoms of the different sublattices. We find that the inequivalence of the A and B atoms is enhanced by the application of perpendicular strain epsilon(zz), which provides a physical mechanism for opening a band gap, most effectively obtained when pulling the two graphene layers apart. In addition, perpendicular strain introduces electron-hole asymmetry and can result in linear electronic dispersion near the K point. Our findings suggest experimental means for strain-engineered band gaps in bilayer graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000301113200005 Publication Date 2012-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 53 Open Access
Notes (up) ; The authors would like to acknowledge O. Leenaerts, E. Mariani, K. H. Michel, and J. Schelter for useful discussions. B. V. was financially supported by the Flemish Science Foundation (FWO-Vl). This work was financially supported by the ESF program EuroGraphene under projects CONGRAN and ENTS as well as by the DFG. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97181 Serial 3168
Permanent link to this record
 

 
Author Couet, S.; Peelaers, H.; Trekels, M.; Houben, K.; Petermann, C.; Hu, M.Y.; Zhao, J.Y.; Bi, W.; Alp, E.E.; Menéndez, E.; Partoens, B.; Peeters, F.M.; Van Bael, M.J.; Vantomme, A.; Temst, K.;
Title Interplay between lattice dynamics and superconductivity in Nb3Sn thin films Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 4 Pages 045437-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the link between superconductivity and atomic vibrations in Nb3Sn films with a thickness ranging from 10 to 50 nm. The challenge of measuring the phonon density of states (PDOS) of these films has been tackled by employing the technique of nuclear inelastic scattering by Sn-119 isotopes to reveal the Sn-partial phonon density of states. With the support of ab initio calculations, we evaluate the effect of reduced film thickness on the PDOS. This approach allows us to estimate the changes in superconducting critical temperature T-c induced by phonon confinement, which turned out to be limited to a few tenths of K. The presented method is successful for the Nb3Sn system and paves the way for more systematic studies of the role of phonon confinement in Sn-containing superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322529900004 Publication Date 2013-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes (up) ; The authors would like to cordially thank Dr. Rudolf Ruffer from the nuclear resonant scattering group of the ESRF for the support and gratefully acknowledge the ESRF for providing beamtime for the preliminary phonon study. S. C., K. H., and E. M. thank the Flemish Science Foundation (FWO-Vl) for their personal fellowship. This work was supported by FWO-Vl, the Methusalem program of the Flemish government, and the Concerted Research Action program (GOA/09/ 006) and (GOA/14/007). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109801 Serial 1702
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
Title Thermodynamic properties of the electron gas in multilayer graphene in the presence of a perpendicular magnetic field Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 24 Pages 245429-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The thermodynamic properties of the electron gas in multilayer graphene depend strongly on the number of layers and the type of stacking. Here we analyze how those properties change when we vary the number of layers for rhombohedral stacked multilayer graphene and compare our results with those from a conventional two-dimensional electron gas. We show that the highly degenerate zero-energy Landau level which is partly filled with electrons and partly with holes has a strong influence on the values of the different thermodynamic quantities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328686900006 Publication Date 2014-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes (up) ; The authors would like to thank C. De Beule for enlightening discussions. This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B.V.D., and the Methusalem Program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:113700 Serial 3635
Permanent link to this record
 

 
Author De Beule, C.; Partoens, B.
Title Gapless interface states at the junction between two topological insulators Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 11 Pages 115113-115116
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We consider a junction between two topological insulators and calculate the properties of the interface states with an effective low-energy Hamiltonian for topological insulators with a single cone on the surface. This system bears a close resemblance to bilayer graphene, as both result from the hybridization of Dirac cones. We find gapless interface states not only when the helicity directions of the topological surface states are oppositely oriented, but they can also exist if they are equally oriented. Furthermore, we find that the existence of the interface states can be understood from the closing of the bulk gap when the helicity changes orientation. Recently superluminal tachyonic excitations were also claimed to exist at the interface between topological insulators. However, here we show that these interface states do not exist. DOI: 10.1103/PhysRevB.87.115113
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316101100002 Publication Date 2013-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes (up) ; The authors would like to thank Dr. O. Leenaerts for the helpful discussions. This work was supported by the Research Foundation Flanders (FWO). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108282 Serial 1316
Permanent link to this record
 

 
Author Stankovski, M.; Antonius, G.; Waroquiers, D.; Miglio, A.; Dixit, H.; Sankaran, K.; Giantomassi, M.; Gonze, X.; Côté, M.; Rignanese, G.-M.
Title G0W0 band gap of ZnO : effects of plasmon-pole models Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 24 Pages 241201-241201,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Carefully converged calculations are performed for the band gap of ZnO within many-body perturbation theory (G0W0 approximation). The results obtained using four different well-established plasmon-pole models are compared with those of explicit calculations without such models (the contour-deformation approach). This comparison shows that, surprisingly, plasmon-pole models depending on the f-sum rule gives less precise results. In particular, it confirms that the band gap of ZnO is underestimated in the G0W0 approach as compared to experiment, contrary to the recent claim of Shih et al. [ Phys. Rev. Lett. 105 146401 (2010)].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297766600001 Publication Date 2011-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 81 Open Access
Notes (up) ; The authors would like to thank P. Zhang, S. Louie, J. Deslippe, P. Rinke, H. Jiang, C. Friedrich, and F. Bruneval for many helpful discussions. We are also very grateful to Y. Pouillon, A. Jacques, and J.-M. Beuken for their technical aid and expertise. M.C. and G.A. would like to acknowledge the support of NSERC and FQRNT. This work was supported by the Interuniversity Attraction Poles program (P6/42)-Belgian State-Belgian Science Policy, the Flemish Science Foundation (FWO-Vl) ISIMADE project, the EU's 7th Framework programme through the ETSF I3 e-Infrastructure project (Grant Agreement No. 211956), the Communaute francaise de Belgique, through the Action de Recherche Concertee 07/ 12-003 “Nanosystemes hybrides metal-organiques”, and the FNRS through FRFC Project No. 2.4.589.09.F. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:93963 Serial 3533
Permanent link to this record
 

 
Author Shylau, A.A.; Badalyan, S.M.; Peeters, F.M.; Jauho, A.P.
Title Electron polarization function and plasmons in metallic armchair graphene nanoribbons Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 205444
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Plasmon excitations in metallic armchair graphene nanoribbons are investigated using the random phase approximation. An exact analytical expression for the polarization function of Dirac fermions is obtained, valid for arbitrary temperature and doping. We find that at finite temperatures, due to the phase space redistribution among inter-band and intra-band electronic transitions in the conduction and valence bands, the full polarization function becomes independent of temperature and position of the chemical potential. It is shown that for a given width of nanoribbon there exists a single plasmon mode whose energy dispersion is determined by the graphene's fine structure constant. In the case of two Coulomb-coupled nanoribbons, this plasmon splits into in-phase and out-of-phase plasmon modes with splitting energy determined by the inter-ribbon spacing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355315400007 Publication Date 2015-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes (up) ; The Center for Nanostructured Graphene (CNG) is sponsored by the Danish National Research Foundation (DNRF58). The work at the University of Antwerp was supported by the Flemisch Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. S.M.B. gratefully acknowledges hospitality and support from the Department of Physics at the University of Missouri. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:126403 Serial 984
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.
Title Structure solution and refinement of metal-ion battery cathode materials using electron diffraction tomography Type A1 Journal article
Year 2019 Publication And Materials Abbreviated Journal
Volume 75 Issue 4 Pages 485-494
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The applicability of electron diffraction tomography to the structure solution and refinement of charged, discharged or cycled metal-ion battery positive electrode (cathode) materials is discussed in detail. As these materials are often only available in very small amounts as powders, the possibility of obtaining single-crystal data using electron diffraction tomography (EDT) provides unique access to crucial information complementary to X-ray diffraction, neutron diffraction and high-resolution transmission electron microscopy techniques. Using several examples, the ability of EDT to be used to detect lithium and refine its atomic position and occupancy, to solve the structure of materials ex situ at different states of charge and to obtain in situ data on structural changes occurring upon electrochemical cycling in liquid electrolyte is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480512600002 Publication Date 2019-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes (up) ; The following funding is acknowledged: Fonds Wetenschappelijk Onderzoek (grant No. G040116N); Russian Foundation of Basic Research (grant No. 17-03-00370-a). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161846 Serial 5397
Permanent link to this record
 

 
Author Doria, M.M.; Romaguera, A.R. de C.; Peeters, F.M.
Title Vortex patterns in a mesoscopic superconducting rod with a magnetic dot Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 10 Pages 104529,1-104529,11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study a mesoscopic superconducting rod with a magnetic dot on its top having its moment oriented along the axis of symmetry. We study the dependence of the vortex pattern with the height and find that for very short and very long rods, the vortex pattern acquires a simple structure, consisting of giant and of multivortex states, respectively. In the long limit, the most stable configuration consists of two vortices, that reach the lateral surface of the rod diametrically opposed. The long rod shows reentrant behavior within some range of its radius and of the dots magnetic moment. Our results are obtained within the Ginzburg-Landau approach in the limit of no magnetic shielding.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000276248700123 Publication Date 2010-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes (up) ; The three authors acknowledge CNPq and the bilateral program between Brazil and Flanders for financial support. They also make the following acknowledgments for financial support: A. R. de C. Romaguera to FACEPE, M. M. Doria to FAPERJ, and F. M. Peeters to the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IUAP), and the ESF-AQDJJ network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:82272 Serial 3877
Permanent link to this record
 

 
Author Garud, S.; Gampa, N.; Allen, T.G.; Kotipalli, R.; Flandre, D.; Batuk, M.; Hadermann, J.; Meuris, M.; Poortmans, J.; Smets, A.; Vermang, B.
Title Surface passivation of CIGS solar cells using gallium oxide Type A1 Journal article
Year 2018 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 215 Issue 7 Pages 1700826
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work proposes gallium oxide grown by plasma-enhanced atomic layer deposition, as a surface passivation material at the CdS buffer interface of Cu(In,Ga)Se-2 (CIGS) solar cells. In preliminary experiments, a metal-insulator-semiconductor (MIS) structure is used to compare aluminium oxide, gallium oxide, and hafnium oxide as passivation layers at the CIGS-CdS interface. The findings suggest that gallium oxide on CIGS may show a density of positive charges and qualitatively, the least interface trap density. Subsequent solar cell results with an estimated 0.5nm passivation layer show an substantial absolute improvement of 56mV in open-circuit voltage (V-OC), 1mAcm(-2) in short-circuit current density (J(SC)), and 2.6% in overall efficiency as compared to a reference (with the reference showing 8.5% under AM 1.5G).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430128500015 Publication Date 2018-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 8 Open Access Not_Open_Access
Notes (up) ; The work published in this paper was supported by the European Research Council (ERC) under the Union's Horizon 2020 research and innovation programme (grant agreement No 715027). The authors would also like to thank Dr. Marcel Simor (Solliance) for the CIGS layer fabrication and Prof. Johan Lauwaert (Universtiy of Ghent) for his guidance on DLTS measurements. ; Approved Most recent IF: 1.775
Call Number UA @ lucian @ c:irua:150761 Serial 4981
Permanent link to this record
 

 
Author Brito, B.G.A.; Candido, L.; Hai, G.-Q.; Peeters, F.M.
Title Quantum effects in a free-standing graphene lattice : path-integral against classical Monte Carlo simulations Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 195416
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In order to study quantum effects in a two-dimensional crystal lattice of a free-standing monolayer graphene, we have performed both path-integral Monte Carlo (PIMC) and classical Monte Carlo (MC) simulations for temperatures up to 2000 K. The REBO potential is used for the interatomic interaction. The total energy, interatomic distance, root-mean-square displacement of the atom vibrations, and the free energy of the graphene layer are calculated. The obtained lattice vibrational energy per atom from the classical MC simulation is very close to the energy of a three-dimensional harmonic oscillator 3k(B)T. The PIMC simulation shows that quantum effects due to zero-point vibrations are significant for temperatures T < 1000 K. The quantum contribution to the lattice vibrational energy becomes larger than that of the classical lattice for T < 400 K. The lattice expansion due to the zero-point motion causes an increase of 0.53% in the lattice parameter. A minimum in the lattice parameter appears at T similar or equal to 500 K. Quantum effects on the atomic vibration amplitude of the graphene lattice and its free energy are investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000368095400004 Publication Date 2015-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 22 Open Access
Notes (up) ; This research was supported by the Brazilian agencies FAPESP, FAPEG, and CNPq, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:131144 Serial 4232
Permanent link to this record
 

 
Author Matulis, A.; Masir, M.R.; Peeters, F.M.
Title Application of optical beams to electrons in graphene Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 11 Pages 115458-115458,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The technique of beam optics is applied to the description of the wave function of Dirac electrons. This approach is illustrated by considering electron transmission through simple nonhomogeneous structures, such as flat and bent p-n junctions and superlattices. We found that a convex p-n junction compresses the beam waist, while a concave interface widens it without loosing its focusing properties. At a flat p-n junction the waist of the transmitted Gaussian beam can be narrowed or widened, depending on the angle of incidence. A general condition is derived for the occurrence of beam collimation in a superlattice which is less stringent than previous discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288896400013 Publication Date 2011-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes (up) ; This research was supported by the Flemish Science Foundation (Grant No. FWO-Vl), by the Belgian Science policy (IAP), and (in part) by the Lithuanian Science Council under project No. MIP-79/2010. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:89377 Serial 142
Permanent link to this record
 

 
Author Berger, J.; Milošević, M.V.
Title Fluctuations in superconducting rings with two order parameters Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 21 Pages 214515-214515,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by two-band superconductivity in, e.g., borides and pnictides, starting from the two-band Ginzburg-Landau energy functional, we discuss how the presence of two order parameters and the coupling between them influence a superconducting ring in the fluctuative regime. Our method is an extension of the von OppenRiedel formalism for rings; it is exact, but requires numerical implementation. We also study approximations for which analytic expressions can be obtained, and check their ranges of validity. We provide estimates for the temperature ranges where fluctuations are important, calculate the persistent current in MgB2 rings as a function of temperature and enclosed flux, and point out its additional dependence on the cross-section area of the wire from which the ring is made. We find temperature regions in which fluctuations enhance the persistent currents and regions where they inhibit the persistent current. The presence of two order parameters that can fluctuate independently always leads to larger averages of the order parameters at Tc, but yields larger persistent current only for appropriate parameters. In cases of very different material parameters for the two coupled condensates, the persistent current is inhibited.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297932500004 Publication Date 2011-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes (up) ; This research was supported by the Israel Science Foundation, Grant No. 249/10, the Flemish Science Foundation (FWO-Vl), and the ESF network INSTANS. We are grateful to Andrei Varlamov and Felix von Oppen for their answers to our enquiries. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:93957 Serial 1226
Permanent link to this record
 

 
Author Clem, J.R.; Mawatari, Y.; Berdiyorov, G.R.; Peeters, F.M.
Title Predicted field-dependent increase of critical currents in asymmetric superconducting nanocircuits Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 14 Pages 144511-144511,16
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The critical current of a thin superconducting strip of width W much larger than the Ginzburg-Landau coherence length xi but much smaller than the Pearl length Lambda = 2 lambda(2)/d is maximized when the strip is straight with defect-free edges. When a perpendicular magnetic field is applied to a long straight strip, the critical current initially decreases linearly with H but then decreases more slowly with H when vortices or antivortices are forced into the strip. However, in a superconducting strip containing sharp 90 degrees or 180 degrees turns, the zero-field critical current at H = 0 is reduced because vortices or antivortices are preferentially nucleated at the inner corners of the turns, where current crowding occurs. Using both analytic London-model calculations and time-dependent Ginzburg-Landau simulations, we predict that in such asymmetric strips the resulting critical current can be increased by applying a perpendicular magnetic field that induces a current-density contribution opposing the applied current density at the inner corners. This effect should apply to all turns that bend in the same direction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000302611100004 Publication Date 2012-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 40 Open Access
Notes (up) ; This research, supported in part by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering, was performed in part at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work also was supported in part by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). G.R.B. acknowledges individual support from FWO-Vlaanderen. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98263 Serial 2695
Permanent link to this record
 

 
Author Tsvyashchenko, A.V.; Nikolaev, A.V.; Velichkov, A.I.; Salamatin, A.V.; Fomicheva, L.N.; Ryasny, G.K.; Sorokin, A.A.; Kochetov, O.I.; Budzynski, M.; Michel, K.H.
Title Lowering of the spatial symmetry at the gamma ->alpha phase transition in cerium Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 9 Pages 1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using time-differential perturbed angular correlation spectroscopy we have measured the electric field gradient (EFG) at 111Cd probe nuclei in solid Ce in a pressure range up to 8 GPa. Covering various allotropic phases of Ce, we find that the value of the EFG in the cubic α phase is almost four times larger than in the cubic γ phase and close to values in the noncubic phases α′ and α″. These results together with the differences in time modulation of the spectra are interpreted as evidence for quadrupolar electronic charge-density ordering and symmetry lowering at the γ→α transition while the lattice remains face-centered cubic
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282004400001 Publication Date 2010-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes (up) ; This work is supported by the Program of the Presidium of the Russian Academy of Sciences “Physics of Strongly Compressed Matter.” We are grateful to S. M. Stishov, B. Verberck, A. N. Grum-Grzhimailo, V. B. Brudanin and G. Heger for support of this work and discussion of the results. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85464 Serial 1854
Permanent link to this record
 

 
Author Chaves, A.; Covaci, L.; Rakhimov, K.Y.; Farias, G.A.; Peeters, F.M.
Title Wave-packet dynamics and valley filter in strained graphene Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 20 Pages 205430
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The time evolution of a wave packet in strained graphene is studied within the tight-binding model and continuum model. The effect of an external magnetic field, as well as a strain-induced pseudomagnetic field, on the wave-packet trajectories and zitterbewegung are analyzed. Combining the effects of strain with those of an external magnetic field produces an effective magnetic field which is large in one of the Dirac cones, but can be practically zero in the other. We construct an efficient valley filter, where for a propagating incoming wave packet consisting of momenta around the K and K' Dirac points, the outgoing wave packet exhibits momenta in only one of these Dirac points while the components of the packet that belong to the other Dirac point are reflected due to the Lorentz force. We also found that the zitterbewegung is permanent in time in the presence of either external or strain-induced magnetic fields, but when both the external and strain-induced magnetic fields are present, the zitterbewegung is transient in one of the Dirac cones, whereas in the other cone the wave packet exhibits permanent spatial oscillations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000284401600007 Publication Date 2010-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 95 Open Access
Notes (up) ; This work was financially supported by CNPq under NanoBioEstruturas Contract No. 555183/2005-0, PRONEX/CNPq/FUNCAP, CAPES, the Bilateral program between Flanders and Brazil, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1) ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:95542 Serial 3905
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Zarenia, M.; Pereira, J.M.; Farias, G.A.; Peeters, F.M.
Title Geometry and edge effects on the energy levels of graphene quantum rings : a comparison between tight-binding and simplified Dirac models Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 7 Pages 075418-12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a systematic study of the energy spectra of graphene quantum rings having different geometries and edge types in the presence of a perpendicular magnetic field. Results are obtained within the tight-binding (TB) and Dirac models and we discuss which features of the former can be recovered by using the approximations imposed by the latter. Energy levels of graphene quantum rings obtained by diagonalizing the TB Hamiltonian are demonstrated to be strongly dependent on the rings geometry and the microscopical structure of the edges. This makes it difficult to recover those spectra by the existing theories that are based on the continuum (Dirac) model. Nevertheless, our results show that both approaches (i.e., TB and Dirac model) may provide similar results, but only for very specific combinations of ring geometry and edge types. The results obtained by a simplified model describing an infinitely thin circular Dirac ring show good agreement with those obtained for hexagonal and rhombus armchair graphene rings within the TB model. Moreover, we show that the energy levels of a circular quantum ring with an infinite mass boundary condition obtained within the Dirac model agree with those for a ring defined by a ring-shaped staggered potential obtained within the TB model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332390000009 Publication Date 2014-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 56 Open Access
Notes (up) ; This work was financially supported by CNPq, under Contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Bilateral programme between CNPq and the Flemish Science Foundation (FWO-Vl), and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:115823 Serial 1328
Permanent link to this record
 

 
Author da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Energy levels of bilayer graphene quantum dots Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 115437
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Within a tight binding approach we investigate the energy levels of hexagonal and triangular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We study AA- and AB-(Bernal) stacked BLG QDs and obtain the energy levels in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). Our results show that the size dependence of the energy levels is different from that of monolayer graphene QDs. The energy spectrum of AB-stacked BLG QDs with zigzag edges exhibits edge states which spread out into the opened energy gap in the presence of a perpendicular electric field. We found that the behavior of these edges states is different for the hexagonal and triangular geometries. In the case of AA-stacked BLG QDs, the electron and hole energy levels cross each other in both cases of armchair and zigzag edges as the dot size or the applied bias increases.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000361663700003 Publication Date 2015-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes (up) ; This work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:128726 Serial 4173
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Sena, S.H.R.; Farias, G.A.; Peeters, F.M.
Title Valley filtering using electrostatic potentials in bilayer graphene Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 045417
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Propagation of an electron wave packet through a quantum point contact (QPC) defined by electrostatic gates in bilayer graphene is investigated. The gates provide a bias between the layers, in order to produce an energy gap. If the gates on both sides of the contact produce the same bias, steps in the electron transmission probability are observed, as in the usual QPC. However, if the bias is inverted on one of the sides of the QPC, only electrons belonging to one of the Dirac valleys are allowed to pass, which provides a very efficient valley filtering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000358253200009 Publication Date 2015-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 47 Open Access
Notes (up) ; This work was financially supported by CNPq, under PNPD and PRONEX/FUNCAP grants; the CAPES Foundation under ProcessNo. BEX7178/13-1; the Bilateral programme between Flanders and Brazil; the Flemish Science Foundation (FWOVl); and the Brazilian program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:127152 Serial 3833
Permanent link to this record
 

 
Author de Sousa, A.A.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Braess paradox at the mesoscopic scale Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 24 Pages 245417-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically demonstrate that the transport inefficiency recently found experimentally for branched-out mesoscopic networks can also be observed in a quantum ring of finite width with an attached central horizontal branch. This is done by investigating the time evolution of an electron wave packet in such a system. Our numerical results show that the conductivity of the ring does not necessary improve if one adds an extra channel. This ensures that there exists a quantum analog of the Braess paradox, originating from quantum scattering and interference.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328680500011 Publication Date 2013-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 17 Open Access
Notes (up) ; This work was financially supported by PRONEX/CNPq/FUNCAP and the bilateral project CNPq-FWO. Discussions with J. S. Andrade, Jr. are gratefully acknowledged. A. A. S. has been financially supported by CAPES, under PDSE Contract No. BEX 7177/13-5. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:113705 Serial 253
Permanent link to this record
 

 
Author Richardson, C.L.; Edkins, S.D.; Berdiyorov, G.R.; Chua, C.J.; Griffiths, J.P.; Jones, G.A.C.; Buitelaar, M.R.; Narayan, V.; Sfigakis, F.; Smith, C.G.; Covaci, L.; Connolly, M.R.;
Title Vortex detection and quantum transport in mesoscopic graphene Josephson-junction arrays Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 245418
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate mesoscopic Josephson-junction arrays created by patterning superconducting disks on monolayer graphene, concentrating on the high-T/T-c regime of these devices and the phenomena which contribute to the superconducting glass state in diffusive arrays. We observe features in the magnetoconductance at rational fractions of flux quanta per array unit cell, which we attribute to the formation of flux-quantized vortices. The applied fields at which the features occur are well described by Ginzburg-Landau simulations that take into account the number of unit cells in the array. We find that the mean conductance and universal conductance fluctuations are both enhanced below the critical temperature and field of the superconductor, with greater enhancement away from the graphene Dirac point.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000356129800012 Publication Date 2015-06-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes (up) ; This work was financially supported by the Engineering and Physical Sciences Research Council, and an NPL/EPSRC Joint Postdoctoral Partnership. Supporting data for this paper is available at the DSpace@Cambridge data repository (https://www.repository.cam.ac.uk/handle/1810/248242). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:126982 Serial 3865
Permanent link to this record
 

 
Author Bakalov, P.; Esfahani, D.N.; Covaci, L.; Peeters, F.M.; Tempere, J.; Locquet, J.-P.
Title Electric-field-driven Mott metal-insulator transition in correlated thin films : an inhomogeneous dynamical mean-field theory approach Type A1 Journal article
Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 165112
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract Simulations are carried out based on the dynamical mean-field theory (DMFT) in order to investigate the properties of correlated thin films for various values of the chemical potential, temperature, interaction strength, and applied transverse electric field. Application of a sufficiently strong field to a thin film at half filling leads to the appearance of conducting regions near the surfaces of the film, whereas in doped slabs the application of a field leads to a conductivity enhancement on one side of the film and a gradual transition to the insulating state on the opposite side. In addition to the inhomogeneous DMFT, a local density approximation (LDA) is considered in which the particle density n, quasiparticle residue Z, and spectral weight at the Fermi level A(ω=0) of each layer are approximated by a homogeneous bulk environment. A systematic comparison between the two approaches reveals that the less expensive LDA results are in good agreement with the DMFT approach, except close to the metal-to-insulator transition points and in the layers immediately at the film surfaces. LDA values for n are overall more reliable than those for Z and A(ω=0). The hysteretic behavior (memory effect) characteristic of the bulk doping driven Mott transition persists in the slab.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000373572700002 Publication Date 2016-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes (up) ; This work was partially funded by the Flemish Fund for Scientific Research (FWO Belgium) under FWO Grant No. G.0520.10 and the joint FWF (Austria)-FWO Grant No. GOG6616N, and by the SITOGA FP7 project. Most of the calculations were performed on KU Leuven's ThinKing HPC cluster provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:132872 Serial 4167
Permanent link to this record
 

 
Author Shakouri, K.; Szafran, B.; Esmaeilzadeh, M.; Peeters, F.M.
Title Effective spin-orbit interaction Hamiltonian for quasi-one-dimensional quantum rings Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 16 Pages 165314-165314,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effective Hamiltonian for an electron in a quasi-one-dimensional quantum ring in the presence of spin-orbit interactions is derived. We demonstrate that, when both coupling types are simultaneously present, the effective Hamiltonian derived by the lowest-radial-state approximation produces energy spectra and charge densities which deviate strongly from the exact ones. For equal Rashba and Dresselhaus coupling constants the lowest-radial-state approximation opens artifactal avoided crossings in the energy spectra and deforms the circular symmetry of the confined charge densities. In this case, there does not exist a ring thin enough to justify the restriction to the lowest radially quantized energy state. We derive the effective Hamiltonian accounting for both the lowest and the first excited radial states, and show that the inclusion of the latter restores the correct features of the exact solution. Relation of this result to the states of a quantum wire is also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303068800006 Publication Date 2012-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes (up) ; This work was partially supported by Polish Ministry of Science and Higher Education and its grants for Scientific Research. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98258 Serial 855
Permanent link to this record
 

 
Author Szaszko-Bogar, V.; Peeters, F.M.; Foeldi, P.
Title Oscillating spin-orbit interaction in two-dimensional superlattices : sharp transmission resonances and time-dependent spin-polarized currents Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 235311
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We consider ballistic transport through a lateral, two-dimensional superlattice with experimentally realizable, sinusoidally oscillating, Rashba-type spin-orbit interaction (SOI). The periodic structure of the rectangular lattice produces a spin-dependent miniband structure for static SOI. Using Floquet theory, transmission peaks are shown to appear in themini-bandgaps as a consequence of the additional, time-dependent SOI. A detailed analysis shows that this effect is due to the generation of harmonics of the driving frequency, via which, e.g., resonances that cannot be excited in the case of static SOI become available. Additionally, the transmitted current shows space-and time-dependent partial spin polarization, in other words, polarization waves propagate through the superlattice.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355956500003 Publication Date 2015-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes (up) ; This work was partially supported by the European Union and the European Social Fund through Projects No. TAMOP-4.2.2.C-11/1/KONV-2012-0010 and No. TAMOP-4.2.2.A-11/1/KONV-2012-0060, and by the Hungarian Scientific Research Fund (OTKA) under Contracts No. T81364 and No. 116688. The ELI-ALPS Project (GOP-1.1.1-12/B-2012-0001) is supported by the European Union and cofinanced by the European Regional Development Fund. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:126432 Serial 2534
Permanent link to this record