toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Aelst, J.; Philippaerts, A.; Turner, S.; Van Tendeloo, G.; Jacobs, P.; Sels, B. pdf  doi
openurl 
  Title Heterogeneous conjugation of vegetable oil with alkaline treated highly dispersed Ru/USY catalysts Type A1 Journal article
  Year 2016 Publication Applied catalysis : A : general Abbreviated Journal Appl Catal A-Gen  
  Volume 526 Issue 526 Pages 172-182  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Heterogeneous metal catalysts enable the direct conjugation of linoleic acid tails in vegetable oil to their conjugated linoleic acid (CIA) isomers. CIA-enriched oils are useful as renewable feedstock for the chemical industry and as nutraceutical. Up to now, a solvent-free process for conjugated oils without significant formation of undesired hydrogenation products was not existing. This work shows the design of Ru/USY catalysts able to directly conjugate highly unsaturated vegetable oils such as safflower oil in absence of solvent and hydrogen. Key is fast molecular transport of the bulky reagent and reactive product triglycerides in the zeolite crystal. A two-step zeolite post-synthetic treatment (with NH4OH and acetate salt) was applied to create the necessary mesoporosity. More open zeolite structures allow for a faster conjugation reaction, while securing a fast removal of the reactive conjugated triglycerides, otherwise rapidly deactivating through fouling and pore blockage by polymers. The best Ru/USY catalyst in this contribution is capable of producing exceptionally high yields of conjugated oils, containing up to almost 30 wt% conjugated fatty acid tails in safflower oil, at an initial production rate of 328 g(CLA) mL(-1) h(-1) per gram metal catalyst. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000384865600021 Publication Date 2016-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-860x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.339 Times cited 1 Open Access  
  Notes (up) Approved Most recent IF: 4.339  
  Call Number UA @ lucian @ c:irua:137242 Serial 4383  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Toniato, E.; Gombac, V.; Sada, C.; Turner, S.; Van Tendeloo, G.; Fornasiero, P.; pdf  doi
openurl 
  Title Iron-titanium oxide nanocomposites functionalized with gold particles : from design to solar hydrogen production Type A1 Journal article
  Year 2016 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 3 Issue 3 Pages 1600348  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hematite-titania nanocomposites, eventually functionalized with gold nanoparticles (NPs), are designed and developed by a plasma-assisted strategy, consisting in: (i) the plasma enhanced-chemical vapor deposition of -Fe2O3 on fluorine-doped tin oxide substrates; the radio frequency-sputtering of (ii) TiO2, and (iii) Au in controlled amounts. A detailed chemicophysical characterization, carried out through a multitechnique approach, reveals that the target materials are composed by interwoven -Fe2O3 dendritic structures, possessing a high porosity and active area. TiO2 introduction results in the formation of an ultrathin titania layer uniformly covering Fe2O3, whereas Au sputtering yields a homogeneous dispersion of low-sized gold NPs. Due to the intimate and tailored interaction between the single constituents and their optical properties, the resulting composite materials are successfully exploited for solar-driven applications. In particular, promising photocatalytic performances in H-2 production by reforming of water-ethanol solutions under simulated solar illumination are obtained. The related insights, presented and discussed in this work, can yield useful guidelines to boost the performances of nanostructured photocatalysts for energy-related applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383783200021 Publication Date 2016-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 15 Open Access  
  Notes (up) Approved Most recent IF: 4.279  
  Call Number UA @ lucian @ c:irua:137154 Serial 4389  
Permanent link to this record
 

 
Author Naik, P.V.; Wee, L.H.; Meledina, M.; Turner, S.; Li, Y.; Van Tendeloo, G.; Martens, J.A.; Vankelecom, I.F.J. pdf  doi
openurl 
  Title PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation Type A1 Journal article
  Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 4 Issue 4 Pages 12790-12798  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The design of functional micro- and mesostructured composite materials is significantly important for separation processes. Mesoporous silica is an attractive material for fast diffusion, while microporous zeolitic imidazolate frameworks (ZIFs) are beneficial for selective adsorption and diffusion. In this work, ZIF-71 and ZIF-8 nanocrystals were grown on the surface of mesoporous silica spheres (MSS) via the seeding and regrowth approach in order to obtain monodispersed MSS-ZIF-71 and MSS-ZIF-8 spheres with a particle size of 2-3 mm. These MSS-ZIF spheres were uniformly dispersed into a polydimethylsiloxane (PDMS) matrix to prepare mixed matrix membranes (MMMs). These MMMs were evaluated for the separation of ethanol from water via pervaporation. The pervaporation results reveal that the MSS-ZIF filled MMMs substantially improve the ethanol recovery in both aspects viz. flux and separation factor. These MMMs outperforms the unfilled PDMS membranes and the conventional carbon and zeolite filled MMMs. As expected, the mesoporous silica core allows very fast flow of the permeating compound, while the hydrophobic ZIF coating enhances the ethanol selectivity through its specific pore structure, hydrophobicity and surface chemistry. It can be seen that ZIF-8 mainly has a positive impact on the selectivity, while ZIF-71 enhances fluxes more significantly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000382015100012 Publication Date 2016-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 26 Open Access  
  Notes (up) Approved Most recent IF: 8.867  
  Call Number UA @ lucian @ c:irua:137188 Serial 4395  
Permanent link to this record
 

 
Author Van Havenbergh, K.; Turner, S.; Marx, N.; Van Tendeloo, G. pdf  doi
openurl 
  Title The mechanical behavior during (de)lithiation of coated silicon nanoparticles as anode material for lithium-ion batteries studied by InSitu transmission electron microscopy Type A1 Journal article
  Year 2016 Publication Energy technology Abbreviated Journal Energy Technol-Ger  
  Volume 4 Issue 4 Pages 1005-1012  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract One approach to cope with the continuous irreversible capacity loss in Si-based electrodes, attributed to lithiation-induced volume changes and the formation of a solid-electrolyte interface (SEI), is by coating silicon nanoparticles. A coating can improve the conductivity of the electrode, form a chemical shield against the electrolyte, or provide mechanical confinement to reduce the volume increase. The influence of such a coating on the mechanical behavior of silicon nanoparticles during Li insertion and Li extraction was investigated by insitu transmission electron microscopy. The type of coating was shown to influence the size of the unreacted core that remains after reaction of silicon with lithium. Furthermore, two mechanisms to relieve the stress generated during volume expansion are reported: the initiation of cracks and the formation of nanovoids. Both result in a full reaction of the silicon nanoparticles, whereas with the formation of cracks, additional surface area is created, on which an SEI can be formed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382549500012 Publication Date 2016-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-4296; 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.789 Times cited 6 Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:137167 Serial 4406  
Permanent link to this record
 

 
Author Folens, K.; Leus, K.; Nicomel, N.R.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P. pdf  doi
openurl 
  Title Fe3O4@MIL-101-A selective and regenerable adsorbent for the removal of as species from water Type A1 Journal article
  Year 2016 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume 2016 Issue 2016 Pages 4395-4401  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The chromium-based metal organic framework MIL-101(Cr) served as a host for the in situ synthesis of Fe3O4 nano particles. This hybrid nanomaterial was tested as an adsorbent for arsenite and arsenate species in groundwater and surface water and showed excellent affinity towards As-III and As-V species. The adsorption capacities of 121.5 and 80.0 mg g(-1) for arsenite and arsenate species, respectively, are unprecedented. The presence of Ca2+, Mg2+, and phosphate ions and natural organic matter does not affect the removal efficiency or the selectivity. The structural integrity of the hybrid nanomaterial was maintained during the adsorption process and even after desorption through phosphate elution. Additionally, no significant leaching of Cr or Fe species was observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000386166900019 Publication Date 2016-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 27 Open Access  
  Notes (up) Approved Most recent IF: 2.444  
  Call Number UA @ lucian @ c:irua:139220 Serial 4442  
Permanent link to this record
 

 
Author Hoang, D.-Q.; Korneychuk, S.; Sankaran, K.J.; Pobedinskas, P.; Drijkoningen, S.; Turner, S.; Van Bael, M.K.; Verbeeck, J.; Nicley, S.S.; Haenen, K. pdf  doi
openurl 
  Title Direct nucleation of hexagonal boron nitride on diamond : crystalline properties of hBN nanowalls Type A1 Journal article
  Year 2017 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 127 Issue Pages 17-24  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Hexagonal boron nitride (hBN) nanowalls were deposited by unbalanced radio frequency sputtering on (100)-oriented silicon, nanocrystalline diamond films, and amorphous silicon nitride (Si3N4) membranes. The hBN nanowall structures were found to grow vertically with respect to the surface of all of the substrates. To provide further insight into the nucleation phase and possible lattice distortion of the deposited films, the structural properties of the different interfaces were characterized by transmission electron microscopy. For Si and Si3N4 substrates, turbostratic and amorphous BN phases form a clear transition zone between the substrate and the actual hBN phase of the bulk nanowalls. However, surprisingly, the presence of these phases was suppressed at the interface with a nanocrystalline diamond film, leading to a direct coupling of hBN with the diamond surface, independent of the vertical orientation of the diamond grain. To explain these observations, a growth mechanism is proposed in which the hydrogen terminated surface of the nanocrystalline diamond film leads to a rapid formation of the hBN phase during the initial stages of growth, contrary to the case of Si and Si3N4 substrates. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 5.301  
  Call Number UA @ lucian @ c:irua:142398 Serial 4645  
Permanent link to this record
 

 
Author Hoang, D.-Q.; Pobedinskas, P.; Nicley, S.S.; Turner, S.; Janssens, S.D.; Van Bael, M.K.; D'Haen, J.; Haenen, K. url  doi
openurl 
  Title Elucidation of the Growth Mechanism of Sputtered 2D Hexagonal Boron Nitride Nanowalls Type A1 Journal article
  Year 2016 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 16 Issue 7 Pages 3699-3708  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hexagonal boron nitride nanowall thin films were deposited on Si(100) substrates using a Ar(51%)/N-2(44%)/H-2(5%) gas mixture by unbalanced radio frequency sputtering. The effects of various target-to-substrate distances, substrate temperatures, and substrate tilting angles were investigated. When the substrate is close to the target, hydrogen etching plays a significant role in the film growth, while the effect is negligible for films deposited at a farther distance. The relative quantity of defects was measured by a non-destructive infrared spectroscopy technique that characterized the hydrogen incorporation at dangling nitrogen bonds at defect sites in the deposited films. Despite the films deposited at different substrate tilting angles, the nanowalls of those films were found to consistently grow vertical to the substrate surface, independent of the tilting angle. This implies that chemical processes, rather than physical ones, govern the growth of the nanowalls. The results also reveal that the degree of nanowall crystallization is tunable by varying the growth parameters. Finally, evidence of hydrogen desorption during vacuum annealing is given based on measurements of infrared stretching (E-1u) and bending (A(2u)) modes of the optical phonons, and the H-N vibration mode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379456700020 Publication Date 2016-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 8 Open Access  
  Notes (up) Approved Most recent IF: 4.055  
  Call Number UA @ lucian @ c:irua:144690 Serial 4652  
Permanent link to this record
 

 
Author Shestakov, M.V.; Meledina, M.; Turner, S.; Baekelant, W.; Verellen, N.; Chen, X.; Hofkens, J.; Van Tendeloo, G.; Moshchalkov, V.V. doi  openurl
  Title Luminescence of fixed site Ag nanoclusters in a simple oxyfluoride glass host and plasmon absorption of amorphous Ag nanoparticles in a complex oxyfluoride glass host Type P1 Proceeding
  Year 2015 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – 8th International Conference on Photonics, Devices, and System VI, AUG 27-29, 2014, Prague, CZECH REPUBLIC Abbreviated Journal  
  Volume Issue Pages Unsp 94501n  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract Ag nanocluster-doped glasses have been prepared by a conventional melt-quenching method. The effect of melt temperature and dwell time on the formation of Ag nanoclusters and Ag nanoparticles in simple host oxyfluoride glasses has been studied. The increase of melt temperature and dwell time results in the dissolution of Ag nanoparticles and substantial red-shift of absorption and photoluminescence spectra of the prepared glasses. The quantum yield of the glasses is similar to 5% and does not depend on melt temperature and dwell time. The prepared glasses may be used as red phosphors or down-conversion layers for solar-cells.  
  Address  
  Corporate Author Thesis  
  Publisher Spie-int soc optical engineering Place of Publication Bellingham Editor  
  Language Wos 000349404500057 Publication Date 2015-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 9450 Series Issue Edition  
  ISSN 978-1-62841-566-7 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:144783 Serial 4668  
Permanent link to this record
 

 
Author Shen, Y.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.; Song, X.; Yu, X.; Wang, Q.; Chen, H.; Dayeh, S.A.; Wu, T. doi  openurl
  Title Size-Induced Switching of Nanowire Growth Direction: a New Approach Toward Kinked Nanostructures Type A1 Journal article
  Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 26 Issue 21 Pages 3687-3695  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Exploring self-assembled nanostructures with controllable architectures has been a central theme in nanoscience and nanotechnology because of the tantalizing perspective of directly integrating such bottom-up nanostructures into functional devices. Here, the growth of kinked single-crystal In2O3 nanostructures consisting of a nanocone base and a nanowire tip with an epitaxial and defect-free transition is demonstrated for the first time. By tailoring the growth conditions, a reliable switching of the growth direction from [111] to [110] or [112] is observed when the Au catalyst nanoparticles at the apexes of the nanocones shrink below approximate to 100 nm. The natural formation of kinked nanoarchitectures at constant growth pressures is related to the size-dependent free energy that changes for different orientations of the nanowires. The results suggest that the mechanism of forming such kinked nanocone-nanowire nanostructures in well-controlled growth environment may be universal for a wide range of functional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000377597400014 Publication Date 2016-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 2 Open Access  
  Notes (up) Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:144705 Serial 4687  
Permanent link to this record
 

 
Author Sun, M.-H.; Zhou, J.; Hu, Z.-Y.; Chen, L.-H.; Li, L.-Y.; Wang, Y.-D.; Xie, Z.-K.; Turner, S.; Van Tendeloo, G.; Hasan, T.; Su, B.-L. pdf  url
doi  openurl
  Title Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency Type A1 Journal article
  Year 2020 Publication Matter Abbreviated Journal  
  Volume 3 Issue 4 Pages 1226-1245  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract As a size- and shape-selective catalyst, zeolites are widely used in petroleum and fine-chemicals processing. However, their small micropores severely hinder molecular diffusion and are sensitive to coke formation. Hierarchically porous zeolite single crystals with fully interconnected, ordered, and tunable multimodal porosity at macro-, meso-, and microlength scale, like in leaves, offer the ideal solution. However, their synthesis remains highly challenging. Here, we report a versatile confined zeolite crystallization process to achieve these superior properties. Such zeolite single crystals lead to significantly improved mass transport properties by shortening the diffusion length while maintaining shape-selective properties, endowing them with a high efficiency of zeolite crystals, enhanced catalytic activities and lifetime, highly reduced coke formation, and reduced deactivation rate in bulky-molecule reactions and methanol-to-olefins process. Their industrial utilization can lead to the design of innovative and intensified reactors and processes with highly enhanced efficiency and minimum energy consumption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000581132600021 Publication Date 2020-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174329 Serial 6727  
Permanent link to this record
 

 
Author Dubrovinskaia, N.; Dubrovinsky, L.; Solopova, N.A.; Abakumov, A.; Turner, S.; Hanfland, M.; Bykova, E.; Bykov, M.; Prescher, C.; Prakapenka, V.B.; Petitgirard, S.; Chuvashova, I.; Gasharova, B.; Mathis, Y.-L.; Ershov, P.; Snigireva, I.; Snigirev, A. url  doi
openurl 
  Title Terapascal static pressure generation with ultrahigh yield strength nanodiamond Type A1 Journal article
  Year 2016 Publication Science Advances Abbreviated Journal  
  Volume 2 Issue 7 Pages e1600341-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (similar to 460 GPa at a confining pressure of similar to 70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000381805300029 Publication Date 2016-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes (up) Approved no  
  Call Number UA @ admin @ c:irua:190527 Serial 8647  
Permanent link to this record
 

 
Author Shen, Y.; Turner, S.; Yang, P.; Van Tendeloo, G.; Lebedev, O.I.; Wu, T. pdf  url
doi  openurl
  Title Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 8 Pages 4342-4351  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Controlling the morphology of nanowires in bottom-up synthesis and assembling them on planar substrates is of tremendous importance for device applications in electronics, photonics, sensing and energy conversion. To date, however, there remain challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia (YSZ) substrates via the epitaxy-assisted vaporliquidsolid (VLS) mechanism, by simply regulating the growth conditions, in particular the growth temperature. This robust control on nanowire orientation is facilitated by the small lattice mismatch of 1.6% between ITO and YSZ. Further control of the orientation, symmetry and shape of the nanowires can be achieved by using YSZ substrates with (110) and (111), in addition to (100) surfaces. Based on these insights, we succeed in growing regular arrays of planar ITO nanowires from patterned catalyst nanoparticles. Overall, our discovery of unprecedented orientation control in ITO nanowires advances the general VLS synthesis, providing a robust epitaxy-based approach toward rational synthesis of nanowires.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000340446200022 Publication Date 2014-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 33 Open Access  
  Notes (up) European Union Seventh Framework Programme under Grant 312483 – ESTEEM; FWOl; esteem2_ta Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:118622 Serial 1075  
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yucelen, E.; Verbeeck, J.; Van Tendeloo, G. url  doi
openurl 
  Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy : reply Type Editorial
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 108 Issue 25 Pages 259702  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305568700038 Publication Date 2012-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.462 Times cited Open Access  
  Notes (up) Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ admin @ c:irua:100293 Serial 5370  
Permanent link to this record
 

 
Author Ekimov, E.A.; Kudryavtsev, O.S.; Turner, S.; Korneychuk, S.; Sirotinkin, V.P.; Dolenko, T.A.; Vervald, A.M.; Vlasov, I.I. pdf  doi
openurl 
  Title The effect of molecular structure of organic compound on the direct high-pressure synthesis of boron-doped nanodiamond: Effect of organic compound on synthesis of boron-doped nanodiamond Type A1 Journal article
  Year 2016 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 213 Issue 213 Pages 2582-2589  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Evolution of crystalline phases with temperature has been studied in materials produced by high-pressure high-temperature treatment of 9-borabicyclo[3.3.1]nonane dimer (9BBN), triphenylborane and trimesitylborane. The boron-doped diamond nanoparticles with a size below 10 nm were obtained at 8–9 GPa and temperatures 970–1250 °C from 9BBN only. Bridged structure and the presence of boron atom in the carbon cycle of 9BBN were revealed to be a key point for the direct synthesis of doped diamond nanocrystals. The diffusional transformation of the disordered carbon phase is suggested to be the main mechanism of the nanodiamond formation from 9BBN in the temperature range of 970–1400 °C. Aqueous suspensions of primary boron-doped diamond nanocrystals were prepared upon removal of non-diamond phases that opens wide opportunities for application of this new nanomaterial in electronics and biotechnologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388321500006 Publication Date 2016-07-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 8 Open Access  
  Notes (up) Approved Most recent IF: 1.775  
  Call Number EMAT @ emat @ c:irua:135175 Serial 4120  
Permanent link to this record
 

 
Author Warwick, M.E.A.; Kaunisto, K.; Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Sada, C.; Ruoko, T.P.; Turner, S.; Van Tendeloo, G.; pdf  doi
openurl 
  Title Vapor phase processing of \alpha-Fe2O3 photoelectrodes for water splitting : an insight into the structure/property interplay Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 7 Issue 7 Pages 8667-8676  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Harvesting radiant energy to trigger water photoelectrolysis and produce clean hydrogen is receiving increasing attention in the search of alternative energy resources. In this regard, hematite (alpha-Fe2O3) nanostructures with controlled nano-organization have been fabricated and investigated for use as anodes in photoelectrochemical (PEC) cells. The target systems have been grown on conductive substrates by plasma enhanced-chemical vapor deposition (PE-CVD) and subjected to eventual ex situ annealing in air to further tailor their structure and properties. A detailed multitechnique approach has enabled to elucidate between system characteristics and the generated photocurrent. The present alpha-Fe2O3 systems are characterized by a high purity and hierarchical morphologies consisting of nanopyramids/organized dendrites, offering a high contact area with the electrolyte. PEC data reveal a dramatic response enhancement upon thermal treatment, related to a more efficient electron transfer. The reasons underlying such a phenomenon are elucidated and discussed by transient absorption spectroscopy (TAS) studies of photogenerated charge carrier kinetics, investigated on different time scales for the first time on PE-CVD Fe2O3 nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353931300037 Publication Date 2015-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 51 Open Access  
  Notes (up) 246791 Countatoms; Fwo Approved Most recent IF: 7.504; 2015 IF: 6.723  
  Call Number c:irua:126059 Serial 3836  
Permanent link to this record
 

 
Author Filippousi, M.; Turner, S.; Katsikini, M.; Pinakidou, F.; Zamboulis, D.; Pavlidou, E.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Direct observation and structural characterization of natural and metal ion-exchanged HEU-type zeolites Type A1 Journal article
  Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 210 Issue 210 Pages 185-193  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The atomic structure of natural HEU-type zeolite and two ion-exchanged variants of the zeolite, Ag+ (Ag-HEU) and Zn2+ (Zn-HEU) ion exchanged HEU-type zeolites, are investigated using advanced transmission electron microscopy techniques in combination with X-ray powder diffraction and X-ray absorption fine structure measurements. In both ion-exchanged materials, loading of the natural HEU zeolite is confirmed. Using low-voltage, aberration-corrected transmission electron microscopy at low-dose conditions, the local crystal structure of natural HEU-type zeolite is determined and the interaction of the ion-exchanged natural zeolites with the Ag+ and Zn2+ ions is studied. In the case of Ag-HEU, the presence of Ag+ ions and clusters at extra-framework sites as well as Ag nanoparticles has been confirmed. The Ag nanoparticles are preferentially positioned at the zeolite surface. For Zn-HEU, no large Zn(O) nanopartides are present, instead, the HEU channels are evidenced to be decorated by small Zn(O) clusters. (c) 2015 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000353733300024 Publication Date 2015-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 5 Open Access  
  Notes (up) 246791 Countatoms; Iap-Pai; Fwo Approved Most recent IF: 3.615; 2015 IF: 3.453  
  Call Number c:irua:126006 Serial 715  
Permanent link to this record
 

 
Author Turner, S.; Shenderova, O.; da Pieve, F.; Lu, Y.-G.; Yücelen, E.; Verbeeck, J.; Lamoen, D.; Van Tendeloo, G. pdf  doi
openurl 
  Title Aberration-corrected microscopy and spectroscopy analysis of pristine, nitrogen containing detonation nanodiamond Type A1 Journal article
  Year 2013 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 210 Issue 10 Pages 1976-1984  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Aberration-corrected transmission electron microscopy, electron energy-loss spectroscopy, and density functional theory (DFT) calculations are used to solve several key questions about the surface structure, the particle morphology, and the distribution and nature of nitrogen impurities in detonation nanodiamond (DND) cleaned by a recently developed ozone treatment. All microscopy and spectroscopy measurements are performed at a lowered acceleration voltage (80/120kV), allowing prolonged and detailed experiments to be carried out while minimizing the risk of knock-on damage or surface graphitization of the nanodiamond. High-resolution TEM (HRTEM) demonstrates the stability of even the smallest nanodiamonds under electron illumination at low voltage and is used to image the surface structure of pristine DND. High resolution electron energy-loss spectroscopy (EELS) measurements on the fine structure of the carbon K-edge of nanodiamond demonstrate that the typical * pre-peak in fact consists of three sub-peaks that arise from the presence of, amongst others, minimal fullerene-like reconstructions at the nanoparticle surfaces and deviations from perfect sp(3) coordination at defects in the nanodiamonds. Spatially resolved EELS experiments evidence the presence of nitrogen within the core of DND particles. The nitrogen is present throughout the whole diamond core, and can be enriched at defect regions. By comparing the fine structure of the experimental nitrogen K-edge with calculated energy-loss near-edge structure (ELNES) spectra from DFT, the embedded nitrogen is most likely related to small amounts of single substitutional and/or A-center nitrogen, combined with larger nitrogen clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000329299700025 Publication Date 2013-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 37 Open Access  
  Notes (up) 262348 ESMI; 246791 COUNTATOMS; FWO; Hercules; GOA XANES meets ELNES Approved Most recent IF: 1.775; 2013 IF: 1.525  
  Call Number UA @ lucian @ c:irua:110821UA @ admin @ c:irua:110821 Serial 41  
Permanent link to this record
 

 
Author Mei, B.; Wiktor, C.; Turner, S.; Pougin, A.; Van Tendeloo, G.; Fischer, R.A.; Muhler, M.; Strunk, J. pdf  doi
openurl 
  Title Evidence for metalsupport interactions in Au modified TiOx/SBA-15 materials prepared by photodeposition Type A1 Journal article
  Year 2013 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 3 Issue 12 Pages 3041-3049  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gold nanoparticles have been efficiently photodeposited onto titanate-loaded SBA-15 (Ti(x)/SBA-15) with different titania coordination. Transmission electron microscopy shows that relatively large Au nanoparticles are photodeposited on the outer surface of the Ti(x)/SBA-15 materials and that TiOx tends to form agglomerates in close proximity to the Au nanoparticles, often forming coreshell Au/TiOx structures. This behavior resembles typical processes observed due to strong-metal support interactions. In the presence of gold, the formation of hydrogen on Ti(x)/SBA-15 during the photodeposition process and the performance in the hydroxylation of terephthalic acid is greatly enhanced. The activity of the Au/Ti(x)/SBA-15 materials is found to depend on the TiOx loading, increasing with a larger amount of initially isolated TiO4 tetrahedra. Samples with initially clustered TiOx species show lower photocatalytic activities. When isolated zinc oxide (ZnOx) species are present on Ti(x)/SBA-15, gold nanoparticles are smaller and well dispersed within the pores. Agglomeration of TiOx species and the formation of Au/TiOx structures is negligible. The dispersion of gold and the formation of Au/TiOx in the SBA-15 matrix seem to depend on the mobility of the TiOx species. The mobility is determined by the initial degree of agglomeration of TiOx. Effective hydrogen evolution requires Au/TiOx coreshell composites as in Au/Ti(x)/SBA-15, whereas hydroxylation of terephthalic acid can also be performed with Au/ZnOx/TiOx/SBA-15 materials. However, isolated TiOx species have to be grafted onto the support prior to the zinc oxide species, providing strong evidence for the necessity of TiOSi bridges for high photocatalytic activity in terephthalic acid hydroxylation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328231400044 Publication Date 2013-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435;2155-5435; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 22 Open Access  
  Notes (up) 262348 ESMI; FWO; 246791 COUNTATOMS; IAP-PAI; Hercules Approved Most recent IF: 10.614; 2013 IF: 7.572  
  Call Number UA @ lucian @ c:irua:112502 Serial 1094  
Permanent link to this record
 

 
Author Filippov, S.K.; Sedlacek, O.; Bogomolova, A.; Vetrik, M.; Jirak, D.; Kovar, J.; Kucka, J.; Bals, S.; Turner, S.; Stepanek, P.; Hruby, M.; pdf  doi
openurl 
  Title Glycogen as a biodegradable construction nanomaterial for in vivo use Type A1 Journal article
  Year 2012 Publication Macromolecular bioscience Abbreviated Journal Macromol Biosci  
  Volume 12 Issue 12 Pages 1731-1738  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is demonstrated that glycogen as a biodegradable and inexpensive material coming from renewable resources can be used as a carrier for the construction of in vivo imaging nanoagents. The model system considered is composed of glycogen modified with gadolinium and fluorescent labels. Systematic studies of properties of these nanocarriers by a variety of physical methods and results of in vivo tests of biodegradability are reported. This represents, to the authors' best knowledge, the first such use of glycogen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000312242600016 Publication Date 2012-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-5187; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.238 Times cited 22 Open Access  
  Notes (up) 262348 ESMI; FWO; Hercules Approved Most recent IF: 3.238; 2012 IF: 3.742  
  Call Number UA @ lucian @ c:irua:105286 Serial 1354  
Permanent link to this record
 

 
Author Bogomolova, A.; Hruby, M.; Panek, J.; Rabyk, M.; Turner, S.; Bals, S.; Steinhart, M.; Zhigunov, A.; Sedlacek, O.; Stepanek, P.; Filippov, S.K.; pdf  doi
openurl 
  Title Small-angle X-ray scattering and light scattering study of hybrid nanoparticles composed of thermoresponsive triblock copolymer F127 and thermoresponsive statistical polyoxazolines with hydrophobic moieties Type A1 Journal article
  Year 2013 Publication Journal of applied crystallography Abbreviated Journal J Appl Crystallogr  
  Volume 46 Issue 6 Pages 1690-1698  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A combination of new thermoresponsive statistical polyoxazolines, poly[(2-butyl-2-oxazoline)-stat-(2-isopropyl-2-oxazoline)] [pBuOx-co-piPrOx], with different hydrophobic moieties and F127 surfactant as a template system for the creation of thermosensitive nanoparticles for radionuclide delivery has recently been tested [Pánek, Filippov, Hrubý, Rabyk, Bogomolova, Kučka Stěpánek (2012). Macromol. Rapid Commun.33, 16831689]. It was shown that the presence of the thermosensitive F127 triblock copolymer in solution reduces nanoparticle size and polydispersity. This article focuses on a determination of the internal structure and solution properties of the nanoparticles in the temperature range from 288 to 312 K. Here, it is demonstrated that below the cloud point temperature (CPT) the polyoxazolines and F127 form complexes that co-exist in solution with single F127 molecules and large aggregates. When the temperature is raised above the CPT, nanoparticles composed of polyoxazolines and F127 are predominant in solution. These nanoparticles could be described by a spherical shell model. It was found that the molar weight and hydrophobicity of the polymer do not influence the size of the outer radius and only slightly change the inner radius of the nanoparticles. At the same time, molar weight and hydrophobicity did affect the process of nanoparticle formation. In conclusion, poly(2-oxazoline) molecules are fully incorporated inside of F127 micelles, and this result is very promising for the successful application of such systems in radionuclide delivery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000327070000020 Publication Date 2013-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8898; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 18 Open Access  
  Notes (up) 262348 Esmi; Fwo; Iap-Pai Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:112420 Serial 3042  
Permanent link to this record
 

 
Author Rehor, I.; Slegerova, J.; Kucka, J.; Proks, V.; Petrakova, V.; Adam, M.P.; Treussart, F.; Turner, S.; Bals, S.; Sacha, P.; Ledvina, M.; Wen, A.M.; Steinmetz, N.F.; Cigler, P.; pdf  doi
openurl 
  Title Fluorescent nanodiamonds embedded in biocompatible translucent shells Type A1 Journal article
  Year 2014 Publication Small Abbreviated Journal Small  
  Volume 10 Issue 6 Pages 1106-1115  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 1020-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000333538000012 Publication Date 2014-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 79 Open Access Not_Open_Access  
  Notes (up) 262348 ESMI; Hercules; FWO Approved Most recent IF: 8.643; 2014 IF: 8.368  
  Call Number UA @ lucian @ c:irua:115566 Serial 1234  
Permanent link to this record
 

 
Author Khaletskaya, K.; Turner, S.; Tu, M.; Wannapaiboon, S.; Schneemann, A.; Meyer, R.; Ludwig, A.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Self-directed localization of ZIF-8 thin film formation by conversion of ZnO nanolayers Type A1 Journal article
  Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 24 Issue 30 Pages 4804-4811  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Control of localized metal-organic framework (MOF) thin film formation is a challenge. Zeolitic imidazolate frameworks (ZIFs) are an important sub-class of MOFs based on transition metals and imidazolate linkers. Continuous coatings of intergrown ZIF crystals require high rates of heterogeneous nucleation. In this work, substrates coated with zinc oxide layers are used, obtained by atomic layer deposition (ALD) or by magnetron sputtering, to provide the Zn2+ ions required for nucleation and localized growth of ZIF-8 films ([Zn(mim)(2)]; Hmim = 2-methylimidazolate). The obtained ZIF-8 films reveal the expected microporosity, as deduced from methanol adsorption studies using an environmentally controlled quartz crystal microbalance (QCM) and comparison with bulk ZIF-8 reference data. The concept is transferable to other MOFs, and is applied to the formation of [Al(OH)(1,4-ndc)](n) (ndc = naphtalenedicarboxylate) thin films derived from Al2O3 nanolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000340549900010 Publication Date 2014-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 77 Open Access  
  Notes (up) 312483 Esteem2; Fwo; esteem2_ta Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:119215 Serial 2975  
Permanent link to this record
 

 
Author Goris, B.; Turner, S.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Three-dimensional valency mapping in ceria nanocrystals Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 10 Pages 10878-10884  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Using electron tomography combined with electron energy loss spectroscopy (EELS), we are able to map the valency of the Ce ions in CeO2-x nanocrystals in three dimensions. Our results show a clear facet-dependent reduction shell at the surface of ceria nanoparticles; {111} surface facets show a low surface reduction, whereas at {001} surface facets, the cerium ions are more likely to be reduced over a larger surface shell. Our generic tomographic technique allows a full 3D data cube to be reconstructed, containing an EELS spectrum in each voxel. This possibility enables a three-dimensional investigation of a plethora of material-specific physical properties such as valency, chemical composition, oxygen coordination, or bond lengths, triggering the synthesis of nanomaterials with improved properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343952600126 Publication Date 2014-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 85 Open Access OpenAccess  
  Notes (up) 335078 Colouratom; 246791 Countatoms; Fwo; 312483 Esteem2; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:121219 Serial 3656  
Permanent link to this record
 

 
Author Leus, K.; Folens, K.; Nicomel, N.R.; Perez, J.P.H.; Filippousi, M.; Meledina, M.; Dirtu, M.M.; Turner, S.; Van Tendeloo, G.; Garcia, Y.; Du Laing, G.; Van Der Voort, P. pdf  url
doi  openurl
  Title Removal of arsenic and mercury species from water by covalent triazine framework encapsulated \gamma-Fe2O3 nanoparticles Type A1 Journal article
  Year 2018 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater  
  Volume 353 Issue 353 Pages 312-319  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The covalent triazine framework, CTF-1, served as host material for the in situ synthesis of Fe2O3 nanoparticles. The composite material consisted of 20 +/- 2 m% iron, mainly in gamma-Fe2O3 phase. The resulting gamma-Fe2O3@CTF-1 was examined for the adsorption of As-III, As-V and H-II from synthetic solutions and real surface-, ground- and wastewater. The material shows excellent removal efficiencies, independent from the presence of Ca2+, Mg2+ or natural organic matter and only limited dependency on the presence of phosphate ions. Its adsorption capacity towards arsenite (198.0 mg g(-1)), arsenate (102.3 mg g(-1)) and divalent mercury (165.8 mg g(-1)) belongs amongst the best-known adsorbents, including many other iron-based materials. Regeneration of the adsorbent can be achieved for use over multiple cycles without a decrease in performance by elution at 70 degrees C with 0.1 M NaOH, followed by a stirring step in a 5 m% H2O2 solution for As or 0.1 M thiourea and 0.001 M HCl for Hg. In highly contaminated water (100 mu gL(-1)), the adsorbent polishes the water quality to well below the current WHO limits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000438002800035 Publication Date 2018-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.065 Times cited 22 Open Access OpenAccess  
  Notes (up) ; Karen Leus acknowledges financial support from Ghent University. Nina Ricci Nicomel and Jeffrey Paulo H. Perez thank the funding of the VLIR-UOS. Marinela M. Dirtu acknowledges F.R.S.-FNRS for a Charge de recherches position. Stuart Turner gratefully acknowledges the FWO Vlaanderen for a post-doctoral scholarship. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the Belgian IAP-PAI network. ; Approved Most recent IF: 6.065  
  Call Number UA @ lucian @ c:irua:152430 Serial 5124  
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Zhang, K.; Marleny Rodriguez-Albelo, L.; Masala, A.; Bordiga, S.; Jiang, J.; Navarro, J.A.R.; Kirschhock, C.E.A.; Martens, J.A. doi  openurl
  Title 1D-2D-3D Transformation Synthesis of Hierarchical Metal-Organic Framework Adsorbent for Multicomponent Alkane Separation Type A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 819-828  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new hierarchical MOF consisting of Cu(II) centers connected by benzene-tricarboxylates (BTC) is prepared by thermoinduced solid transformation of a dense CuBTC precursor phase. The mechanism of the material formation has been thoroughly elucidated and revealed a transformation of a ribbon-like 1D building unit into 2D layers and finally a 3D network. The new phase contains excess copper, charge compensated by systematic hydroxyl groups, which leads to an open microporous framework with tunable permanent mesoporosity. The new phase is particularly attractive for molecular separation. Energy consumption of adsorptive separation processes can be lowered by using adsorbents that discriminate molecules based on adsorption entropy rather than enthalpy differences. In separation of a 11-component mixture of C-1-C-6 alkanes, the hierarchical phase outperforms the structurally related microporous HKUST-1 as well as silicate-based hierarchical materials. Grand canonical Monte Carlo (GCMC) simulation provides microscopic insight into the structural host-guest interaction, confirming low adsorption enthalpies and significant entropic contributions to the molecular separation. The unique three-dimensional hierarchical structure as well as the systematic presence of Cu(II) unsaturated coordination sites cause this exceptional behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000392459300041 Publication Date 2016-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 33 Open Access Not_Open_Access  
  Notes (up) ; L.H.W. and S.T. thank Research Foundation Flanders (FWO) for a postdoctoral research fellowship under contract numbers 12M1415N and G004613N, respectively. J.J. is grateful to the National University of Singapore for financial supports (R261-508-001-646/733 and R-279-000-474-112). J.A.R.N. acknowledges generous funding from Spanish Ministry of Economy (CTQ2014-53486-R) and FEDER and Marie Curie IIF-625939 (L.M.R.A) funding from European Union. J.A.M. gratefully acknowledges financial support from Flemish Government (Long-term structural funding Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). We thank E. Gobechiya for XRD measurements. We would like to acknowledge Matthias Thommes for the discussion on the interpretation of N<INF>2</INF> physisorption isotherms. ; Approved Most recent IF: 13.858  
  Call Number UA @ lucian @ c:irua:141513 c:irua:141513 c:irua:141513 c:irua:141513 Serial 4492  
Permanent link to this record
 

 
Author Drijkoningen, S.; Pobedinskas, P.; Korneychuk, S.; Momot, A.; Balasubramaniam, Y.; Van Bael, M.K.; Turner, S.; Verbeeck, J.; Nesladekt, M.; Haenen, K. doi  openurl
  Title On the Origin of Diamond Plates Deposited at Low Temperature Type A1 Journal article
  Year 2017 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 17 Issue 8 Pages 4306-4314  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crucial requirement for diamond growth at low temperatures, enabling a wide range of new applications, is a high plasma density at a low gas pressure, which leads to a low thermal load onto sensitive substrate materials. While these conditions are not within reach for resonance cavity plasma systems, linear antenna microwave delivery systems allow the deposition of high quality diamond films at temperatures around 400 degrees C and at pressures below 1 mbar. In this work the codeposition of high quality plates and octahedral diamond grains in nanocrystalline films is reported. In contrast to previous reports claiming the need for high temperatures (T >= 850 degrees C), low temperatures (320 degrees C <= T <= 410 degrees C) were sufficient to deposit diamond plate structures. Cross-sectional high resolution transmission electron microscopy studies show that these plates are faulty cubic diamond terminated by large {111} surface facets with very little sp(2) bonded carbon in the grain boundaries. Raman and electron energy loss spectroscopy studies confirm a high diamond quality, above 93% sp(3) carbon content. Three potential mechanisms, that can account for the initial development of the observed plates rich with stacking faults, and are based on the presence of impurities, are proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000407089600031 Publication Date 2017-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 23 Open Access Not_Open_Access  
  Notes (up) ; The Research Foundation – Flanders (FWO) is gratefully acknowledged for financial support in the form of the Postdoctoral Fellowships of P.P. and S.T., contract G.0044.13N “Charge ordering” (S.K., J.V.), the Methusalem “Nano” network, and the Hercules-linear antenna and Raman equipment. ; Approved Most recent IF: 4.055  
  Call Number UA @ lucian @ c:irua:145735UA @ admin @ c:irua:145735 Serial 4746  
Permanent link to this record
 

 
Author Roesler, C.; Dissegna, S.; Rechac, V.L.; Kauer, M.; Guo, P.; Turner, S.; Ollegott, K.; Kobayashi, H.; Yamamoto, T.; Peeters, D.; Wang, Y.; Matsumura, S.; Van Tendeloo, G.; Kitagawa, H.; Muhler, M.; Llabres i Xamena, F.X.; Fischer, R.A. pdf  doi
openurl 
  Title Encapsulation of bimetallic metal nanoparticles into robust zirconium-based metal-organic frameworks : evaluation of the catalytic potential for size-selective hydrogenation Type A1 Journal article
  Year 2017 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 23 Issue 15 Pages 3583-3594  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The realization of metal nanoparticles (NPs) with bimetallic character and distinct composition for specific catalytic applications is an intensively studied field. Due to the synergy between metals, most bimetallic particles exhibit unique properties that are hardly provided by the individual monometallic counterparts. However, as small-sized NPs possess high surface energy, agglomeration during catalytic reactions is favored. Sufficient stabilization can be achieved by confinement of NPs in porous support materials. In this sense, metal-organic frameworks (MOFs) in particular have gained a lot of attention during the last years; however, encapsulation of bimetallic species remains challenging. Herein, the exclusive embedding of preformed core-shell PdPt and RuPt NPs into chemically robust Zr-based MOFs is presented. Microstructural characterization manifests partial retention of the core-shell systems after successful encapsulation without harming the crystallinity of the microporous support. The resulting chemically robust NP@UiO-66 materials exhibit enhanced catalytic activity towards the liquid-phase hydrogenation of nitrobenzene, competitive with commercially used Pt on activated carbon, but with superior size-selectivity for sterically varied substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000397502900010 Publication Date 2016-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 13 Open Access Not_Open_Access  
  Notes (up) ; This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (DFG). ; Approved Most recent IF: 5.317  
  Call Number UA @ lucian @ c:irua:142485 Serial 4653  
Permanent link to this record
 

 
Author Turner, S.; Verbeeck, J.; Ramezanipour, F.; Greedan, J.E.; Van Tendeloo, G.; Botton, G.A. pdf  doi
openurl 
  Title Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 10 Pages 1904-1909  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using a combination of high-angle annular dark field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy at high energy resolution in an aberration-corrected electron microscope, we demonstrate the capability of coordination mapping in complex oxides. Brownmillerite compound Ca2FeCoO5, consisting of repetitive octahedral and tetrahedral coordination layers with Fe and Co in a fixed 3+ valency, is selected to demonstrate the principle of atomic resolution coordination mapping. Analysis of the Co-L2,3 and the Fe-L2,3 edges shows small variations in the fine structure that can be specifically attributed to Co/Fe in tetrahedral or in octahedral coordination. Using internal reference spectra, we show that the coordination of the Fe and Co atoms in the compound can be mapped at atomic resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000304237500024 Publication Date 2012-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 33 Open Access  
  Notes (up) A.M. Abakumov is thanked for fruitful discussions. S.T. gratefully acknowledges the Fund for Scientific Research Flanders (FWO). J.E.G. and GAB. acknowledge the support of the NSERC of Canada through Discovery Grants. The Canadian Centre for Electron Microscopy is a National Facility supported by NSERC and McMaster University and was funded by the Canada Foundation for Innovation and the Ontario Government. Part of this work was supported by funding from the European Research Council under the FP7, ERC Grant N 246791 COUNTATOMS and ERC Starting Grant N 278510 VORTEX. The EMAT microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:98379UA @ admin @ c:irua:98379 Serial 175  
Permanent link to this record
 

 
Author Callini, E.; Aguey-Zinsou, K.F.; Ahuja, R.; Ares, J.R.; Bals, S.; Biliškov, N.; Chakraborty, S.; Charalambopoulou, G.; Chaudhary, A.L.; Cuevas, F.; Dam, B.; de Jongh, P.; Dornheim, M.; Filinchuk, Y.; Grbović Novaković, J.; Hirscher, M.; Jensen, T.R.; Jensen, P.B.; Novaković, N.; Lai, Q.; Leardini, F.; Gattia, D.M.; Pasquini, L.; Steriotis, T.; Turner, S.; Vegge, T.; Züttel, A.; Montone, A. doi  openurl
  Title Nanostructured materials for solid-state hydrogen storage : a review of the achievement of COST Action MP1103 Type A1 Journal article
  Year 2016 Publication International journal of hydrogen energy T2 – E-MRS Fall Meeting / Symposium C on Hydrogen Storage in Solids -, Materials, Systems and Aplication Trends, SEP 15-18, 2015, Warsaw, POLAND Abbreviated Journal Int J Hydrogen Energ  
  Volume 41 Issue 41 Pages 14404-14428  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated network capable to define new and unexplored ways for Solid State Hydrogen Storage by innovative and interdisciplinary research within the European Research Area. An important number of new compounds have been synthesized: metal hydrides, complex hydrides, metal halide ammines and amidoboranes. Tuning the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out in these studies. Computational screening methods allowed the prediction of suitable compounds for hydrogen storage and the modeling of the hydrogen sorption reactions on mono-, bi-, and three-dimensional systems. This manuscript presents a review of the main achievements of this Action. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Pergamon-elsevier science ltd Place of Publication Oxford Editor  
  Language Wos 000381950800051 Publication Date 2016-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.582 Times cited 89 Open Access Not_Open_Access  
  Notes (up) All the authors greatly thank the COST Action MP1103 for financial support. Approved Most recent IF: 3.582  
  Call Number UA @ lucian @ c:irua:135723 Serial 4307  
Permanent link to this record
 

 
Author Batuk, M.; Turner, S.; Abakumov, A.M.; Batuk, D.; Hadermann, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 53 Issue 4 Pages 2171-2180  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Crystallographic shear (CS) planes provide a new structure-generation mechanism in the anion-deficient perovskites containing lone-pair cations. Pb2Sr2Bi2Fe6O16, a new n = 6 representative of the AnBnO3n2 homologous series of the perovskite-based ferrites with the CS structure, has been synthesized using the solid-state technique. The structure is built of perovskite blocks with a thickness of four FeO6 octahedra spaced by double columns of FeO5 edge-sharing distorted tetragonal pyramids, forming 1/2[110](101)p CS planes (space group Pnma, a = 5.6690(2) Å, b = 3.9108(1) Å, c = 32.643(1) Å). Pb2Sr2Bi2Fe6O16 features a wealth of microstructural phenomena caused by the flexibility of the CS planes due to the variable ratio and length of the constituting fragments with {101}p and {001}p orientation. This leads to the formation of waves, hairpins, Γ-shaped defects, and inclusions of the hitherto unknown layered anion-deficient perovskites Bi2(Sr,Pb)Fe3O8.5 and Bi3(Sr,Pb)Fe4O11.5. Using a combination of diffraction, imaging, and spectroscopic transmission electron microscopy techniques this complex microstructure was fully characterized, including direct determination of positions, chemical composition, and coordination number of individual atomic species. The complex defect structure makes these perovskites particularly similar to the CS structures in ReO3-type oxides. The flexibility of the CS planes appears to be a specific feature of the Sr-based system, related to the geometric match between the SrO perovskite layers and the {100}p segments of the CS planes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000332144100039 Publication Date 2014-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes (up) Countatoms; FWO Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:113507 Serial 198  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: