|   | 
Details
   web
Records
Author Gasparotto, A.; Maccato, C.; Carraro, G.; Sada, C.; Štangar, U.L.; Alessi, B.; Rocks, C.; Mariotti, D.; La Porta, A.; Altantzis, T.; Barreca, D.
Title Surface Functionalization of Grown-on-Tip ZnO Nanopyramids: From Fabrication to Light-Triggered Applications Type A1 Journal Article
Year 2019 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 11 Issue 17 Pages 15881-15890
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract We report on a combined chemical vapor deposition (CVD)/radio frequency (RF) sputtering synthetic strategy for the controlled surface modification of ZnO nanostructures by Ti-containing species. Specifically, the proposed approach consists in the CVD of grown-on-tip ZnO nanopyramids, followed by titanium RF sputtering under mild conditions. The results obtained by a thorough characterization demonstrate the successful ZnO surface functionalization with dispersed Ti-containing species in low amounts. This phenomenon, in turn, yields a remarkable enhancement of photoactivated superhydrophilic behavior, self-cleaning ability, and photocatalytic performances in comparison to bare ZnO. The reasons accounting for such an improvement are unravelled by a multitechnique analysis, elucidating the interplay between material chemico-physical properties and the corresponding functional behavior. Overall, the proposed strategy stands as an amenable tool for the mastering of semiconductor-based functional nanoarchitectures through ad hoc engineering of the system surface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000466988800078 Publication Date 2019-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links
Impact Factor 7.504 Times cited 1 Open Access Not_Open_Access
Notes (down) The research leading to these results has received financial support from Padova University ACTION postdoc fellowship, DOR 2016-2018, P-DiSC #03BIRD2016-UNIPD projects, and HERALD COST Action MP1402-37831. The support from EPSRC (awards EP/R008841/1 and EP/M024938/1) as well as from the Slovenian Research Agency (research core funding No. P1-0134) is also recognized. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). The authors are grateful to Dr. Sebastiano Pianta (Department of Chemical Sciences, Padova University, Italy) for experimental assistance. Approved Most recent IF: 7.504
Call Number EMAT @ emat @ Serial 5185
Permanent link to this record
 

 
Author Biscop,; Lin,; Boxem,; Loenhout,; Backer,; Deben,; Dewilde,; Smits,; Bogaerts,
Title Influence of Cell Type and Culture Medium on Determining Cancer Selectivity of Cold Atmospheric Plasma Treatment Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal Cancers
Volume 11 Issue 9 Pages 1287
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Increasing the selectivity of cancer treatments is attractive, as it has the potential to reduce side-effects of therapy. Cold atmospheric plasma (CAP) is a novel cancer treatment that disrupts the intracellular oxidative balance. Several reports claim CAP treatment to be selective, but retrospective analysis of these studies revealed discrepancies in several biological factors and culturing methods. Before CAP can be conclusively stated as a selective cancer treatment, the importance of these factors must be investigated. In this study, we evaluated the influence of the cell type, cancer type, and cell culture medium on direct and indirect CAP treatment. Comparison of cancerous cells with their non-cancerous counterparts was performed under standardized conditions to determine selectivity of treatment. Analysis of seven human cell lines (cancerous: A549, U87, A375, and Malme-3M; non-cancerous: BEAS-2B, HA, and HEMa) and five different cell culture media (DMEM, RPMI1640, AM, BEGM, and DCBM) revealed that the tested parameters strongly influence indirect CAP treatment, while direct treatment was less affected. Taken together, the results of our study demonstrate that cell type, cancer type, and culturing medium must be taken into account before selectivity of CAP treatment can be claimed and overlooking these parameters can easily result in inaccurate conclusions of selectivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000489719000072 Publication Date 2019-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access
Notes (down) the Research Foundation Flanders, 12S9218N – ; Universiteit Antwerpen, – ; Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:162097 Serial 5360
Permanent link to this record
 

 
Author Prabhakara, V.; Jannis, D.; Béché, A.; Bender, H.; Verbeeck, J.
Title Strain measurement in semiconductor FinFET devices using a novel moiré demodulation technique Type A1 Journal article
Year 2019 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Moiré fringes are used throughout a wide variety of applications in physics and

engineering to bring out small variations in an underlying lattice by comparing with another reference lattice. This method was recently demonstrated in Scanning Transmission Electron Microscopy imaging to provide local strain measurement in crystals by comparing the crystal lattice with the scanning raster that then serves as the reference. The images obtained in this way contain a beating fringe pattern with a local period that represents the deviation of the lattice from the reference. In order to obtain the actual strain value, a region containing a full period of the fringe is required, which results in a compromise between strain sensitivity and spatial resolution. In this paper we propose an advanced setup making use of an optimised scanning pattern and a novel phase stepping demodulation scheme. We demonstrate the novel method on a series of 16 nm Si-Ge semiconductor FinFET devices in which strain plays a crucial role in modulating the charge carrier mobility. The obtained results are compared with both Nano-beam diffraction and the recently proposed Bessel beam diffraction technique. The setup provides a much improved spatial resolution over conventional moiré imaging in STEM while at the same time being fast and requiring no specialised diffraction camera as opposed to the diffraction techniques we compare to.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000537721200002 Publication Date 2019-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.305 Times cited 8 Open Access
Notes (down) The Qu-Ant-EM microscope and the direct electron detector used in the diffraction experiments was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the GOA project “Solarpaint” of the University of Antwerp. We would also like to thank Dr. Thomas Nuytten and Prof. Dr. Wilfried Vandervorst from IMEC, Leuven for their continuous support and collaboration with the project. Approved Most recent IF: 2.305
Call Number EMAT @ emat @c:irua:165794 Serial 5445
Permanent link to this record
 

 
Author Kang, T.-Y.; Kwon, J.-S.; Kumar, N.; Choi, E.; Kim, K.-M.
Title Effects of a Non-Thermal Atmospheric Pressure Plasma Jet with Different Gas Sources and Modes of Treatment on the Fate of Human Mesenchymal Stem Cells Type A1 Journal article
Year 2019 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel
Volume 9 Issue 22 Pages 4819
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Despite numerous attempts to use human mesenchymal stem cells (hMSCs) in the field of tissue engineering, the control of their differentiation remains challenging. Here, we investigated possible applications of a non-thermal atmospheric pressure plasma jet (NTAPPJ) to control the differentiation of hMSCs. An air- or nitrogen-based NTAPPJ was applied to hMSCs in culture media, either directly or by media treatment in which the cells were plated after the medium was exposed to the NTAPPJ. The durations of exposure were 1, 2, and 4 min, and the control was not exposed to the NTAPPJ. The initial attachment of the cells was assessed by a water-soluble tetrazolium assay, and the gene expression in the cells was assessed through reverse-transcription polymerase chain reaction and immunofluorescence staining. The results showed that the gene expression in the hMSCs was generally increased by the NTAPPJ exposure, but the enhancement was dependent on the conditions of the exposure, such as the source of the gas and the treatment method used. These results were attributed to the chemicals in the extracellular environment and the reactive oxygen species generated by the plasma. Hence, it was concluded that by applying the best conditions for the NTAPPJ exposure of hMSCs, the control of hMSC differentiation was possible, and therefore, exposure to an NTAPPJ is a promising method for tissue engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000502570800096 Publication Date 2019-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.679 Times cited Open Access
Notes (down) The plasma source was kindly provided by the Plasma Bioscience Research Center, Kwangwoon University. Approved Most recent IF: 1.679
Call Number PLASMANT @ plasmant @c:irua:164893 Serial 5435
Permanent link to this record
 

 
Author Gvozdetskyi, V.; Bhaskar, G.; Batuk, M.; Zhao, X.; Wang, R.; Carnahan, S.L.; Hanrahan, M.P.; Ribeiro, R.A.; Canfield, P.C.; Rossini, A.J.; Wang, C.-Z.; Ho, K.-M.; Hadermann, J.; Zaikina, J.V.
Title Computationally Driven Discovery of a Family of Layered LiNiB Polymorphs Type A1 Journal article
Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 58 Issue 44 Pages 15855-15862
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Two novel lithium nickel boride polymorphs RT-LiNiB and HT-LiNiB with layered crystal structures are reported. This family of compounds was theoretically predicted by using the adaptive genetic algorithm (AGA) and subsequently synthesized via a hydride route with LiH precursor as a lithium source. Being unique among the known ternary transition metal borides, the LiNiB structures feature Li layers alternating with nearly planar [NiB] layers, composed of Ni hexagonal rings centered by B-B pairs. A comprehensive study using a combination of single crystal/synchrotron powder X-ray diffraction data, solid-state 7Li and 11B NMR, scanning transmission electron microscopy, quantum chemistry calculations, and magnetism has shed light on the intrinsic features of these polymorphic compounds. The unique layered structures of LiNiB compounds make them ultimate precursors to further study their exfoliation, paving a way toward two-dimensional transition metal borides, MBenes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000491219600038 Publication Date 2019-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited Open Access
Notes (down) the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4411. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract #DE-AC02-07CH11358. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Approved Most recent IF: 11.994
Call Number EMAT @ emat @c:irua:164752 Serial 5433
Permanent link to this record
 

 
Author Charalampopoulou, E.; Delville, R.; Verwerft, M.; Lambrinou, K.; Schryvers, D.
Title Transmission electron microscopy study of complex oxide scales on DIN 1.4970 steel exposed to liquid Pb-Bi eutectic Type A1 Journal article
Year 2019 Publication Corrosion science Abbreviated Journal Corrosion Science
Volume 147 Issue Pages 22-31
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The deployment of Gen-IV lead-cooled fast reactors requires a good compatibility between the selected structural/cladding steels and the inherently corrosive heavy liquid metal coolant. An effective liquid metal corrosion mitigation strategy involves the in-situ steel passivation in contact with the oxygen-containing Pb-alloy coolant. Transmission electron microscopy was used in this work to study the multi-layered oxide scales forming on an austenitic stainless steel fuel cladding exposed to oxygen-containing (CO ≈ 10−6 mass%) static liquid leadbismuth eutectic (LBE) for 1000 h between 400 and 500 °C. The oxide scale constituents were analyzed, including the intertwined phases comprising the innermost biphasic layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000456902100003 Publication Date 2018-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010938X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access OpenAccess
Notes (down) The authors would like to thank J. Joris for the technical support during corrosion testing and J. Lim for the manufacturing and calibration of the oxygen sensors and oxygen pumps used in this work. E. Charalampopoulou personally thanks H. Heidari, S. Pourbabak, A. Orekhov (EMAT) and N. Cautaerts (EMAT, SCK•CEN), for their valuable help with the training of the FEI Tecnai Osiris S/TEM and Jeol 3000 S/ TEM, respectively, as well as S. Van den Broeck (EMAT), J. Pakarinen (SCK•CEN) and W. Van Renterghem (SCK•CEN) for FIB sample preparation. Moreover, the authors gratefully acknowledge the funding provided in the framework of the ongoing development of the MYRRHA irradiation facility. The research leading to these results falls within the framework of the European Energy Research Alliance Joint Programme on Nuclear Materials (EERA JPNM). Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:157541 Serial 5164
Permanent link to this record
 

 
Author Guzzinati, G.; Béché, A.; McGrouther, D.; Verbeeck, J.
Title Prospects for out-of-plane magnetic field measurements through interference of electron vortex modes in the TEM Type A1 Journal article
Year 2019 Publication Journal of optics Abbreviated Journal J Optics-Uk
Volume 21 Issue 12 Pages 124002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Magnetic field mapping in transmission electron microscopy is commonplace, but all conventional methods provide only a projection of the components of the magnetic induction perpendicular to the electron trajectory. Recent experimental advances with electron vortices have shown that it is possible to map the out of plane magnetic induction in a TEM setup via interferometry with a specifically prepared electron vortex state carrying high orbital angular momentum (OAM). The method relies on the Aharonov?Bohm phase shift that the electron undergoes when going through a longitudinal field. Here we show how the same effect naturally occurs for any electron wave function, which can always be described as a superposition of OAM modes. This leads to a clear connection between the occurrence of high-OAM partial waves and the amount of azimuthal rotation in the far field angular distribution of the beam. We show that out of plane magnetic field measurement can thus be obtained with a much simpler setup consisting of a ring-like aperture with azimuthal spokes. We demonstrate the experimental setup and explore the achievable sensitivity of the magnetic field measurement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000499367800001 Publication Date 2019-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-8978 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.741 Times cited 3 Open Access
Notes (down) The authors thank V Grillo and T Harvey for interesting and fruitful discussion. GG acknowledges support from a postdoctoral fellow-ship grant from the Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. AB acknowledges funding from FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy'). DM gratefully acknowledges funding of the FEBID capability through joint funding by University of Glasgow & EPSRC through a Strategic Equipment Grant (EP/P001483/1). Approved Most recent IF: 1.741
Call Number UA @ admin @ c:irua:165116 Serial 6319
Permanent link to this record
 

 
Author Miotti Bettanini, A.; Ding, L.; Mithieux, J.-D.; Parrens, C.; Idrissi, H.; Schryvers, D.; Delannay, L.; Pardoen, T.; Jacques, P.J.
Title Influence of M23C6 dissolution on the kinetics of ferrite to austenite transformation in Fe-11Cr-0.06C stainless steel Type A1 Journal article
Year 2019 Publication Materials & design Abbreviated Journal Mater Design
Volume 162 Issue Pages 362-374
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The design of high-strength martensitic stainless steels requires an accurate control over the stability of undesired phases, like carbides and ferrite, which can hamper strength and ductility. Here, the ferrite to austenite transformation in Fe-11Cr-0.06C has been studied with a combined experimental-modelling approach. Experimental observations of the austenization process indicate that austenite growth proceeds in multiple steps, each one characterized by a different transformation rate. DICTRA based modelling reveals that the dissolution of the M23C6 Cr-rich carbides leads to Cr partitioning between austenite and parent phases, which controls the rate of transformation through (i) a soft-impingement effect and (ii) consequent stabilization of the ferrite, which remains untransformed inside chromium-enriched-zones even after prolonged austenization stage. Slow heating rate and smaller initial particle sizes allow the design of ferrite-free microstructure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454128400036 Publication Date 2018-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-1275 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.364 Times cited 3 Open Access OpenAccess
Notes (down) The authors thank Professor Anne-Francoise Gourgues-Lorenzon and Helene Godin, Ecole Nationale Superiore des Mines de Paris (MINES ParisTech) for their fruitful discussions. AMB thanks Stijn Van den broek (Universiteit Antwerpen) for the skillful preparation of TEM samples with FIB. The financial support of CBMM (Companhia Brasileira de Metalurgia e Mineracao) is gratefully acknowledged. L. Delannay is mandated by the FNRS-Belgium. Computational resources have been provided by the supercomputing facilities of the UCLouvain (CISM/UCL) and the Consortium des Equipements de Calcul Intensif en Federation Wallonie Bruxelles (CÉCI) funded by the Fond de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under convention 2.5020.11.; Cbmm; F.r.s.-fnrs, 2.5020.11 ; Approved Most recent IF: 4.364
Call Number EMAT @ emat @UA @ admin @ c:irua:156721 Serial 5161
Permanent link to this record
 

 
Author Keunecke, M.; Lyzwa, F.; Schwarzbach, D.; Roddatis, V.; Gauquelin, N.; Müller-Caspary, K.; Verbeeck, J.; Callori, S.J.; Klose, F.; Jungbauer, M.; Moshnyaga, V.
Title High-TCInterfacial Ferromagnetism in SrMnO3/LaMnO3Superlattices Type A1 Journal article
Year 2019 Publication Advanced functional materials Abbreviated Journal Adv. Funct. Mater.
Volume Issue Pages 1808270
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Heterostructures of strongly correlated oxides demonstrate various intriguing and potentially useful interfacial phenomena. LaMnO3/SrMnO3 superlattices are presented showcasing a new high‐temperature ferromagnetic phase with Curie temperature, TC ≈360 K, caused by electron transfer from the surface of the LaMnO3 donor layer into the neighboring SrMnO3 acceptor layer. As a result, the SrMnO3 (top)/LaMnO3 (bottom) interface shows an enhancement of the magnetization as depth‐profiled by polarized neutron reflectometry. The length scale of charge transfer, λTF ≈2 unit cells, is obtained from in situ growth monitoring by optical ellipsometry, supported by optical simulations, and further confirmed by high resolution electron microscopy and spectroscopy. A model of the inhomogeneous distribution of electron density in LaMnO3/SrMnO3 layers along the growth direction is concluded to account for a complex interplay between ferromagnetic and antiferromagnetic layers in superlattices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000535358900008 Publication Date 2019-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.621 Times cited 26 Open Access
Notes (down) The authors thank EU FP7 Framework (Project IFOX) and DFG (SFB 1073, TP B04, A02, Z02) for the financial support. J.V., K.M.C and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge ordering). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. The PNR experiment was funded by the Australian Nuclear Science and Technology Organization (proposal number P3985). Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:162108 Serial 5294
Permanent link to this record
 

 
Author Müller-Caspary, K.; Grieb, T.; Müßener, J.; Gauquelin, N.; Hille, P.; Schörmann, J.; Verbeeck, J.; Van Aert, S.; Eickhoff, M.; Rosenauer, A.
Title Electrical Polarization in AlN/GaN Nanodisks Measured by Momentum-Resolved 4D Scanning Transmission Electron Microscopy Type A1 Journal article
Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 122 Issue 10 Pages 106102
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report the mapping of polarization-induced internal electric fields in AlN/GaN nanowire heterostructures at unit cell resolution as a key for the correlation of optical and structural phenomena in semiconductor optoelectronics. Momentum-resolved aberration-corrected scanning transmission electron microscopy is employed as a new imaging mode that simultaneously provides four-dimensional data in real and reciprocal space. We demonstrate how internal mesoscale and atomic electric fields can be separated in an experiment, which is verified by comprehensive dynamical simulations of multiple electron scattering. A mean difference of 5.3 +- 1.5 MV/cm is found for the polarization-induced electric fields in AlN and GaN, being in accordance with dedicated simulations and photoluminescence measurements in previous publications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461067700007 Publication Date 2019-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 26 Open Access OpenAccess
Notes (down) The authors gratefully acknowledge the help of Natalie Claes for analyzing the EDX data. K. M.-C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the Helmholtz Young Investigator Group moreSTEM under Contract No. VHNG- 1317 at Forschungszentrum Jülich in Germany. The direct electron detector (Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. N. G. and J. V. acknowledge funding from the Geconcentreerde Onderzoekacties project Solarpaint of the University of Antwerp. T. G. and A. R. acknowledge support from the Deutsche Forschungsgemeinschaft (Germany) under Contract No. RO2057/8-3. This work also received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Contract No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0368.15N).; Helmholtz Association, VH-NG-1317 ; Forschungszentrum Jülich; Flemish Government; Universiteit Antwerpen; Deutsche Forschungsgemeinschaft, RO2057/8-3 ; H2020 European Research Council, 770887 ; Fonds Wetenschappelijk Onderzoek, G.0368.15N ; Approved Most recent IF: 8.462
Call Number UA @ lucian @UA @ admin @ c:irua:158120 Serial 5157
Permanent link to this record
 

 
Author Boyat, X.; Ballat-Durand, D.; Marteau, J.; Bouvier, S.; Favergeon, J.; Orekhov, A.; Schryvers, D.
Title Interfacial characteristics and cohesion mechanisms of linear friction welded dissimilar titanium alloys: Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) and Ti–6Al–2Sn–4Zr–2Mo (Ti6242) Type A1 Journal article
Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 158 Issue Pages 109942
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A detailed microstructural examination endeavoring to understand the interfacial phenomena yielding to cohesion

in solid-state assembling processes was performed. This study focuses on the transition zone of a dissimilar

titanium alloy joint obtained by Linear Friction Welding (LFW) the β-metastable Ti17 to the near-α

Ti6242. The transition zone delimitating both alloys is characterized by a sharp microstructure change from

acicular HCP (Hexagonal Close-Packed) α′ martensitic laths in the Ti6242 to equiaxed BCC β (Body-Centered

Cubic) subgrains in the Ti17; these α′ plates were shown to precipitate within prior-β subgrains remarkably more

rotated than the ones formed in the Ti17. Both α′ and β microstructures were found to be intermingled within

transitional subgrains demarcating a limited gradient from one chemical composition to the other. These peculiar

interfacial grains revealed that the cohesive mechanisms between the rubbing surfaces occurred in the

single-phase β domain under severe strain and high-temperature conditions. During the hot deformation process,

the mutual migration of the crystalline interfaces from one material to another assisted by a continuous dynamic

recrystallization process was identified as the main adhesive mechanism at the junction zone. The latter led to

successful cohesion between the rubbing surfaces. Once the reciprocating motion stopped, fast cooling caused

both materials to experience either a βlean→α′ or βlean→βmetastable transformation in the interfacial zone depending

on their local chemical composition. The limited process time and the subsequent hindered chemical

homogenization at the transition zone led to retaining the so-called intermingled α’/βm subgrains constituting

the border between both Ti-alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000503314000018 Publication Date 2019-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited Open Access
Notes (down) The authors gratefully acknowledge the financial support of the French National Research Agency (ANR) through the OPTIMUM ANR- 14-CE27-0017 project. The authors would also like to thank the Hautsde- France Region and the European Regional Development Fund (ERDF) 2014/2020 for the co-funding of this work. The authors would also like to thank ACB for providing LFW samples as well as Airbus for their technical support. Approved Most recent IF: 2.714
Call Number EMAT @ emat @c:irua:165084 Serial 5441
Permanent link to this record
 

 
Author Gröger, S.; Ramakers, M.; Hamme, M.; Medrano, J.A.; Bibinov, N.; Gallucci, F.; Bogaerts, A.; Awakowicz, P.
Title Characterization of a nitrogen gliding arc plasmatron using optical emission spectroscopy and high-speed camera Type A1 Journal article
Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 6 Pages 065201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A gliding arc plasmatron (GAP), which is very promising for purification and gas conversion,

is characterized in nitrogen using optical emission spectroscopy and high-speed photography,

because the cross sections of electron impact excitation of N 2 are well known. The gas

temperature (of about 5500 K), the electron density (up to 1.5 × 10 15 cm −3 ) and the reduced

electric field (of about 37 Td) are determined using an absolutely calibrated intensified charge-

coupled device (ICCD) camera, equipped with an in-house made optical arrangement for

simultaneous two-wavelength diagnostics, adapted to the transient behavior of a GA channel

in turbulent gas flow. The intensities of nitrogen molecular emission bands, N 2 (C–B,0–0) as

well as N +

2 (B–X,0–0), are measured simultaneously. The electron density and the reduced

electric field are determined at a spatial resolution of 30 µm, using numerical simulation and

measured emission intensities, applying the Abel inversion of the ICCD images. The temporal

behavior of the GA plasma channel and the formation of plasma plumes are studied using a

high-speed camera. Based on the determined plasma parameters, we suggest that the plasma

plume formation is due to the magnetization of electrons in the plasma channel of the GAP by

an axial magnetic field in the plasma vortex.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451745900001 Publication Date 2018-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 7 Open Access Not_Open_Access: Available from 30.11.2019
Notes (down) The authors are very grateful to Professor Kurt Behringer for the development of the program code for simulation of emis- sion spectra of nitrogen. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:155974 Serial 5141
Permanent link to this record
 

 
Author Yusupov, M.; Razzokov, J.; Cordeiro, R.M.; Bogaerts, A.
Title Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture Type A1 Journal article
Year 2019 Publication Oxidative medicine and cellular longevity Abbreviated Journal Oxid Med Cell Longev
Volume 2019 Issue Pages 1-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Aquaporins (AQPs) are transmembrane proteins that conduct not only water molecules across the cell membrane but also other solutes, such as reactive oxygen and nitrogen species (RONS), produced (among others) by cold atmospheric plasma (CAP). These RONS may induce oxidative stress in the cell interior, which plays a role in cancer treatment. The underlying mechanisms of the transport of RONS across AQPs, however, still remain obscure. We apply molecular dynamics simulations to investigate the permeation of both hydrophilic (H<sub>2</sub>O<sub>2</sub>and OH) and hydrophobic (NO<sub>2</sub>and NO) RONS through AQP1. Our simulations show that these RONS can all penetrate across the pores of AQP1. The permeation free energy barrier of OH and NO is lower than that of H<sub>2</sub>O<sub>2</sub>and NO<sub>2</sub>, indicating that these radicals may have easier access to the pore interior and interact with the amino acid residues of AQP1. We also study the effect of RONS-induced oxidation of both the phospholipids and AQP1 (i.e., sulfenylation of Cys<sub>191</sub>) on the transport of the above-mentioned RONS across AQP1. Both lipid and protein oxidation seem to slightly increase the free energy barrier for H<sub>2</sub>O<sub>2</sub>and NO<sub>2</sub>permeation, while for OH and NO, we do not observe a strong effect of oxidation. The simulation results help to gain insight in the underlying mechanisms of the noticeable rise of CAP-induced RONS in cancer cells, thereby improving our understanding on the role of AQPs in the selective anticancer capacity of CAP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000492999000001 Publication Date 2019-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-0900 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.593 Times cited 5 Open Access OpenAccess
Notes (down) The authors acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA, where all computational work was performed. M.Y. gratefully acknowledges Dr. U. Khalilov for the fruitful discussions. This work was financially supported by the Research Foundation Flanders (FWO) (grant number 1200219N). Approved Most recent IF: 4.593
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160118 Serial 5180
Permanent link to this record
 

 
Author Jimenez-Mena, N.; Jacques, P.J.; Ding, L.; Gauquelin, N.; Schryvers, D.; Idrissi, H.; Delannay, F.; Simar, A.
Title Enhancement of toughness of Al-to-steel Friction Melt Bonded welds via metallic interlayers Type A1 Journal article
Year 2019 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 740-741 Issue Pages 274-284
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The toughness of Al-to-steel welds decreases with increasing thickness of the intermetallic (IM) layer formed at the interface. Co plating has been added as interlayer in Al-to-steel Friction Melt Bonded (FMB) welds to control the nature and thickness of the IM layer. In comparison to a weld without interlayer, Co plating brings about a reduction of the thickness of the IM layer by 70%. The critical energy release rate of the crack propagating in the weld is used as an indicator of toughness. It is evaluated via an adapted crack propagation test using an energy conservation criterion. For a weld without interlayer, critical energy release rate is found to increase when the thickness of the intermetallic layer decreases. When the intermetallic layer is thick, the crack propagates in a brittle manner through the intermetallic whereas, at low layer thickness, the crack deviates and partially propagates through the Al plate, which causes an increase of toughness. The use of a Co interlayer brings about an increase of toughness by causing full deviation of the crack towards the Al plate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453494500029 Publication Date 2018-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 4 Open Access Not_Open_Access: Available from 25.10.2020
Notes (down) The authors acknowledge the financial support of the Interuniversity Attraction Poles Program from the Belgian State through the Belgian Policy Agency, Belgium, contract IAP7/21 INTEMATE. N. Jimenez-Mena acknowledges the financial support of the (Fonds pour la formation à la recherchedans l'industrie et dans l'agriculture (FRIA), Belgium. A. Simar acknowledges the financial support of the (European Research Council – Starting Grant (ERC-StG), project ALUFIX, grant agreement no 716678. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS), Belgium. The authors also acknowledge M. Coulombier for the help provided in the measurement of the friction coefficient, and T. Pardoen and F. Lani for the fruitful discussions. Approved Most recent IF: 3.094
Call Number EMAT @ emat @c:irua:154866UA @ admin @ c:irua:154866 Serial 5061
Permanent link to this record
 

 
Author Bekeschus, S.; Freund, E.; Spadola, C.; Privat-Maldonado, A.; Hackbarth, C.; Bogaerts, A.; Schmidt, A.; Wende, K.; Weltmann, K.-D.; von Woedtke, T.; Heidecke, C.-D.; Partecke, L.-I.; Käding, A.
Title Risk Assessment of kINPen Plasma Treatment of Four Human Pancreatic Cancer Cell Lines with Respect to Metastasis Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal Cancers
Volume 11 Issue 9 Pages 1237
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold physical plasma has limited tumor growth in many preclinical models and is, therefore, suggested as a putative therapeutic option against cancer. Yet, studies investigating the cells’ metastatic behavior following plasma treatment are scarce, although being of prime importance to evaluate the safety of this technology. Therefore, we investigated four human pancreatic cancer cell lines for their metastatic behavior in vitro and in chicken embryos (in ovo). Pancreatic cancer was chosen as it is particularly metastatic to the peritoneum and systemically, which is most predictive for outcome. In vitro, treatment with the kINPen plasma jet reduced pancreatic cancer cell activity and viability, along with unchanged or decreased motility. Additionally, the expression of adhesion markers relevant for metastasis was down-regulated, except for increased CD49d. Analysis of 3D tumor spheroid outgrowth showed a lack of plasma-spurred metastatic behavior. Finally, analysis of tumor tissue grown on chicken embryos validated the absence of an increase of metabolically active cells physically or chemically detached with plasma treatment. We conclude that plasma treatment is a safe and promising therapeutic option and that it does not promote metastatic behavior in pancreatic cancer cells in vitro and in ovo.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000489719000022 Publication Date 2019-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes (down) The authors acknowledge that this work was supported by grants funded by the German Federal Ministry of Education and Research (BMBF), grant number 03Z22DN11. We want to thank the Research Foundation – Flanders (FWO) for providing funding to APM under the “long stay abroad” scheme (grant code V415618N). APM and AB acknowledge financial support from the Methusalem project. Technical support by Felix Niessner and Antje Janetzko is gratefully acknowledged. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:162106 Serial 5357
Permanent link to this record
 

 
Author Cremers, V.; Rampelberg, G.; Baert, K.; Abrahami, S.; Claes, N.; de Oliveira, T.M.; Terryn, H.; Bals, S.; Dendooven, J.; Detavernier, C.
Title Corrosion protection of Cu by atomic layer deposition Type A1 Journal article
Year 2019 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 37 Issue 37 Pages 060902
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Atomic layer deposition (ALD) is a vapor phase technique that is able to deposit uniform, conformal thin films with an excellent thickness control at the atomic scale. 18 nm thick Al2O3 and TiO2 coatings were deposited conformaly and pinhole-free onto micrometer-sized Cu powder, using trimethylaluminum and tetrakis(dimethylamido)titanium(IV), respectively, as a precursor and de-ionized water as a reactant. The capability of the ALD coating to protect the Cu powder against corrosion was investigated. Therefore, the stability of the coatings was studied in solutions with different pH in the range of 0–14, and in situ raman spectroscopy was used to detect the emergence of corrosion products of Cu as an indication that the protective coating starts to fail. Both ALD coatings provide good protection at standard pH values in the range of 5–7. In general, the TiO2 coating shows a better barrier protection against corrosion than the Al2O3 coating. However, for the most extreme pH conditions, pH 0 and pH 14, the TiO2 coating starts also to degrade.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000517925800003 Publication Date 2019-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 7 Open Access OpenAccess
Notes (down) The authors acknowledge financial support from the Strategic Initiative Materials in Flanders (SIM, SBO-FUNC project) and the Special Research Fund BOF of Ghent University (No. GOA 01G01513). J.D. acknowledges the Research Foundation Flanders (FWO-Vlaanderen) for a postdoctoral fellowship. Approved Most recent IF: 1.374
Call Number EMAT @ emat @c:irua:162640 Serial 5361
Permanent link to this record
 

 
Author Fatermans, J.; Van Aert, S.; den Dekker, A.J.
Title The maximum a posteriori probability rule for atom column detection from HAADF STEM images Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 201 Issue Pages 81-91
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Recently, the maximum a posteriori (MAP) probability rule has been proposed as an objective and quantitative method to detect atom columns and even single atoms from high-resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images. The method combines statistical parameter estimation and model-order selection using a Bayesian framework and has been shown to be especially useful for the analysis of the structure of beam-sensitive nanomaterials. In order to avoid beam damage, images of such materials are usually acquired using a limited incoming electron dose resulting in a low contrast-to-noise ratio (CNR) which makes visual inspection unreliable. This creates a need for an objective and quantitative approach. The present paper describes the methodology of the MAP probability rule, gives its step-by-step derivation and discusses its algorithmic implementation for atom column detection. In addition, simulation results are presented showing that the performance of the MAP probability rule to detect the correct number of atomic columns from HAADF STEM images is superior to that of other model-order selection criteria, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Moreover, the MAP probability rule is used as a tool to evaluate the relation between STEM image quality measures and atom detectability resulting in the introduction of the so-called integrated CNR (ICNR) as a new image quality measure that better correlates with atom detectability than conventional measures such as signal-to-noise ratio (SNR) and CNR.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000466343800009 Publication Date 2019-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 1 Open Access OpenAccess
Notes (down) The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (No. W.O.010.16N, No. G.0368.15N, No. G.0502.18N). This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 770887). Approved Most recent IF: 2.843
Call Number EMAT @ emat @UA @ admin @ c:irua:157176 Serial 5153
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Janssens, L.; De Backer, A.; Nellist, P.D.; Van Aert, S.
Title The atomic lensing model: new opportunities for atom-by-atom metrology of heterogeneous nanomaterials Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 203 Issue Pages 155
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The atomic lensing model has been proposed as a promising method facilitating atom-counting in heterogeneous nanocrystals [1]. Here, image simulations will validate the model, which describes dynamical diffraction as a superposition of individual atoms focussing the incident electrons. It will be demonstrated that the model is reliable in the annular dark field regime for crystals having columns containing dozens of atoms. By using the principles of statistical detection theory, it will be shown that this model gives new opportunities for detecting compositional differences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465021000020 Publication Date 2018-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 4 Open Access OpenAccess
Notes (down) The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N, G.0502.18N and WO.010.16N), and by personal grants to K.H.W. van den Bos and A. De Backer. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 770887). Approved Most recent IF: 2.843
Call Number EMAT @ emat @UA @ admin @ c:irua:155721 Serial 5074
Permanent link to this record
 

 
Author Ding, L.; Orekhov, A.; Weng, Y.; Jia, Z.; Idrissi, H.; Schryvers, D.; Muraishi, S.; Hao, L.; Liu, Q.
Title Study of the Q′ (Q)-phase precipitation in Al–Mg–Si–Cu alloys by quantification of atomic-resolution transmission electron microscopy images and atom probe tomography Type A1 Journal article
Year 2019 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 54 Issue 10 Pages 7943-7952
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The precipitation mechanism of the Q phase in Al-Mg-Si-Cu alloys has long been the subject of ambiguity and debate since its metastable phase (Q 0) has the same crystal structure and similar lattice parameters as its equilibrium counterparts. In the present work, the evolution of the Q 0 (Q) phase during aging is studied by combination of quantitative atomic-resolution scanning transmission electron microscopy and atom probe tomography. It was found that the transformation from the Q 0 to the Q phase involves changes of the occupancy of Al atoms in atomic columns of the Q 0 (Q) phase. The Al atoms incorporated in the Cu, Si and Mg columns are gradually released into the Al matrix, while mixing between Cu and Si atoms occurs in the Si columns. This transformation process is mainly attributed to the low lattice misfit of the equilibrium Q phase. Besides, the formation of various compositions of the Q phase is due to the different occupancy in the atomic columns of the Q phase. The occupancy changes in the columns of the Q phase are kinetically controlled and are strongly influenced by the alloy composition and aging temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460069500043 Publication Date 2019-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 1 Open Access Not_Open_Access
Notes (down) Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing, cstc2017zdcy-zdzxX0006 ; Fundamental Research Funds for the Central Universities of China, 2018CDGFCL0002 106112017CDJQJ308822 ; Belgian National Fund for Scientific Research; the National Natural Science Foundation of China, 51871035 ; This work was supported by the Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing (Grant No. cstc2017zdcyzdzxX0006), the Fundamental Research Funds for the Central Universities of China (Grant No. 2018CDGFCL0002), the National Natural Science Foundation of China (Grant No. 51871035) and the Foundation for Innovative Research Groups J Mater Sci National Natural Science Foundation of China (Grant No. 51421001). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 2.599
Call Number EMAT @ emat @UA @ admin @ c:irua:158112 Serial 5158
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M.
Title Molecular dynamics simulations of mechanical stress on oxidized membranes Type A1 Journal article
Year 2019 Publication Biophysical chemistry Abbreviated Journal Biophys Chem
Volume 254 Issue Pages 106266
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Biomembranes are under constant attack of free radicals that may lead to lipid oxidation in conditions of oxidative stress. The products generated during lipid oxidation are responsible for structural and dynamical changes which may jeopardize the membrane function. For instance, the local rearrangements of oxidized lipid molecules may induce membrane rupture. In this study, we investigated the effects of mechanical stress on oxidized phospholipid bilayers (PLBs). Model bilayers were stretched until pore formation (or poration) using nonequilibrium molecular dynamics simulations. We studied single-component homogeneous membranes composed of lipid oxidation products, as well as two-component heterogeneous membranes with coexisting native and oxidized domains. In homogeneous membranes, the oxidation products with —OH and —OOH groups reduced the areal strain required for pore formation, whereas the oxidation product with ]O group behaved similarly to the native membrane. In heterogeneous membranes composed of oxidized and non-oxidized domains, we tested the hypothesis according to which poration may be facilitated at the domain interface region. However, results were inconclusive due to their large statistical variance and sensitivity to simulation setup parameters. We pointed out important technical issues that need to be considered in future simulations of mechanically-induced poration of heterogeneous membranes. This research is of interest for photodynamic therapy and plasma medicine, because ruptured and intact plasma membranes are experimentally considered hallmarks of necrotic and apoptotic cell death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000502890900015 Publication Date 2019-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4622 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.402 Times cited Open Access
Notes (down) São Paulo Research Foundation, 2012/50680-5 ; National Counsel of Technological and Scientific Development, 459270/2014-1 ; We are thankful for the financial support received from the São Paulo Research Foundation (FAPESP) (grant no. 2012/50680-5) and from the National Counsel of Technological and Scientific Development (CNPq) (grant no. 459270/2014-1). MCO acknowledges UFABC for the Master's scholarship granted. Approved Most recent IF: 2.402
Call Number PLASMANT @ plasmant @c:irua:163477 Serial 5374
Permanent link to this record
 

 
Author Pourbabak, S.; Orekhov, A.; Samaee, V.; Verlinden, B.; Van Humbeeck, J.; Schryvers, D.
Title In-Situ TEM Stress Induced Martensitic Transformation in Ni50.8Ti49.2 Microwires Type A1 Journal article
Year 2019 Publication Shape memory and superelasticity Abbreviated Journal Shap. Mem. Superelasticity
Volume 5 Issue 2 Pages 154-162
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In-situ transmission electron microscopy tensile straining is used to study the stress induced martensitic transformation in Ni50.8Ti49.2. Two microwire samples with different heat treatment are investigated from which one single crystal and three polycrystalline TEM specimens, the latter with micro- and nano-size grains, have been produced. The measured Young’s modulus for all TEM specimens is around 70 GPa, considerably higher than the averaged 55 GPa of the original microwire sample. The height of the superelastic stress plateau shows an inverse relationship with the specimen thickness for the polycrystalline specimens. Martensite starts nucleating within the elastic region of the stress–strain curve and on the edges of the specimens while also grain boundaries act as nucleation sites in the polycrystalline specimens. When a martensite plate reaches a grain boundary in the polycrystalline specimen, it initiates the transformation in the neighboring grain at the other side of the grain boundary. In later stages martensite plates coalesce at higher loads in the stress plateau. In highly strained specimens, residual martensite remains after release.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472940200002 Publication Date 2019-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-384X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes (down) Saeid Pourbabak likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. This work was also made possible through the AUHA13009 Grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:159989 Serial 5177
Permanent link to this record
 

 
Author Pourbabak, S.; Montero-Sistiaga, M.L.; Schryvers, D.; Van Humbeeck, J.; Vanmeensel, K.
Title Microscopic investigation of as built and hot isostatic pressed Hastelloy X processed by Selective Laser Melting Type A1 Journal article
Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 153 Issue Pages 366-371
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Microstructural characteristics of Hastelloy X produced by Selective Laser Melting have been investigated by various microscopic techniques in the as built (AB) condition and after hot isostatic pressing (HIP). At sub-grain level the AB material consists of columnar high density dislocation cells while the HIP sample consists of columnar sub-grains with lower dislocation density that originate from the original dislocation cells, contradicting existing models. The sub-grains contain nanoscale precipitates enriched in Al, Ti, Cr and O, located at sub-grain boundaries in the AB condition and within the grains after HIP. At some grain boundaries, micrometer sized chromium carbides are detected after HIP. Micro hardness within the grains was found to decrease after HIP, which was attributed to the decrease in dislocation density due to recovery annealing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472696900040 Publication Date 2019-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 2 Open Access Not_Open_Access
Notes (down) S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine and financial support. This work was also made possible through the AUHA13009 grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: 2.714
Call Number EMAT @ emat @UA @ admin @ c:irua:159974 Serial 5178
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A.
Title Transport of cystine across xC-antiporter Type A1 Journal article
Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys
Volume 664 Issue Pages 117-126
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Extracellular cystine (CYC) uptake by xC antiporter is important for the cell viability. Especially in cancer cells, the upregulation of xC activity is observed, which protects these cells from intracellular oxidative stress. Hence, inhibition of the CYC uptake may eventually lead to cancer cell death. Up to now, the molecular level mechanism of the CYC uptake by xC antiporter has not been studied in detail. In this study, we applied several different simulation techniques to investigate the transport of CYC through xCT, the light subunit of the xC antiporter, which is responsible for the CYC and glutamate translocation. Specifically, we studied the permeation of CYC across three model systems, i.e., outward facing (OF), occluded (OCC) and inward facing (IF) configurations of xCT. We also investigated the effect of mutation of Cys327 to Ala within xCT, which was also studied experimentally in literature. This allowed us to qualitatively compare our computation results with experimental observations, and thus, to validate our simulations. In summary, our simulations provide a molecular level mechanism of the transport of CYC across the xC antiporter, more specifically, which amino acid residues in the xC antiporter play a key role in the uptake, transport and release of CYC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461411200014 Publication Date 2019-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.165 Times cited 3 Open Access OpenAccess
Notes (down) Research Foundation − FlandersResearch Foundation − Flanders (FWO), 1200216N 1200219N ; Hercules FoundationHercules Foundation; Flemish GovernmentFlemish Government (department EWI); UAUA; M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant numbers 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158571 Serial 5183
Permanent link to this record
 

 
Author Wardenier, N.; Gorbanev, Y.; Van Moer, I.; Nikiforov, A.; Van Hulle, S.W.H.; Surmont, P.; Lynen, F.; Leys, C.; Bogaerts, A.; Vanraes, P.
Title Removal of alachlor in water by non-thermal plasma: Reactive species and pathways in batch and continuous process Type A1 Journal article
Year 2019 Publication Water research Abbreviated Journal Water Res
Volume 161 Issue Pages 549-559
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Pesticides are emerging contaminants frequently detected in the aquatic environment. In this work, a novel approach combining activated carbon adsorption, oxygen plasma treatment and ozonation was studied for the removal of the persistent chlorinated pesticide alachlor. A comparison was made between the removal efficiency and energy consumption for two different reactor operation modes: batchrecirculation and single-pass mode. The kinetics study revealed that the insufficient removal of alachlor by adsorption was significantly improved in terms of degradation efficiency and energy consumption when combined with the plasma treatment. The best efficiency (ca. 80% removal with an energy cost of 19.4 kWh mÀ3) was found for the single-pass operational mode of the reactor. In the batch-recirculating process, a complete elimination of alachlor by plasma treatment was observed after 30 min of treatment. Analysis of the reactive species induced by plasma in aqueous solutions showed that the decomposition of alachlor mainly occurred through a radical oxidation mechanism, with a minor contribution of long-living oxidants (O3, H2O2). Investigation of the alachlor oxidation pathways revealed six different oxidation mechanisms, including the loss of aromaticity which was never before reported for plasma-assisted degradation of aromatic pesticides. It was revealed that the removal rate and energy cost could be further improved with more than 50% by additional O3 gas bubbling in the solution reservoir.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000475999400054 Publication Date 2019-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.942 Times cited 2 Open Access
Notes (down) PlasmaTex project IWT, 1408/2 ; the European Marie Sklodowska-Curie Individual Fellowship within Horizon2020, 743151 ; Flemish Knowledge Centre Water; This work was financially supported by the PlasmaTex project IWT 1408/2 and the European Marie Sklodowska-Curie Individual Fellowship within Horizon2020 (‘LTPAM’, grant no. 743151). This research was initiated within the LED H2O project which is financially supported by the Flemish Knowledge Centre Water (Vlakwa). Approved Most recent IF: 6.942
Call Number PLASMANT @ plasmant @c:irua:161173 Serial 5288
Permanent link to this record
 

 
Author Barreca, D.; Gri, F.; Gasparotto, A.; Carraro, G.; Bigiani, L.; Altantzis, T.; Žener, B.; Lavrenčič Štangar, U.; Alessi, B.; Padmanaban, D.B.; Mariotti, D.; Maccato, C.
Title Multi-functional MnO2nanomaterials for photo-activated applications by a plasma-assisted fabrication route Type A1 Journal article
Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 11 Issue 1 Pages 98-108
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Supported MnO2-based nanomaterials were fabricated on fluorine-doped tin oxide substrates by plasma enhanced-chemical vapor deposition (PE-CVD) between 100 °C and 400 °C, starting from a fluorinated Mn(II) diamine diketonate precursor. Growth experiments yielded -MnO2 nanosystems with hierarchical morphology tuneable from dendritic structures to quasi-1D nanosystems as a function of growth temperature, whose variation enabled also a concomitant tailoring of the system fluorine content, and of the optical absorption and band gap. Preliminary photocatalytic tests were aimed at the investigation of photoinduced hydrophilic (PH) and solid phase photocatalytic (PC) performances of the present nanomaterials, as well as at the photodegradation of Plasmocorinth B azo-dye aqueous solutions. The obtained findings highlighted an attractive system photoactivity even under visible light, finely tailored by fluorine content, morphological organization and optical properties of the prepared nanostructures. The results indicate that the synthesized MnO2 nanosystems have potential applications as advanced smart materials for anti-fogging/self-cleaning end uses and water purification.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454327500037 Publication Date 2018-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 7 Open Access OpenAccess
Notes (down) Padova University DOR 2016–2017, P-DiSC #03BIRD2016-UNIPD projects, HERALD Cost Action MP1402 – 37831 and ACTION post-doc fellowship are acknowledged for financial support. T.A. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO). Thanks are also due to Prof. Sara Bals (EMAT, University of Antwerp, Belgium), Prof. Romana Cerc Korošec and to Dr. Lev Matoh (University of Ljubljana, Slovenia), and to Prof. Elza Bontempi (Brescia University, Italy). The work was also supported by EPSRC (award EP/R008841/1, EP/M024938/1). Approved Most recent IF: 7.367
Call Number EMAT @ emat @UA @ admin @ c:irua:156388 Serial 5148
Permanent link to this record
 

 
Author Ghimire, B.; Szili, E.J.; Lamichhane, P.; Short, R.D.; Lim, J.S.; Attri, P.; Masur, K.; Weltmann, K.-D.; Hong, S.-H.; Choi, E.H.
Title The role of UV photolysis and molecular transport in the generation of reactive species in a tissue model with a cold atmospheric pressure plasma jet Type A1 Journal article
Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 114 Issue 9 Pages 093701
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric pressure plasma jets (plasma) operated in ambient air provide a rich source of reactive oxygen and nitrogen species (RONS), which are known to influence biological processes important in disease. In the plasma treatment of diseased tissue such as subcutaneous cancer tumors, plasma RONS need to first traverse an interface between the plasma-skin surface and second be transported to millimeter depths in order to reach deep-seated diseased cells. However, the mechanisms in the plasma generation of RONS within soft tissues are not understood. In this study, we track the plasma jet delivery of RONS into a tissue model target and we delineate two processes: through target delivery of RONS generated (primarily) in the plasma jet and in situ RONS generation by UV photolysis within the target. We demonstrate that UV photolysis promotes the rapid generation of RONS in the tissue model target’s surface after which the RONS are transported to millimeter depths via a slower molecular process. Our results imply that the flux of UV photons from plasma jets is important for delivering RONS through seemingly impenetrable barriers such as skin. The findings have implications not only in treatments of living tissues but also in the functionalization of soft hydrated biomaterials such as hydrogels and extracellular matrix derived tissue scaffolds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460820600048 Publication Date 2019-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access Not_Open_Access
Notes (down) National Research Foundation of Korea, NRF-2016K1A4A3914113 ; Australian Research Council, DP16010498 ; This work was supported by the National Research Foundation of Korea (NRF) Grant No. NRF-2016K1A4A3914113 and in part by Kwangwoon University 2018, Korea. E.J.S., S.-H.H., and R.D.S. wish to thank the Australian Research Council for partially supporting this research through Discovery Project No. DP16010498 and UniSA through the Vice Chancellor Development Fund. Approved Most recent IF: 3.411
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158111 Serial 5159
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A.
Title Effect of oxidative stress on cystine transportation by xC‾ antiporter Type A1 Journal article
Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys
Volume 674 Issue Pages 108114
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We performed computer simulations to investigate the effect of oxidation on the extracellular cystine (CYC) uptake by the xC− antiporter. The latter is important for killing of cancer cells. Specifically, applying molecular dynamics (MD) simulations we studied the transport of CYC across xCT, i.e., the light subunit of the xC− antiporter, in charge of bidirectional transport of CYC and glutamate. We considered the outward facing (OF) configuration of xCT, and to study the effect of oxidation, we modified the Cys327 residue, located in the vicinity of the extracellular milieu, to cysteic acid (CYO327). Our computational results showed that oxidation of Cys327 results in a free energy barrier for CYC translocation, thereby blocking the access of CYC to the substrate binding site of the OF system. The formation of the energy barrier was found to be due to the conformational changes in the channel. Analysis of the MD trajectories revealed that the reorganization of the side chains of the Tyr244 and CYO327 residues play a critical role in the OF channel blocking. Indeed, the calculated distance between Tyr244 and either Cys327 or CYO327 showed a narrowing of the channel after oxidation. The obtained free energy barrier for CYC translocation was found to be 33.9kJmol−1, indicating that oxidation of Cys327, by e.g., cold atmospheric plasma, is more effective in inhibiting the xC− antiporter than in the mutation of this amino acid to Ala (yielding a barrier of 32.4kJmol−1). The inhibition of the xC− antiporter may lead to Cys starvation in some cancer cells, eventually resulting in cancer cell death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000525439700011 Publication Date 2019-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.165 Times cited Open Access
Notes (down) Ministry of Science, Research and Technology of Iran; University of Antwerp; Research Foundation − Flanders, 1200219N ; Universiteit Antwerpen; Hercules Foundation; Flemish Government; UA; M. G. acknowledges funding from the Ministry of Science, Research and Technology of Iran and from the University of Antwerp in Belgium. M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant number 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165
Call Number PLASMANT @ plasmant @c:irua:163474 Serial 5372
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Bogaerts, A.
Title Oxidation destabilizes toxic amyloid beta peptide aggregation Type A1 Journal article
Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 9 Issue 1 Pages 5476
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The aggregation of insoluble amyloid beta (Aβ) peptides in the brain is known to trigger the onset of neurodegenerative diseases, such as Alzheimer’s disease. In spite of the massive number of investigations, the underlying mechanisms to destabilize the Aβ aggregates are still poorly understood. Some studies indicate the importance of oxidation to destabilize the Aβ aggregates. In particular, oxidation induced by cold atmospheric plasma (CAP) has demonstrated promising results in eliminating these toxic aggregates. In this paper, we investigate the effect of oxidation on the stability of an Aβ pentamer. By means of molecular dynamics simulations and umbrella sampling, we elucidate the conformational changes of Aβ pentamer in the presence of oxidized residues, and we estimate the dissociation free energy of the terminal peptide out of the pentamer form. The calculated dissociation free energy of the terminal peptide is also found to decrease with increasing oxidation. This indicates that Aβ pentamer aggregation becomes less favorable upon oxidation. Our study contributes to a better insight in one of the potential mechanisms for inhibition of toxic Aβ peptide aggregation, which is considered to be the main culprit to Alzheimer’s disease.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462990000018 Publication Date 2019-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 5 Open Access OpenAccess
Notes (down) M.Y. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), grant 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 4.259
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159367 Serial 5182
Permanent link to this record
 

 
Author Scarabelli, L.; Schumacher, M.; Jimenez de Aberasturi, D.; Merkl, J.‐P.; Henriksen‐Lacey, M.; Milagres de Oliveira, T.; Janschel, M.; Schmidtke, C.; Bals, S.; Weller, H.; Liz‐Marzán, L.M.
Title Encapsulation of Noble Metal Nanoparticles through Seeded Emulsion Polymerization as Highly Stable Plasmonic Systems Type A1 Journal article
Year 2019 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 29 Issue 29 Pages 1809071
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The implementation of plasmonic nanoparticles in vivo remains hindered by important limitations such as biocompatibility, solubility in biological fluids, and physiological stability. A general and versatile protocol is presented, based on seeded emulsion polymerization, for the controlled encapsulation of gold and silver nanoparticles. This procedure enables the encapsulation of single nanoparticles as well as nanoparticle clusters inside a protecting polymer shell. Specifically, the efficient coating of nanoparticles of both metals is demonstrated, with final dimensions ranging between 50 and 200 nm, i.e., sizes of interest for bio-applications. Such hybrid nanocomposites display extraordinary stability in high ionic strength and oxidizing environments, along with high cellular uptake, and low cytotoxicity. Overall, the prepared nanostructures are promising candidates for plasmonic applications under biologically relevant conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000467109100024 Publication Date 2019-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 19 Open Access OpenAccess
Notes (down) L.S. and M.S. contributed equally to this work. This work was supported by the Spanish MINECO (Grant MAT2017-86659-R), by the German Research Foundation (DFG, Grant LA 2901/1-1) and by the European Research Council (Grant 335078 COLOURATOM to S.B). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M). L.S. acknowledges funding from the American-Italian Cancer Foundation through a Post-Doctoral Research Fellowship. D.J.d.A. thanks MINECO for a Juan de la Cierva fellowship (IJCI-2015-24264). J.P.M. was financed by Verband der Chemischen Industrie e.V. (VCI). The authors thank Dr. Artur Feld, Dr. Andreas Kornowski and Stefan Werner (Institute of Physical Chemistry, University of Hamburg) for their support. Approved Most recent IF: 12.124
Call Number EMAT @ emat @UA @ admin @ c:irua:160710 Serial 5190
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Schmidt, A.; Lin, A.; Weltmann, K.-D.; Wende, K.; Bogaerts, A.; Bekeschus, S.
Title ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy Type A1 Journal article
Year 2019 Publication Oxidative medicine and cellular longevity Abbreviated Journal Oxid Med Cell Longev
Volume 2019 Issue Pages 1-29
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Physical plasmas generate unique mixes of reactive oxygen and nitrogen species (RONS or ROS). Only a bit more than a decade ago, these plasmas, operating at body temperature, started to be considered for medical therapy with considerably little mechanistic redox chemistry or biomedical research existing on that topic at that time. Today, a vast body of evidence is available on physical plasma-derived ROS, from their spatiotemporal resolution in the plasma gas phase to sophisticated chemical and biochemical analysis of these species once dissolved in liquids. Data from<italic>in silico</italic>analysis dissected potential reaction pathways of plasma-derived reactive species with biological membranes, and<italic>in vitro</italic>and<italic>in vivo</italic>experiments in cell and animal disease models identified molecular mechanisms and potential therapeutic benefits of physical plasmas. In 2013, the first medical plasma systems entered the European market as class IIa devices and have proven to be a valuable resource in dermatology, especially for supporting the healing of chronic wounds. The first results in cancer patients treated with plasma are promising, too. Due to the many potentials of this blooming new field ahead, there is a need to highlight the main concepts distilled from plasma research in chemistry and biology that serve as a mechanistic link between plasma physics (how and which plasma-derived ROS are produced) and therapy (what is the medical benefit). This inevitably puts cellular membranes in focus, as these are the natural interphase between ROS produced by plasmas and translation of their chemical reactivity into distinct biological responses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000493001000003 Publication Date 2019-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-0900 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.593 Times cited Open Access
Notes (down) KW and SB acknowledge funding by the German Federal Ministry of Education and Research (grant numbers 03Z22DN11 and 03Z22DN12). The work of SB is further supported by the European Social Fund (grant number ESF/14-BM-A55-0006). APM and AB acknowledge funding by the Methusalem Project. AL acknowledges funding from the Research Foundation Flanders (grant number 12S9218N). APM thanks Yury Gorbanev for his assistance with the preparation of this review. Approved Most recent IF: 4.593
Call Number PLASMANT @ plasmant @c:irua:163476 Serial 5373
Permanent link to this record