toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Elia, A.; De Wael, K.; Dowsett, M.; Adriaens, A. doi  openurl
  Title Electrochemical deposition of a copper carboxylate layer on copper as potential corrosion inhibitor Type A1 Journal article
  Year 2011 Publication Journal of solid state electrochemistry Abbreviated Journal J Solid State Electr  
  Volume 16 Issue 1 Pages 143-148  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Carboxylic acids and sodium carboxylates are used to protect metals against aqueous and atmospheric corrosion. In this paper, we describe the application of a layer of copper carboxylate on the surface of a copper electrode by means of cyclic voltammetry technique and tests which measure the corresponding resistance to aqueous corrosion. Unlike the soaking process, which also forms a film on the surface, the use of cyclic voltammetry allows one to follow the deposition process of the copper carboxylates onto the electrode. The modified electrodes have been characterised with infrared spectroscopy. In addition, the corrosion resistance of the film has been investigated using polarisation resistance and Tafel plot measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298651700018 Publication Date 2011-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-8488 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.316 Times cited 8 Open Access  
  Notes (down) ; Authors would like to acknowledge the Research Foundation-Flanders (FWO) for funding assistance (A. Elia is a FWO aspirant) and V. Vermeersch and S. Van Vlierberghe (Ghent University, Polymer Chemistry and Biomaterials Research Group) for the FTIR-ATR measurements. ; Approved Most recent IF: 2.316; 2011 IF: 2.131  
  Call Number UA @ admin @ c:irua:89618 Serial 5588  
Permanent link to this record
 

 
Author Vishwakarma, M.; Varandani, D.; Hendrickx, M.; Hadermann, J.; Mehta, B.R. url  doi
openurl 
  Title Nanoscale photovoltage mapping in CZTSe/CuxSe heterostructure by using kelvin probe force microscopy Type A1 Journal article
  Year 2020 Publication Materials Research Express Abbreviated Journal  
  Volume 7 Issue 1 Pages 016418  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present work, kelvin probe force microscopy (KPFM) technique has been used to study the CZTSe/CuxSe bilayer interface prepared by multi-step deposition and selenization process of metal precursors. Transmission electron microscopy (TEM) confirmed the bilayer configuration of the CZTSe/CuxSe sample. Two configuration modes (surface mode and junction mode) in KPFM have been employed in order to measure the junction voltage under illumination conditions. The results show that CZTSe/CuxSe has small junction voltage of similar to 21 mV and the presence of CuxSe secondary phase in the CZTSe grain boundaries changes the workfunction of the local grain boundaries region. The negligible photovoltage difference between grain and grain boundaries in photovoltage image indicates that CuxSe phase deteriorates the higher photovoltage at grain boundaries normally observed in CZTSe based device. These results can be important for understanding the role of secondary phases in CZTSe based junction devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520120900001 Publication Date 2019-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes (down) ; Authors acknowledges support provided DST in the forms of InSOL and Indo-Swiss projects. We also acknowledge Joke Hadermann EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Belgium for helping in TEM measurements. M V Manoj Vishwakarma acknowledges IIT Delhi for MHRD fellowship. Prof B R Mehta acknowledges the support of the Schlumberger chair professorship. M V also acknowledges the support of DST-FIST Raman facility. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:167843 Serial 6567  
Permanent link to this record
 

 
Author Vishwakarma, M.; Agrawal, K.; Hadermann, J.; Mehta, B.R. pdf  url
doi  openurl
  Title Investigating the effect of sulphurization on volatility of compositions in Cu-poor and Sn-rich CZTS thin films Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 507 Issue Pages 145043  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present work, the Cu-poor and Sn-rich CZTS thin films were prepared in order to study the volatility of Sn with respect to other components. Thin film compositions were kept intentionally Sn-rich to understand the behaviour of loss and segregation of Sn during sulphurization. The homogeneous composition distribution in precursor thin films turns heterogeneous with a change in morphology after sulphurization. The inability of identifying nanoscale secondary phases in CZTS thin film by conventional analytical techniques such as XRD and Raman, can be fulfilled by employing HAADF-STEM analysis. XPS and HAADF-STEM analyses provide the quantification of nanoscale secondary phases across the thin film and surface, respectively. The volatility of Sn was revealed in the form of segregation in the middle layer of CZTS cross-sectional lamella rather than loss to annealing atmosphere. It was observed that among the cations of CZTS, Sn segregates more than Cu, while Zn segregates least. The nanoscale spurious phases were observed to vary across different regions in the sulphurized CZTS sample. The reactive annealing lead to grain growth and formation of grain boundary features in the CZTS thin films, where annealing significantly modifies the potential difference and band bending at grain boundaries with respect to intra-grains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520021200053 Publication Date 2019-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 4 Open Access OpenAccess  
  Notes (down) ; Authors acknowledges support provided by DST, India in the forms of InSOL project. We also acknowledge Dr. Indrani Mishra for XPS measurements and DST-FIST Raman facility for Raman measurements. Manoj Vishwakarma acknowledges IIT Delhi, New Delhi, India for MHRD fellowship. Prof. B.R. Mehta acknowledges the support of the Schlumberger chair professorship. ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:168603 Serial 6552  
Permanent link to this record
 

 
Author Berends, A.C.; van der Stam, W.; Hofmann, J.P.; Bladt, E.; Meeldijk, J.D.; Bals, S.; de Donega, C.M. url  doi
openurl 
  Title Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS2 nanocrystals Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 30 Pages 2400-2413  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract ZnS shelling of I-III-VI(2 )nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I-III-VI2 colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS2 NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 degrees C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI2 ) and high reaction temperatures (210 degrees C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000430023700027 Publication Date 2018-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 85 Open Access OpenAccess  
  Notes (down) ; Annelies van der Bok is gratefully acknowledged for performing the ICP measurements. A.C.B. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant No. ECHO.712.014.001. S.B. and E.B. acknowledge financial support from European Research Council (ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:150772UA @ admin @ c:irua:150772 Serial 4972  
Permanent link to this record
 

 
Author Benetti, G.; Caddeo, C.; Melis, C.; Ferrini, G.; Giannetti, C.; Winckelmans, N.; Bals, S.; J Van Bael, M.; Cavaliere, E.; Gavioli, L.; Banfi, F. pdf  url
doi  openurl
  Title Bottom-Up Mechanical Nanometrology of Granular Ag Nanoparticles Thin Films Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 22434-22441  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ultrathin metal nanoparticles coatings, synthesized by gas-phase deposition, are emerging as go-to materials in a variety of fields ranging from pathogens control, sensing to energy storage. Predicting their morphology and mechanical properties beyond a trial-and-error approach is a crucial issue limiting their exploitation in real-life applications. The morphology and mechanical properties of Ag nanoparticles ultrathin films, synthesized by supersonic cluster beam deposition, are here assessed adopting a bottom-up, multi-technique approach. A virtual film model is proposed merging high resolution scanning transmission electron microscopy, supersonic cluster beam dynamics and molecular dynamics simulations. The model is validated against mechanical nanometrology measurements and is readily extendable to metals other than Ag. The virtual film is shown to be a flexible and reliable predictive tool to access morphology-dependent properties such as mesoscale gas-dynamics and elasticity of ultrathin films synthesized by gas-phase deposition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413131700072 Publication Date 2017-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 30 Open Access OpenAccess  
  Notes (down) ; All authors thank Prof. Dr. Luciano Colombo for enlightening discussions. C.C. and F.B. acknowledge financial support from the MIUR Futuro in ricerca 2013 Grant in the frame of the ULTRANANO Project (Project No. RBFR13NEA4). F.B., G.F., and C.G. acknowledge support from Universita Cattolica del Sacro Cuore through D.2.2 and D.3.1 grants. F.B. acknowledges financial support from Fondazione E.U.L.O. The authors acknowledge financial support from the European Union through the seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). ; Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:145828UA @ admin @ c:irua:145828 Serial 4706  
Permanent link to this record
 

 
Author Kertik, A.; Wee, L.H.; Pfannmöller, M.; Bals, S.; Martens, J.A.; Vankelecom, I.F.J. pdf  url
doi  openurl
  Title Highly selective gas separation membrane using in situ amorphised metal-organic frameworks Type A1 Journal article
  Year 2017 Publication Energy & environmental science Abbreviated Journal Energ Environ Sci  
  Volume 10 Issue 10 Pages 2342-2351  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Conventional carbon dioxide (CO2) separation in the petrochemical industry via cryogenic distillation is energy intensive and environmentally unfriendly. Alternatively, polymer membrane-based separations are of significant interest owing to low production cost, low-energy consumption and ease of upscaling. However, the implementation of commercial polymeric membranes is limited by their permeability and selectivity trade-off and the insufficient thermal and chemical stability. Herein, a novel type of amorphous mixed matrix membrane (MMM) able to separate CO2/CH4 mixtures with the highest selectivities ever reported for MOF based MMMs is presented. The MMM consists of an amorphised metal-organic framework (MOF) dispersed in an oxidatively cross-linked matrix achieved by fine tuning of the thermal treatment temperature in air up to 350 degrees C which drastically boosts the separation properties of the MMM. Thanks to the protection of the surrounding polymer, full oxidation of this MOF (i.e. ZIF-8) is prevented, and amorphisation of the MOF is realized instead, thus in situ creating a molecular sieve network. In addition, the treatment also improves the filler-polymer adhesion and induces an oxidative cross-linking of the polyimide matrix, resulting in MMMs with increased stability or plasticization resistance at high pressure up to 40 bar, marking a new milestone as new molecular sieve MOF MMMs for challenging natural gas purification applications. A new field for the use of amorphised MOFs and a variety of separation opportunities for such MMMs are thus opened.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414774500007 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited 122 Open Access OpenAccess  
  Notes (down) ; A.K. acknowledges financial support from the Erasmus-Mundus Doctorate in Membrane Engineering (EUDIME) Programme. L.H.W. thanks the FWO-Vlaanderen for a postdoctoral research fellowship (12M1415N). M. P. acknowledges financial support by the FP7 European project SUNFLOWER (FP7 #287594). S. B. acknowledges financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS). J. A. M. gratefully acknowledges financial supports from the Flemish Government for long-term Methusalem funding. J. A. M. and I. F. J. V. acknowledge the Belgian Government for IAP-PAI networking. A. K. would also like to thank Frank Mathijs for the mechanical tests, Roy Bernstein for the XPS analysis and Lien Telen and Bart Goderis for the DSC measurements. We thank Verder Scientific Benelux for providing the service of ZIF-8 ball milling. ; ecas_sara Approved Most recent IF: 29.518  
  Call Number UA @ lucian @ c:irua:147399UA @ admin @ c:irua:147399 Serial 4879  
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Peeters, F.M. pdf  doi
openurl 
  Title Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 10 Pages 3258-3266  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES)  
  Abstract Chemisorption of hydrogen on graphene is studied using atomistic simulations with the second generation of reactive empirical bond order Brenner inter-atomic potential. The lowest energy adsorption sites and the most important metastable sites are determined. The H concentration is varied from a single H atom, to clusters of H atoms up to full coverage. We found that when two or more H atoms are present, the most stable configurations of H chemisorption on a single graphene layer are ortho hydrogen pairs adsorbed on one side or on both sides of the graphene sheet. The latter has the highest hydrogen binding energy. The next stable configuration is the orthopara pair combination, and then para hydrogen pairs. The structural changes of graphene caused by chemisorbed hydrogen are discussed and are compared with existing experimental data and other theoretical calculations. The obtained results will be useful for nanoengineering of graphene by hydrogenation and for hydrogen storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000291959300014 Publication Date 2011-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 46 Open Access  
  Notes (down) ; A.D. thanks M.W. Zhao for a useful correspondence. This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:90877 Serial 3275  
Permanent link to this record
 

 
Author Wendelen, W.; Dzhurakhalov, A.A.; Peeters, F.M.; Bogaerts, A. pdf  doi
openurl 
  Title Combined molecular dynamics: continuum study of phase transitions in bulk metals under ultrashort pulsed laser irradiation Type A1 Journal article
  Year 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 114 Issue 12 Pages 5652-5660  
  Keywords A1 Journal article; Integrated Molecular Plant Physiology Research (IMPRES); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The phase transition processes induced by ultrashort, 100 fs pulsed laser irradiation of Au, Cu, and Ni are studied by means of a combined atomistic-continuum approach. A moderately low absorbed laser fluence range, from 200 to 600 J/m2 is considered to study phase transitions by means of a local and a nonlocal order parameter. At low laser fluences, the occurrence of layer-by-layer evaporation has been observed, which suggests a direct solid to vapor transition. The calculated amount of molten material remains very limited under the conditions studied, especially for Ni. Therefore, our results show that a kinetic equation that describes a direct solid to vapor transition might be the best approach to model laser-induced phase transitions by continuum models. Furthermore, the results provide more insight into the applicability of analytical superheating theories that were implemented in continuum models and help the understanding of nonequilibrium phase transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000275855600044 Publication Date 2010-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 2 Open Access  
  Notes (down) ; A.D. gratefully acknowledges Professor M. Hot (ULB, Brussels) for the basic MD-code that was modified further for the laser-induced melting processes. W.W, and A.D. are thankful to Professor L.V. Zhigilei for useful discussions and advices. The calculations were performed on the CALCUA computing facility of the University of Antwerp. This work was supported by the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524  
  Call Number UA @ lucian @ c:irua:81391 Serial 402  
Permanent link to this record
 

 
Author Barhoum, A.; Van Assche, G.; Rahier, H.; Fleisch, M.; Bals, S.; Delplancked, M.-P.; Leroux, F.; Bahnemann, D. pdf  doi
openurl 
  Title Sol-gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism Type A1 Journal article
  Year 2017 Publication Materials & design Abbreviated Journal Mater Design  
  Volume 119 Issue 119 Pages 270-276  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Despite the enormous interest in the properties and applications of porous silica matrix, only a few attempts have been reported to deposit metal and metal oxide nanoparticles (NPs) inside the porous silica matrix. We report a simple approach (i.e. sol-gel hot injection) for insitu synthesis of ZnO NPs inside a porous silica matrix. Control of the Zn:Si molar ratio, reaction temperature, pH value, and annealing temperature permits formation of ZnO NPs (<= 10 nm) inside a porous silica particles, without additives or organic solvents. Results revealed that a solid state reaction inside the ZnO/SiO2 nanocomposites occurs with increasing the annealing temperature. The reaction of ZnO NPs with SiO2 matrix was insignificant up to approximately 500 degrees C. However, ZnO NPs react strongly with the silica matrix when the nanocomposites are annealed at temperatures above 700 degrees C. Extensive annealing of the ZnO/SiO2 nanocomposite at 900 degrees C yields 3D structures made of 500 nm rod-like, 5-7 pm tube-like and 35 pm needle-like Zn2SiO4 crystals. A possible mechanism for forming ZnO NPs inside porous silica matrix and phase transformation of the ZnO/SiO2 nanocomposites into 3D architectures of Zn2SiO4 are carefully discussed. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397360000030 Publication Date 2017-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.364 Times cited 43 Open Access Not_Open_Access  
  Notes (down) ; A.B. would like to thank FWO – Research Foundation Flanders (grant no. V450315N) and the Strategic Initiative Materials in Flanders (SBO-project no. 130529 – INSITU) for financial support. TEM and TEM-EDX analyses were performed by Dr. F. Leroux (EMAT, Universiteit Antwerpen). XRD and DSC measurements were performed by T. Segato (4MAT, Universite Libre de Bruxelles). Notes: the authors declare no competing for financial interest. ; Approved Most recent IF: 4.364  
  Call Number UA @ lucian @ c:irua:142394UA @ admin @ c:irua:142394 Serial 4689  
Permanent link to this record
 

 
Author Varykhalov, A.; Marchenko, D.; Sanchez-Barriga, J.; Scholz, M.R.; Verberck, B.; Trauzettel, B.; Wehling, T.O.; Carbone, C.; Rader, O. url  doi
openurl 
  Title Intact dirac cones at broken sublattice symmetry : photoemission study of graphene on Ni and Co Type A1 Journal article
  Year 2012 Publication Physical review X Abbreviated Journal Phys Rev X  
  Volume 2 Issue 4 Pages 041017-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The appearance of massless Dirac fermions in graphene requires two equivalent carbon sublattices of trigonal shape. While the generation of an effective mass and a band gap at the Dirac point remains an unresolved problem for freestanding extended graphene, it is well established by breaking translational symmetry by confinement and by breaking sublattice symmetry by interaction with a substrate. One of the strongest sublattice-symmetry-breaking interactions with predicted and measured band gaps ranging from 400 meV to more than 3 eV has been attributed to the interfaces of graphene with Ni and Co, which are also promising spin-filter interfaces. Here, we apply angle-resolved photoemission to epitaxial graphene on Ni (111) and Co(0001) to show the presence of intact Dirac cones 2.8 eV below the Fermi level. Our results challenge the common belief that the breaking of sublattice symmetry by a substrate and the opening of the band gap at the Dirac energy are in a straightforward relation. A simple effective model of a biased bilayer structure composed of graphene and a sublattice-symmetry-broken layer, corroborated by density-functional-theory calculations, demonstrates the general validity of our conclusions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication College Park, Md Editor  
  Language Wos 000312703200001 Publication Date 2012-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2160-3308; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.789 Times cited 86 Open Access  
  Notes (down) ; A. V. acknowledges helpful discussions with N. Sandler. This work was supported by SPP 1459 of the Deutsche Forschungsgemeinschaft. B. V. acknowledges support from the Research Foundation Flanders (FWO-Vlaanderen). B. T. and T. O. W. would like to thank the KITP at Santa Barbara for hospitality during the completion of this work. ; Approved Most recent IF: 12.789; 2012 IF: 6.711  
  Call Number UA @ lucian @ c:irua:105964 Serial 1677  
Permanent link to this record
 

 
Author de Sousa, A.A.; Chaves, A.; Pereira, T.A.S.; Farias, G.A.; Peeters, F.M. doi  openurl
  Title Quantum tunneling between bent semiconductor nanowires Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 174301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the electronic transport properties of two closely spaced L-shaped semiconductor quantum wires, for different configurations of the output channel widths as well as the distance between the wires. Within the effective-mass approximation, we solve the time-dependent Schrodinger equation using the split-operator technique that allows us to calculate the transmission probability, the total probability current, the conductance, and the wave function scattering between the energy subbands. We determine the maximum distance between the quantum wires below which a relevant non-zero transmission is still found. The transmission probability and the conductance show a strong dependence on the width of the output channel for small distances between the wires. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000364584200020 Publication Date 2015-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 7 Open Access  
  Notes (down) ; A. A. Sousa was financially supported by CAPES, under the PDSE Contract No. BEX 7177/13-5. T. A. S. Pereira was financially supported by PRONEX/CNPq/FAPEMAT 850109/2009 and by CAPES under process BEX 3299/13-9. This work was financially supported by PRONEX/CNPq/FUNCAP, the Science Without Borders program and the bilateral project CNPq-FWO. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:129544 Serial 4234  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Deng, S.; Kurttepeli, M.; Cott, D.J.; Vereecken, P.M.; Bals, S.; Martens, J.A.; Detavernier, C.; Lenaerts, S. pdf  url
doi  openurl
  Title Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates Type A1 Journal article
  Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 160 Issue Pages 204-210  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Supported carbon nanosheets and carbon nanotubes served as sacrificial templates for preparing spacious TiO2 photocatalytic thin films. Amorphous TiO2 was deposited conformally on the carbonaceous template material by atomic layer deposition (ALD). Upon calcination at 550 °C, the carbon template was oxidatively removed and the as-deposited continuous amorphous TiO2 layers transformed into interlinked anatase nanoparticles with an overall morphology commensurate to the original template structure. The effect of type of template, number of ALD cycles and gas residence time of pollutant on the photocatalytic activity, as well as the stability of the photocatalytic performance of these thin films was investigated. The TiO2 films exhibited excellent photocatalytic activity toward photocatalytic degradation of acetaldehyde in air as a model reaction for photocatalytic indoor air pollution abatement. Optimized films outperformed a reference film of commercial PC500.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000340687900024 Publication Date 2014-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 37 Open Access OpenAccess  
  Notes (down) 335078 Colouratom; Iap-Pai P7/05; Fwo; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446; 2014 IF: 7.435  
  Call Number UA @ lucian @ c:irua:117094 Serial 2608  
Permanent link to this record
 

 
Author Bladt, E.; Pelt, D.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Electron tomography based on highly limited data using a neural network reconstruction technique Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 158 Issue 158 Pages 81-88  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000361574800011 Publication Date 2015-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 25 Open Access OpenAccess  
  Notes (down) 335078 COLOURATOM; FWO; COST Action MP1207; 312483 ESTEEM2; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:126675 c:irua:126675 Serial 988  
Permanent link to this record
 

 
Author Rehor, I.; Lee, K.L.; Chen, K.; Hajek, M.; Havlik, J.; Lokajova, J.; Masat, M.; Slegerova, J.; Shukla, S.; Heidari, H.; Bals, S.; Steinmetz, N.F.; Cigler, P. pdf  url
doi  openurl
  Title Plasmonic nanodiamonds : targeted coreshell type nanoparticles for cancer cell thermoablation Type A1 Journal article
  Year 2015 Publication Advanced healthcare materials Abbreviated Journal Adv Healthc Mater  
  Volume 4 Issue 4 Pages 460-468  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, coreshell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell are designed and synthesized. The architecture of particles is analyzed and confirmed in detail using electron tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor are demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349961600014 Publication Date 2015-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2192-2640; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.11 Times cited 30 Open Access OpenAccess  
  Notes (down) 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 5.11; 2015 IF: 5.797  
  Call Number c:irua:125375 Serial 2647  
Permanent link to this record
 

 
Author Ennaert, T.; Geboers, J.; Gobechiya, E.; Courtin, C.M.; Kurttepeli, M.; Houthoofd, K.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Bals, S.; Jacobs, P.A.; Sels, B.F. pdf  url
doi  openurl
  Title Conceptual frame rationalizing the self-stabilization of H-USY zeolites in hot liquid water Type A1 Journal article
  Year 2015 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 5 Issue 5 Pages 754-768  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The wide range of liquid-phase reactions required for the catalytic conversion of biomass compounds into new bioplatform molecules defines a new set of challenges for the development of active, selective, and stable catalysts. The potential of bifunctional Ru/H-USY catalysts for conversions in hot liquid water (HLW) is assessed in terms of physicochemical stability and long-term catalytic performance of acid sites and noble metal functionality, as probed by hydrolytic hydrogenation of cellulose. It is shown that zeolite desilication is the main zeolite degradation mechanism in HLW. USY zeolite stability depends on two main parameters, viz., framework and extra-framework aluminum content. The former protects the zeolite lattice by counteracting hydrolysis of framework bonds, and the latter, when located at the external crystal surface, prevents solubilization of the zeolite framework which is the result of its low water-solubility. Hence, the hot liquid water stability of commercial H-USY zeolites, in contrast to their steam stability, increased with decreasing Si/AI ratio. As a result, mildly steamed USY zeolites containing a high amount of both Al species exhibit the highest resistance to HLW. During an initial period of transformations, Al-rich zeolites form additional protective extra-framework Al species at the outer surface, self-stabilizing the framework. A critical bulk Si/AI ratio of 3 was determined whereby USY zeolites with a lower Si/AI ratio will self-stabilize over time. Besides, due to the initial transformation period, the accessibility of the catalytic active sites is extensively enhanced resulting in a material that is more stable and drastically more accessible to large substrates than the original zeolite. When these findings are applied in the hydrolytic hydrogenation of cellulose, unprecedented nearly quantitative hexitol yields were obtained with a stable catalytic system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349275300031 Publication Date 2014-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435;2155-5435; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 65 Open Access OpenAccess  
  Notes (down) 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 10.614; 2015 IF: 9.312  
  Call Number c:irua:125288 Serial 474  
Permanent link to this record
 

 
Author Sheng, X.; Daems, N.; Geboes, B.; Kurttepeli, M.; Bals, S.; Breugelmans, T.; Hubin, A.; Vankelecom, I.F.J.; Pescarmona, P.P. pdf  url
doi  openurl
  Title N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2 Type A1 Journal article
  Year 2015 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 176-177 Issue 176-177 Pages 212-224  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A new, two-step nanocasting method was developed to prepare N-doped ordered mesoporous carbon (NOMC) electrocatalysts for the reduction of O2 to H2O2. Our strategy involves the sequential pyrolysis of two inexpensive and readily available N and C precursors, i.e. aniline and dihydroxynaphthalene (DHN), inside the pores of a SBA-15 hard silica template to obtain N-doped graphitic carbon materials with well-ordered pores and high surface areas (764 and 877 m2g−1). By tuning the ratio of carbon sources to silica template, it was possible to achieve an optimal filling of the pores of the SBA-15 silica and to minimise carbon species outside the pores. These NOMC materials displayed outstanding electrocatalytic activity in the oxygen reduction reaction, achieving a remarkably enhanced kinetic current density compared to state-of-the-art N-doped carbon materials (−16.7 mA cm−2 at −0.35 V vs. Ag/AgCl in a 0.1 M KOH solution as electrolyte). The NOMC electrocatalysts showed high selectivity toward the two-electron reduction of oxygen to hydrogen peroxide and excellent long-term stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000356549200022 Publication Date 2015-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 111 Open Access OpenAccess  
  Notes (down) 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446; 2015 IF: 7.435  
  Call Number c:irua:125370 Serial 2246  
Permanent link to this record
 

 
Author Mourdikoudis, S.; Chirea, M.; Zanaga, D.; Altantzis, T.; Mitrakas, M.; Bals, S.; Marzán, L.M.; Pérez-Juste, J.; Pastoriza-Santos, I. url  doi
openurl 
  Title Governing the morphology of PtAu heteronanocrystals with improved electrocatalytic performance Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 7 Issue 7 Pages 8739-8747  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Platinumgold heteronanostructures comprising either dimer (PtAu) or coresatellite (Pt@Au) configurations were synthesized by means of a seeded growth procedure using platinum nanodendrites as seeds. Careful control of the reduction kinetics of the gold precursor can be used to direct the nucleation and growth of gold nanoparticles on either one or multiple surface sites simultaneously, leading to the formation of either dimers or coresatellite nanoparticles, respectively, in high yields. Characterization by electron tomography and high resolution electron microscopy provided a better understanding of the actual three-dimensional particle morphology, as well as the AuPt interface, revealing quasi-epitaxial growth of Au on Pt. The prepared PtAu bimetallic nanostructures are highly efficient catalysts for ethanol oxidation in alkaline solution, showing accurate selectivity, high sensitivity, and improved efficiency by generating higher current densities than their monometallic counterparts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000354204400011 Publication Date 2015-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 41 Open Access OpenAccess  
  Notes (down) 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number c:irua:126354 Serial 1360  
Permanent link to this record
 

 
Author van der Stam, W.; Berends, A.C.; Rabouw, F.T.; Willhammar, T.; Ke, X.; Meeldijk, J.D.; Bals, S.; de Donega, C.M. pdf  url
doi  openurl
  Title Luminescent CuInS2 quantum dots by partial cation exchange in Cu2-xS nanocrystals Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 621-628  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Here, we show successful partial cation exchange reactions in Cu2-xS nanocrystals (NCs) yielding luminescent CuInS2 (CIS) NCs. Our approach of mild reaction conditions ensures slow Cu extraction rates, which results in a balance with the slow In incorporation rate. With this method, we obtain CIS NCs with photoluminescence (PL) far in the near-infrared (NIR), which cannot be directly synthesized by currently available synthesis protocols. We discuss the factors that favor partial, self-limited cation exchange from Cu2-xS to CIS NCs, rather than complete cation exchange to In2S3. The product CIS NCs have the wurtzite crystal structure, which is understood in terms of conservation of the hexagonal close packing of the anionic sublattice of the parent NCs into the product NCs. These results are an important step toward the design of CIS NCs with sizes and shapes that are not attainable by direct synthesis protocols and may thus impact a number of potential applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348618400028 Publication Date 2014-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 119 Open Access OpenAccess  
  Notes (down) 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:125291 Serial 1858  
Permanent link to this record
 

 
Author van der Stam, W.; Akkerman, Q.A.; Ke, X.; van Huis, M.A.; Bals, S.; de Donega, C.M. pdf  url
doi  openurl
  Title Solution-processable ultrathin size- and shape-controlled colloidal Cu2-xS nanosheets Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 283-291  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ultrathin two-dimensional (2D) nanosheets (NSs) possess extraordinary properties that are attractive for both fundamental studies and technological devices. Solution-based bottom-up methods are emerging as promising routes to produce free-standing NSs, but the synthesis of colloidal NSs with well-defined size and shape has remained a major challenge. In this work, we report a novel method that yields 2 nm thick colloidal Cu2-xS NSs with well-defined shape (triangular or hexagonal) and size (100 nm to 3 mu m). The key feature of our approach is the use of a synergistic interaction between halides (Br or Cl) and copper-thiolate metal-organic frameworks to create a template that imposes 2D constraints on the Cu-catalyzed C-S thermolysis, resulting in nucleation and growth of colloidal 2D Cu2-xS NSs. Moreover, the NS composition can be postsynthetically tailored by exploiting topotactic cation exchange reactions. This is illustrated by converting the Cu2-xS NSs into ZnS and CdS NSs while preserving their size and shape. The method presented here thus holds great promise as a route to solution-processable compositionally diverse ultrathin colloidal NSs with well-defined shape and size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348085300036 Publication Date 2014-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 68 Open Access OpenAccess  
  Notes (down) 335078 Colouratom; 246791 Countatoms; 312483 Esteem2; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:123865 c:irua:123865 Serial 3052  
Permanent link to this record
 

 
Author Khaletskaya, K.; Turner, S.; Tu, M.; Wannapaiboon, S.; Schneemann, A.; Meyer, R.; Ludwig, A.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Self-directed localization of ZIF-8 thin film formation by conversion of ZnO nanolayers Type A1 Journal article
  Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 24 Issue 30 Pages 4804-4811  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Control of localized metal-organic framework (MOF) thin film formation is a challenge. Zeolitic imidazolate frameworks (ZIFs) are an important sub-class of MOFs based on transition metals and imidazolate linkers. Continuous coatings of intergrown ZIF crystals require high rates of heterogeneous nucleation. In this work, substrates coated with zinc oxide layers are used, obtained by atomic layer deposition (ALD) or by magnetron sputtering, to provide the Zn2+ ions required for nucleation and localized growth of ZIF-8 films ([Zn(mim)(2)]; Hmim = 2-methylimidazolate). The obtained ZIF-8 films reveal the expected microporosity, as deduced from methanol adsorption studies using an environmentally controlled quartz crystal microbalance (QCM) and comparison with bulk ZIF-8 reference data. The concept is transferable to other MOFs, and is applied to the formation of [Al(OH)(1,4-ndc)](n) (ndc = naphtalenedicarboxylate) thin films derived from Al2O3 nanolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000340549900010 Publication Date 2014-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 77 Open Access  
  Notes (down) 312483 Esteem2; Fwo; esteem2_ta Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:119215 Serial 2975  
Permanent link to this record
 

 
Author Egoavil, R.; Huehn, S.; Jungbauer, M.; Gauquelin, N.; Béché, A.; Van Tendeloo, G.; Verbeeck; Moshnyaga, V. pdf  url
doi  openurl
  Title Phase problem in the B-site ordering of La2CoMnO6 : impact on structure and magnetism Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 7 Issue 7 Pages 9835-9843  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial double perovskite La2CoMnO6 (LCMO) films were grown by metalorganic aerosol deposition on SrTiO3(111) substrates. A high Curie temperature, T-C = 226 K, and large magnetization close to saturation, M-S(5 K) = 5.8 mu(B)/f.u., indicate a 97% degree of B-site (Co,Mn) ordering within the film. The Co/Mn ordering was directly imaged at the atomic scale by scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDX). Local electron-energy-loss spectroscopy (EELS) measurements reveal that the B-sites are predominantly occupied by Co2+ and Mn4+ ions in quantitative agreement with magnetic data. Relatively small values of the (1/2 1/2 1/2) superstructure peak intensity, obtained by X-ray diffraction (XRD), point out the existence of ordered domains with an arbitrary phase relationship across the domain boundary. The size of these domains is estimated to be in the range 35-170 nm according to TEM observations and modelling the magnetization data. These observations provide important information towards the complexity of the cation ordering phenomenon and its implications on magnetism in double perovskites, and similar materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000354983100060 Publication Date 2015-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 37 Open Access  
  Notes (down) 312483 ESTEEM2; FWO G004413N; 246102 IFOX; Hercules; esteem2_jra3 Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number c:irua:126423 c:irua:126423 Serial 2586  
Permanent link to this record
 

 
Author Angelakeris, M.; Li, Z.A.; Hilgendorff, M.; Simeonidis, K.; Sakellari, D.; Filippousi, M.; Tian, H.; Van Tendeloo, G.; Spasova, M.; Acet, M.; Farle, M. pdf  url
doi  openurl
  Title Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles Type A1 Journal article
  Year 2015 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 381 Issue 381 Pages 179-187  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Biomedical nanomagnetic carriers are getting a higher impact in therapy and diagnosis schemes while their constraints and prerequisites are more and more successfully confronted. Such particles should possess a well-defined size with minimum agglomeration and they should be synthesized in a facile and reproducible high-yield way together with a controllable response to an applied static or dynamic field tailored for the specific application. Here, we attempt to enhance the heating efficiency in magnetic particle hyperthermia treatment through the proper adjustment of the core-shell morphology in ferrite particles, by controlling exchange and dipolar magnetic interactions at the nanoscale. Thus, core-shell nanoparticles with mutual coupling of magnetically hard (CoFe2O4) and soft (MnFe2O4) components are synthesized with facile synthetic controls resulting in uniform size and shell thickness as evidenced by high resolution transmission electron microscopy imaging, excellent crystallinity and size monodispersity. Such a magnetic coupling enables the fine tuning of magnetic anisotropy and magnetic interactions without sparing the good structural, chemical and colloidal stability. Consequently, the magnetic heating efficiency of CoFe2O4. and MnFe2O4 core-shell nanoparticles is distinctively different horn that of their counterparts, even though all these nanocrystals were synthesized under similar conditions. For better understanding of the AC magnetic hyperthermia response and its correlation with magnetic-origin features we study the effect of the volume ratio of magnetic hard and soft phases in the bimagnetic core-shell nanocrystals. Eventually, such particles may be considered as novel heating carriers that under further biomedical functionalization may become adaptable multifunctional heat-triggered nanoplatforms. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000349361100027 Publication Date 2014-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 20 Open Access  
  Notes (down) 312483 Esteem2; Esteem2_ta Approved Most recent IF: 2.63; 2015 IF: 1.970  
  Call Number c:irua:125284 c:irua:125284 Serial 1049  
Permanent link to this record
 

 
Author Krause, F.F.; Ahl, J.P.; Tytko, D.; Choi, P.P.; Egoavil, R.; Schowalter, M.; Mehrtens, T.; Müller-Caspary, K.; Verbeeck, J.; Raabe, D.; Hertkorn, J.; Engl, K.; Rosenauer, A. pdf  url
doi  openurl
  Title Homogeneity and composition of AlInGaN : a multiprobe nanostructure study Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 156 Issue 156 Pages 29-36  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electronic properties of quaternary AlInGaN devices significantly depend on the homogeneity of the alloy. The identification of compositional fluctuations or verification of random-alloy distribution is hence of grave importance. Here, a comprehensive multiprobe study of composition and compositional homogeneity is presented, investigating AlInGaN layers with indium concentrations ranging from 0 to 17 at% and aluminium concentrations between 0 and 39 at% employing high-angle annular dark field scanning electron microscopy (HAADF STEM), energy dispersive X-ray spectroscopy (EDX) and atom probe tomography (APT). EDX mappings reveal distributions of local concentrations which are in good agreement with random alloy atomic distributions. This was hence investigated with HAADF STEM by comparison with theoretical random alloy expectations using statistical tests. To validate the performance of these tests, HAADF STEM image simulations were carried out for the case of a random-alloy distribution of atoms and for the case of In-rich clusters with nanometer dimensions. The investigated samples, which were grown by metal-organic vapor phase epitaxy (MOVPE), were thereby found to be homogeneous on this nanometer scale. Analysis of reconstructions obtained from APT measurements yielded matching results. Though HAADF STEM only allows for the reduction of possible combinations of indium and aluminium concentrations to the proximity of isolines in the two-dimensional composition space. The observed ranges of composition are in good agreement with the EDX and APT results within the respective precisions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000361001800006 Publication Date 2015-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 11 Open Access  
  Notes (down) 312483 Esteem2; esteem2_ta Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:126965 c:irua:126965UA @ admin @ c:irua:126965 Serial 1485  
Permanent link to this record
 

 
Author Jones, L.; Yang, H.; Pennycook, T.J.; Marshall, M.S.J.; Van Aert, S.; Browning, N.D.; Castell, M.R.; Nellist, P.D. pdf  url
doi  openurl
  Title Smart Align : a new tool for robust non-rigid registration of scanning microscope data Type A1 Journal article
  Year 2015 Publication Advanced Structural and Chemical Imaging Abbreviated Journal  
  Volume 1 Issue 1 Pages 8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias-voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the careful alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000218507000008 Publication Date 2015-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2198-0926; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 131 Open Access  
  Notes (down) 312483 Esteem2; esteem2_jra2 Approved Most recent IF: NA  
  Call Number c:irua:126944 c:irua:126944 Serial 3043  
Permanent link to this record
 

 
Author Hoek, M.; Coneri, F.; Poccia, N.; Renshaw Wang, X.; Ke, X.; Van Tendeloo, G.; Hilgenkamp, H. pdf  url
doi  openurl
  Title Strain accommodation through facet matching in La1.85Sr0.15CuO4/Nd1.85Ce0.15CuO4 ramp-edge junctions Type A1 Journal article
  Year 2015 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 3 Issue 3 Pages 086101  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Scanning nano-focused X-ray diffraction and high-angle annular dark-field scanning transmission electron microscopy are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd1.85Ce0.15CuO4 and superconducting hole-doped La1.85Sr0.15CuO4 thin films, the latter being the top layer. On the ramp, a new growth mode of La1.85Sr0.15CuO4 with a 3.3° tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360656800009 Publication Date 2015-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 4 Open Access  
  Notes (down) 312483 Esteem2; 246791 Countatoms; esteem2_jra2 Approved Most recent IF: 4.335; 2015 IF: NA  
  Call Number c:irua:127690 c:irua:127690 Serial 3163  
Permanent link to this record
 

 
Author Lentijo-Mozo, S.; Tan, R.P.; Garcia-Marcelot, C.; Altantzis, T.; Fazzini, P.F.; Hungria, T.; Cormary, B.; Gallagher, J.R.; Miller, J.T.; Martinez, H.; Schrittwieser, S.; Schotter, J.; Respaud, M.; Bals, S.; Van Tendeloo, G.; Gatel, C.; Soulantica, K. pdf  url
doi  openurl
  Title Air- and water-resistant noble metal coated ferromagnetic cobalt nanorods Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 2792-2804  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering them air- and water-resistant, while conserving the monocrystallity, metallicity and the magnetic properties of the Co core. Thus, the as-synthesized coreshell ferromagnetic nanorods combine high magnetization and strong uniaxial magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes of high magnetization and anisotropic shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000351791800055 Publication Date 2015-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 25 Open Access OpenAccess  
  Notes (down) 312483 Esteem2; 246791 Countatoms; 335078 Colouratom; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:125380 c:irua:125380 Serial 87  
Permanent link to this record
 

 
Author El-Gogary, R.I.; Rubio, N.; Wang, J.T.W.; Al-Jamal, W.T.; Bourgognon, M.; Kafa, H.; Naeem, M.; Klippstein, R.; Abbate, V.; Leroux, F.; Bals, S.; Van Tendeloo, G.; Kamel, A.O.; Awad, G.A.S.; Mortada, N.D.; Al-Jamal, K.T.; doi  openurl
  Title Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 2 Pages 1384-1401  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this work we describe the formulation and characterization of chemically modified polymeric nanocapsules incorporating the anticancer drug, quercetin, for the passive and active targeting to tumors. Folic acid was conjugated to poly(lactide-co-glycolide) (PLGA) polymer to facilitate active targeting to cancer cells. Two different methods for the conjugation of PLGA to folic acid were employed utilizing polyethylene glycol (PEG) as a spacer. Characterization of the conjugates was performed using FTIR and H-1 NMR studies. The PEG and folk acid content was independent of the conjugation methodology employed. PEGylation has shown to reduce the size of the nanocapsule; moreover, zeta-potential was shown to be polymer-type dependent. Comparative studies on the cytotoxicity and cellular uptake of the different formulations by He La cells, in the presence and absence of excess folic acid, were carried out using MTT assay and Confocal Laser Scanning Microscopy, respectively. Both results confirmed the selective uptake and cytotoxicity of the folic acid targeted nanocapsules to the folate enriched cancer cells in a folate-dependent manner. Finally, the passive tumor accumulation and the active targeting of the nanocapsules to folate-expressing cells were confirmed upon intravenous administration in He La or IGROV-1 tumor-bearing mice. The developed nanocapsules provide a system for targeted delivery of a range of hydrophobic anticancer drugs in vivo.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332059200032 Publication Date 2014-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 144 Open Access Not_Open_Access  
  Notes (down) 290023 Raddel; 262348 Esmi; Iap-Pai Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:115862 Serial 2670  
Permanent link to this record
 

 
Author Guerrero, A.; Heidari, H.; Ripolles, T.S.; Kovalenko, A.; Pfannmöller, M.; Bals, S.; Kauffmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G. pdf  url
doi  openurl
  Title Shelf life degradation of bulk heterojunction solar cells : intrinsic evolution of charge transfer complex Type A1 Journal article
  Year 2015 Publication Laser physics review Abbreviated Journal Adv Energy Mater  
  Volume 5 Issue 5 Pages 1401997  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Achievement of long-term stability of organic photovoltaics is currently one of the major topics for this technology to reach maturity. Most of the techniques used to reveal degradation pathways are destructive and/or do not allow for real-time measurements in operating devices. Here, three different, nondestructive techniques able to provide real-time information, namely, film absorbance, capacitance-voltage (C-V), and impedance spectroscopy (IS), are combined over a period of 1 year using non-accelerated intrinsic degradation conditions. It is discerned between chemical modifications in the active layer, physical processes taking place in the bulk of the blend from those at the active layer/contact interfaces. In particular, it is observed that during the ageing experiment, the main source for device performance degradation is the formation of donor-acceptor charge-transfer complex (P3HT(center dot+)-PCBM center dot-) that acts as an exciton quencher. Generation of these radical species diminishes photocurrent and reduces open-circuit voltage by the creation of electronic defect states. Conclusions extracted from absorption, C-V, and IS measurements will be further supported by a range of other techniques such as atomic force microscopy, X-ray diffraction, and dark-field imaging of scanning transmission electron microscopy on ultrathin cross-sections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000352708600013 Publication Date 2014-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 30 Open Access OpenAccess  
  Notes (down) 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 16.721; 2015 IF: 16.146  
  Call Number c:irua:126000 Serial 2994  
Permanent link to this record
 

 
Author Guerrero, A.; Pfannmöller, M.; Kovalenko, A.; Ripolles, T.S.; Heidari, H.; Bals, S.; Kaufmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G. pdf  url
doi  openurl
  Title Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity Type A1 Journal article
  Year 2015 Publication Organic electronics: physics, materials, applications Abbreviated Journal Org Electron  
  Volume 16 Issue 16 Pages 227-233  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Organic photovoltaic (OPV) devices are on the verge of commercialization being long-term stability a key challenge. Morphology evolution during lifetime has been suggested to be one of the main pathways accounting for performance degradation. There is however a lack of certainty on how specifically the morphology evolution relates to individual electrical parameters on operating devices. In this work a case study is created based on a thermodynamically unstable organic active layer which is monitored over a period of one year under non-accelerated degradation conditions. The morphology evolution is revealed by compositional analysis of ultrathin cross-sections using nanoscale imaging in scanning transmission electron microscopy (STEM) coupled with electron energy-loss spectroscopy (EELS). Additionally, devices are electrically monitored in real-time using the non-destructive electrical techniques capacitance-voltage (C-V) and Impedance Spectroscopy (IS). By comparison of imaging and electrical techniques the relationship between nanoscale morphology and individual electrical parameters of device operation can be conclusively discerned. It is ultimately observed how the change in the cathode contact properties occurring after the migration of fullerene molecules explains the improvement in the overall device performance. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000345649500029 Publication Date 2014-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1566-1199; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.399 Times cited 24 Open Access OpenAccess  
  Notes (down) 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 3.399; 2015 IF: 3.827  
  Call Number c:irua:122169 Serial 2267  
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Juchtmans, R.; Van Boxem, R.; Mazilu, M.; Verbeeck, J. pdf  url
doi  openurl
  Title Prospects for versatile phase manipulation in the TEM : beyond aberration correction Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 151 Issue 151 Pages 85-93  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper we explore the desirability of a transmission electron microscope in which the phase of the electron wave can be freely controlled. We discuss different existing methods to manipulate the phase of the electron wave and their limitations. We show how with the help of current techniques the electron wave can already be crafted into specific classes of waves each having their own peculiar properties. Assuming a versatile phase modulation device is feasible, we explore possible benefits and methods that could come into existence borrowing from light optics where the so-called spatial light modulators provide programmable phase plates for quite some time now. We demonstrate that a fully controllable phase plate building on Harald Rose׳s legacy in aberration correction and electron optics in general would open an exciting field of research and applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000351237800012 Publication Date 2014-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 19 Open Access  
  Notes (down) 278510 Vortex; Fwo; 312483 Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:121405 c:irua:121405UA @ admin @ c:irua:121405 Serial 2731  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: