toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ding, L.; Zhao, L.; Weng, Y.; Schryvers, D.; Liu, Q.; Idrissi, H. pdf  url
doi  openurl
  Title Atomic-scale investigation of the heterogeneous precipitation in the E (Al₁₈Mg₃Cr₂) dispersoid of 7075 aluminum alloy Type A1 Journal article
  Year 2021 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd  
  Volume 851 Issue Pages 156890  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The heterogeneous precipitation of the eta (MgZn2) phase on the E (Al18Mg3Cr2) dispersoids of the 7075 aluminum alloy was systematically investigated by atomic resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray spectrometry (EDX). It is found that coarse B particles are heterogeneously precipitated at the E particle interface after water quenching and isothermal aging at 120 degrees C. The incoherent E/Al interface is responsible for the high tendency of heterogeneous precipitation of the B phase. Two different orientation relationships (ORs) between the eta, E and Al matrix are identified: OR1 [2 (11) over bar0](eta)[011](E)//[(1) over bar 12](Al), (01 (1) over bar0)(eta)//(13 (3) over bar)(E)//(201)(Al), OR2 [(1) over bar 12](E)//[0001](eta)//[011](Al), (01 (1) over bar0 )(eta)//(220)(E)//(34 (4) over bar)(Al). The eta phase is preferential to nucleate along the {111}(E) or the {220}(E) planes, depending on its OR. The heterogeneous nucleation of B phase on the E particle could stabilize the E/Al interface by introducing a coherent E/eta interface, which increases the drive force of heterogeneous precipitation. The reorientation of eta phase and mutual diffusion of solute atoms could assist the coherency of the E/eta interface. The present results suggest that increasing the coherency of the E/Al interface is a promising method to suppress the heterogeneous precipitation of the eta phase. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000579868900103 Publication Date 2020-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 3.133  
  Call Number UA @ admin @ c:irua:173503 Serial 6717  
Permanent link to this record
 

 
Author Samaee, V.; Dupraz, M.; Pardoen, T.; VAn Swygenhoven, H.; Schryvers, D.; Idrissi, H. url  doi
openurl 
  Title Deciphering the interactions between single arm dislocation sources and coherent twin boundary in nickel bi-crystal Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 962  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The introduction of a well-controlled population of coherent twin boundaries (CTBs) is an attractive route to improve the strength ductility product in face centered cubic (FCC) metals. However, the elementary mechanisms controlling the interaction between single arm dislocation sources (SASs), often present in nanotwinned FCC metals, and CTB are still not well understood. Here, quantitative in-situ transmission electron microscopy (TEM) observations of these mechanisms under tensile loading are performed on submicron Ni bi-crystal. We report that the absorption of curved screw dislocations at the CTB leads to the formation of constriction nodes connecting pairs of twinning dislocations at the CTB plane in agreement with large scale 3D atomistic simulations. The coordinated motion of the twinning dislocation pairs due to the presence of the nodes leads to a unique CTB sliding mechanism, which plays an important role in initiating the fracture process at a CTB ledge. TEM observations of the interactions between non-screw dislocations and the CTB highlight the importance of the synergy between the repulsive force of the CTB and the back stress from SASs when the interactions occur in small volumes. Interactions of dislocations with coherent twin boundaries contribute to strength and ductility in metals, but investigating the interaction mechanisms is challenging. Here the authors unravel these mechanisms through quantitative in-situ transmission electron microscopy observations in nickel bi-crystal samples under tensile loading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620142700024 Publication Date 2021-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:176680 Serial 6722  
Permanent link to this record
 

 
Author Samae, V.; Cordier, P.; Demouchy, S.; Bollinger, C.; Gasc, J.; Koizumi, S.; Mussi, A.; Schryvers, D.; Idrissi, H. pdf  url
doi  openurl
  Title Stress-induced amorphization triggers deformation in the lithospheric mantle Type A1 Journal article
  Year 2021 Publication Nature Abbreviated Journal Nature  
  Volume 591 Issue 7848 Pages 82-86  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The mechanical properties of olivine-rich rocks are key to determining the mechanical coupling between Earth's lithosphere and asthenosphere. In crystalline materials, the motion of crystal defects is fundamental to plastic flow(1-4.) However, because the main constituent of olivine-rich rocks does not have enough slip systems, additional deformation mechanisms are needed to satisfy strain conditions. Experimental studies have suggested a non-Newtonian, grain-size-sensitive mechanism in olivine involving grain-boundary sliding(5,6). However, very few microstructural investigations have been conducted on grain-boundary sliding, and there is no consensus on whether a single or multiple physical mechanisms are at play. Most importantly, there are no theoretical frameworks for incorporating the mechanics of grain boundaries in polycrystalline plasticity models. Here we identify a mechanism for deformation at grain boundaries in olivine-rich rocks. We show that, in forsterite, amorphization takes place at grain boundaries under stress and that the onset of ductility of olivine-rich rocks is due to the activation of grain-boundary mobility in these amorphous layers. This mechanism could trigger plastic processes in the deep Earth, where high-stress conditions are encountered (for example, at the brittle-plastic transition). Our proposed mechanism is especially relevant at the lithosphere-asthenosphere boundary, where olivine reaches the glass transition temperature, triggering a decrease in its viscosity and thus promoting grain-boundary sliding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626921700014 Publication Date 2021-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 40.137 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 40.137  
  Call Number UA @ admin @ c:irua:176656 Serial 6738  
Permanent link to this record
 

 
Author Akamine, H.; Mitsuhara, M.; Nishida, M.; Samaee, V.; Schryvers, D.; Tsukamoto, G.; Kunieda, T.; Fujii, H. pdf  url
doi  openurl
  Title Precipitation behaviors in Ti-2.3 Wt Pct Cu alloy during isothermal and two-step aging Type A1 Journal article
  Year 2021 Publication Metallurgical And Materials Transactions A-Physical Metallurgy And Materials Science Abbreviated Journal Metall Mater Trans A  
  Volume 52 Issue Pages 2760-2772  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Time evolution of precipitates related to age-hardening in Ti-2.3 wt pct Cu alloys was investigated by electron microscopy. In isothermal aging at 723 K, the hardness increases continuously owing to precipitation strengthening, whereas in two-step aging where the aging temperature is switched from 673 K to 873 K after 100 hours, the hardness is found to drastically drop after the aging temperature switches. In isothermal aging, metastable and stable precipitates are independently nucleated, whereas characteristic V-shaped clusters of precipitates are observed during the two-step aging. It is revealed by atomic-scale observations that the V-shaped clusters are composed of metastable and stable precipitates and each type of precipitate has a different orientation relationship with the alpha phase: (10 (3) over bar)//(0001)(alpha) and [0 (1) over bar0]//respectively. The drop in hardness during two-step aging can be explained by a synergistic effect of decreased precipitation strengthening and solid solution strengthening. (C) The Minerals, Metals & Materials Society and ASM International 2021  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000644823000001 Publication Date 2021-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1073-5623 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.874 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 1.874  
  Call Number UA @ admin @ c:irua:178222 Serial 6786  
Permanent link to this record
 

 
Author Van Cauwenbergh, P.; Samaee, V.; Thijs, L.; Nejezchlebova, J.; Sedlak, P.; Ivekovic, A.; Schryvers, D.; Van Hooreweder, B.; Vanmeensel, K. url  doi
openurl 
  Title Unravelling the multi-scale structure-property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg Type A1 Journal article
  Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 11 Issue 1 Pages 6423  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Tailoring heat treatments for Laser Powder Bed Fusion (LPBF) processed materials is critical to ensure superior and repeatable material properties for high-end applications. This tailoring requires in-depth understanding of the LPBF-processed material. Therefore, the current study aims at unravelling the threefold interrelationship between the process (LPBF and heat treatment), the microstructure at different scales (macro-, meso-, micro-, and nano-scale), and the macroscopic material properties of AlSi10Mg. A similar solidification trajectory applies at different length scales when comparing the solidification of AlSi10Mg, ranging from mould-casting to rapid solidification (LPBF). The similarity in solidification trajectories triggers the reason why the Brody-Flemings cellular microsegregation solidification model could predict the cellular morphology of the LPBF as-printed microstructure. Where rapid solidification occurs at a much finer scale, the LPBF microstructure exhibits a significant grain refinement and a high degree of silicon (Si) supersaturation. This study has identified the grain refinement and Si supersaturation as critical assets of the as-printed microstructure, playing a vital role in achieving superior mechanical and thermal properties during heat treatment. Next, an electrical conductivity model could accurately predict the Si solute concentration in LPBF-processed and heat-treated AlSi10Mg and allows understanding the microstructural evolution during heat treatment. The LPBF-processed and heat-treated AlSi10Mg conditions (as-built (AB), direct-aged (DA), stress-relieved (SR), preheated (PH)) show an interesting range of superior mechanical properties (tensile strength: 300-450 MPa, elongation: 4-13%) compared to the mould-cast T6 reference condition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632047000003 Publication Date 2021-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 4.259  
  Call Number UA @ admin @ c:irua:177634 Serial 6791  
Permanent link to this record
 

 
Author Wang, X.; Yao, X.; Schryvers, D.; Verlinden, B.; Wang, G.; Zhao, G.; Van Humbeeck, J.; Kustov, S. pdf  url
doi  openurl
  Title Anomalous stress-strain behavior of NiTi shape memory alloy close to the border of superelastic window Type A1 Journal article
  Year 2021 Publication Scripta Materialia Abbreviated Journal Scripta Mater  
  Volume 204 Issue Pages 114135  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this work, we report an anomalous phenomenon on superelastic cycling of NiTi shape memory alloys when deforming at the temperature close to the border of superelastic window. New unexpected effects are found-(i) critical stress for inducing martensite transformation during the second loading cycle is higher than that of the first cycle; ( ii ) the plateau stress of the second cycle decreases to the original level when the strain overcomes the limit of the first cycle; ( iii ) transition from good superelasticity in the first cycle to fully irreversible strain in the second. We propose that defects generated during the first superelastic cycle close to the border of superelastic window impede following stress-induced martensitic transformations, leading to the increase of critical stress beyond yield stress of the B2 matrix, and thus functional fatigue of NiTi alloys. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000690441400007 Publication Date 2021-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.747 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 3.747  
  Call Number UA @ admin @ c:irua:181658 Serial 6853  
Permanent link to this record
 

 
Author Safdel, A.; Zarei-Hanzaki, A.; Abedi, H.R.; Pourbabak, S.; Schryvers, D.; Basu, R. pdf  url
doi  openurl
  Title Asymmetrical superelastic behavior of thermomechanically processed semi-equiatomic NiTi alloy in tensile and compressive modes of deformation Type A1 Journal article
  Year 2021 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd  
  Volume 878 Issue Pages 160443  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the present work two different cold working and annealing schemes were utilized, and the asymmetric superelastic response of thermomechanically processed materials were then assessed through cyclic tensile and compressive modes of deformation. The values of transformation stress, transformation strain, and pseudoelastic strain were measured for each treated and solutionized specimens and the asymmetric response was compared. In the solution annealed state, the difference of these parameters at different deformation modes was negligible due to the weak texture of the material, while for thermomechanically treated ones, development of specific deformation and recrystallization texture components was identified to be one of the underlying reasons of intensified asymmetry. The evolved substructure during the thermomechanical processing also played a substantial role in determining the asymmetric response. The presence of fine grains and dense dislocation substructure could hinder the movement of the transformation front, thus limiting the range of transformation. In tensile mode, the transformation stress was lower, but higher transformation strain was achieved, which was discussed relying on the slip activity in specified oriented grains. The lower transformation strain in compression mode led to lower pseudoelastic strain due to the narrow transformation range which finally degraded superelastic response of the material. (C) 2021 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000660477400005 Publication Date 2021-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 3.133  
  Call Number UA @ admin @ c:irua:179564 Serial 6855  
Permanent link to this record
 

 
Author Marteleur, M.; Idrissi, H.; Amin-Ahmadi, B.; Prima, F.; Schryvers, D.; Jacques, P.J. doi  openurl
  Title On the nucleation mechanism of {112} < 111 > mechanical twins in as-quenched beta metastable Ti-12 wt.% Mo alloy Type A1 Journal article
  Year 2019 Publication Materialia Abbreviated Journal  
  Volume 7 Issue Pages Unsp 100418  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Recently developed beta-metastable Ti grades take advantage of the simultaneous activation of TRIP and TWIP effects for enhancing their work hardening rate. However, the role of each plasticity mechanism on the macroscopic mechanical response is still unclear. In this work, the nucleation mechanism of the first activated plasticity mechanism, namely {112} < 111 > twinning, was investigated. Firstly, post-mortem TEM analysis showed that twins nucleate on pre-existing microstructural defects such as thermal jogs with the zonal dislocation mechanism. The precipitation of the omega phase on twin boundaries has been observed, as well as the emission of numerous dislocations from super-jogs present in these twin boundaries. It is also shown that {112} < 111 > twins act as effective dislocation sources for the subsequent plasticity mechanisms such as beta -> alpha '' martensitic transformation and {332} < 111 > twinning. Secondly, in situ TEM tensile testing of the investigated Ti grade highlighted the primary role of the initial defect configuration present in the microstructure. It is shown that twins cannot nucleate without the presence of specific defects allowing the triggering of the dislocation decomposition needed for the twinning mechanism highlighted in investigated bulk samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537131000052 Publication Date 2019-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-1529 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes (up) Approved no  
  Call Number UA @ admin @ c:irua:170326 Serial 6875  
Permanent link to this record
 

 
Author Bartholomeeusen, E.; De Cremer, G.; Kennes, K.; Hammond, C.; Hermans, I.; Lu, J.-B.; Schryvers, D.; Jacobs, P.A.; Roeffaers, M.B.J.; Hofkens, J.; Sels, B.F.; Coutino-Gonzalez, E. doi  openurl
  Title Optical encoding of luminescent carbon nanodots in confined spaces Type A1 Journal article
  Year 2021 Publication Chemical Communications Abbreviated Journal Chem Commun  
  Volume 57 Issue 90 Pages 11952-11955  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Stable emissive carbon nanodots were generated in zeolite crystals using near infrared photon irradiation gradually converting the occluded organic template, originally used to synthesize the zeolite crystals, into discrete luminescent species consisting of nano-sized carbogenic fluorophores, as ascertained using Raman microscopy, and steady-state and time-resolved spectroscopic techniques. Photoactivation in a confocal laser fluorescence microscope allows 3D resolved writing of luminescent carbon nanodot patterns inside zeolites providing a cost-effective and non-toxic alternative to previously reported metal-based nanoclusters confined in zeolites, and opens up opportunities in bio-labelling and sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711122000001 Publication Date 2021-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 6.319  
  Call Number UA @ admin @ c:irua:184147 Serial 6876  
Permanent link to this record
 

 
Author Samaeeaghmiyoni, V.; Cordier, P.; Demouchy, S.; Bollinger, C.; Gasc, J.; Mussi, A.; Schryvers, D.; Idrissi, H. doi  openurl
  Title Research data supporting for Stress-induced amorphization triggers deformation in the lithospheric mantle Type Dataset
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180668 Serial 6881  
Permanent link to this record
 

 
Author Yang, M.; Orekhov, A.; Hu, Z.-Y.; Feng, M.; Jin, S.; Sha, G.; Li, K.; Samaee, V.; Song, M.; Du, Y.; Van Tendeloo, G.; Schryvers, D. pdf  url
doi  openurl
  Title Shearing and rotation of β'' and β' precipitates in an Al-Mg-Si alloy under tensile deformation : in-situ and ex-situ studies Type A1 Journal article
  Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater  
  Volume 220 Issue Pages 117310  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The interaction between dislocations and nano-precipitates during deformation directly influences hardening response of precipitation-strengthening metals such as Al-Mg-Si alloys. However, how coherent and semi-coherent nano-precipitates accommodate external deformation applied to an Al alloy remains to be elucidated. In-situ tensile experiments in a transmission electron microscope (TEM) were conducted to study the dynamic process of dislocations cutting through coherent needle-like beta '' precipitates with diameters of 3 similar to 8 nm. Comprehensive investigations using in-situ, ex-situ TEM and atom probe tomography uncovered that beta '' precipitates were firstly sheared into small fragments, and then the rotation of the fragments, via sliding along precipitate/matrix interfaces, destroyed their initially coherent interface with the Al matrix. In contrast, semi-coherent beta' precipitates with sizes similar to beta '' were more difficult to be fragmented and accumulation of dislocations at the interface increased interface misfit between beta' and the Al matrix. Consequently, beta' precipitates could basically maintain their needle-like shape after the tensile deformation. This research gains new insights into the interaction between nano-precipitates and dislocations. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000705535300005 Publication Date 2021-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 5.301  
  Call Number UA @ admin @ c:irua:182528 Serial 6884  
Permanent link to this record
 

 
Author Idrissi, H.; Samaee, V.; Lumbeeck, G.; van der Werf, T.; Pardoen, T.; Schryvers, D.; Cordier, P. doi  openurl
  Title Supporting data for “In situ Quantitative Tensile Tests on Antigorite in a Transmission Electron Microscope” Type Dataset
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract The determination of the mechanical properties of serpentinites is essential towards the understanding of the mechanics of faulting and subduction. Here, we present the first in situ tensile tests on antigorite in a transmission electron microscope. A push-to-pull deformation device is used to perform quantitative tensile tests, during which force and displacement are measured, while the microstructure is imaged with the microscope. The experiments have been performed at room temperature on beams prepared by focused ion beam. The specimens are not single crystals despite their small sizes. Orientation mapping indicated that some grains were well-oriented for plastic slip. However, no dislocation activity has been observed even though engineering tensile stress went up to 700 MPa. We show also that antigorite does not exhibit an pure elastic-brittle behaviour since, despite the presence of defects, the specimens underwent plastic deformation and did not fail within the elastic regime. Instead, we observe that strain localizes at grain boundaries. All observations concur to show that under our experimental conditions, grain boundary sliding is the dominant deformation mechanism. This study sheds a new light on the mechanical properties of antigorite and calls for further studies on the structure and properties of grain boundaries in antigorite and more generally in phyllosilicates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved no  
  Call Number UA @ admin @ c:irua:169107 Serial 6891  
Permanent link to this record
 

 
Author Penders, A.; Konstantinovic, M.J.; Van Renterghem, W.; Bosch, R.W.; Schryvers, D. url  doi
openurl 
  Title TEM investigation of SCC crack tips in high Si stainless steel tapered specimens Type A1 Journal article
  Year 2021 Publication Corrosion Engineering Science And Technology Abbreviated Journal Corros Eng Sci Techn  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The stress corrosion cracking (SCC) mechanism is investigated in high Si duplex stainless steel in a simulated PWR environment based on TEM analysis of FIB-extracted SCC crack tips. The microstructural investigation in the near vicinity of SCC crack tips illustrates a strain-rate dependence in SCC mechanisms. Detailed analysis of the crack tip morphology, that includes crack tip oxidation and surrounding deformation field, indicates the existence of an interplay between corrosion- and deformation-driven failure as a function of the strain rate. Slow strain-rate crack tips exhibit a narrow cleavage failure which can be linked to the film-induced failure mechanism, while rounded shaped crack tips for faster strain rates could be related to the strain-induced failure. As a result, two nominal strain-rate-dependent failure regimes dominated either by corrosion or deformation-driven cracking mechanisms can be distinguished.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000695956400001 Publication Date 2021-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-422x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.879 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 0.879  
  Call Number UA @ admin @ c:irua:181533 Serial 6892  
Permanent link to this record
 

 
Author Charalampopoulou, E.; Lambrinou, K.; Van der Donck, T.; Paladino, B.; Di Fonzo, F.; Azina, C.; Eklund, P.; Mraz, S.; Schneider, J.M.; Schryvers, D.; Delville, R. pdf  url
doi  openurl
  Title Early stages of dissolution corrosion in 316L and DIN 1.4970 austenitic stainless steels with and without anticorrosion coatings in static liquid lead-bismuth eutectic (LBE) at 500 degrees C Type A1 Journal article
  Year 2021 Publication Materials Characterization Abbreviated Journal Mater Charact  
  Volume 178 Issue Pages 111234  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work addresses the early stages (<= 1000 h) of the dissolution corrosion behavior of 316L and DIN 1.4970 austenitic stainless steels in contact with oxygen-poor (C-O < 10(-8) mass%), static liquid lead-bismuth eutectic (LBE) at 500 degrees C for 600-1000 h. The objective of this study was to determine the relative early-stage resistance of the uncoated steels to dissolution corrosion and to assess the protectiveness of select candidate coatings (Cr2AlC, Al2O3, V2AlxCy). The simultaneous exposure of steels with intended differences in microstructure and thermomechanical state showed the effects of steel grain size, density of annealing/deformation twins, and secondary precipitates on the steel dissolution corrosion behavior. The findings of this study provide recommendations on steel manufacturing with the aim of using the steels to construct Gen-IV lead-cooled fast reactors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000752582700001 Publication Date 2021-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 2.714  
  Call Number UA @ admin @ c:irua:186509 Serial 7061  
Permanent link to this record
 

 
Author Poulain, R.; Lumbeeck, G.; Hunka, J.; Proost, J.; Savolainen, H.; Idrissi, H.; Schryvers, D.; Gauquelin, N.; Klein, A. pdf  doi
openurl 
  Title Electronic and chemical properties of nickel oxide thin films and the intrinsic defects compensation mechanism Type A1 Journal article
  Year 2022 Publication ACS applied electronic materials Abbreviated Journal  
  Volume 4 Issue 6 Pages 2718-2728  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Although largely studied, contradictory results on nickel oxide (NiO) properties can be found in the literature. We herein propose a comprehensive study that aims at leveling contradictions related to NiO materials with a focus on its conductivity, surface properties, and the intrinsic charge defects compensation mechanism with regards to the conditions preparation. The experiments were performed by in situ photo-electron spectroscopy, electron energy loss spectroscopy, and optical as well as electrical measurements on polycrystalline NiO thin films prepared under various preparation conditions by reactive sputtering. The results show that surface and bulk properties were strongly related to the deposition temperature with in particular the observation of Fermi level pinning, high work function, and unstable oxygen-rich grain boundaries for the thin films produced at room temperature but not at high temperature (>200 degrees C). Finally, this study provides substantial information about surface and bulk NiO properties enabling to unveil the origin of the high electrical conductivity of room temperature NiO thin films and also for supporting a general electronic charge compensation mechanism of intrinsic defects according to the deposition temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000819431200001 Publication Date 2022-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189555 Serial 7081  
Permanent link to this record
 

 
Author Penders, A.G.; Konstantinovic, M.J.; Yang, T.; Bosch, R.-w.; Schryvers, D.; Somville, F. pdf  url
doi  openurl
  Title Microstructural investigation of IASCC crack tips extracted from thimble tube O-ring specimens Type A1 Journal article
  Year 2022 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 565 Issue Pages 153727-16  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The microstructural features of intergranular irradiation-assisted stress corrosion crack tips from a redeemed neutron-irradiated flux thimble tube (60 dpa) have been investigated using focused-ion beam analysis and (scanning) transmission electron microscopy. The current work presents a close examination of the deformation field and oxide assembly associated with intergranular cracking, in addition to the analysis of radiation-induced segregation at leading grain boundaries. Evidence of stress induced martensitic transformation extending from the crack tips is presented. Intergranular crack arrest is demonstrated on the account of the external tensile stress orientation, and as a consequence of MnS inclusion particles segregating close to the fractured grain boundary. Exclusive observations of grain boundary oxidation prior to the cracking are presented, which is in full-agreement with the internal oxidation model.(c) 2022 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000799256300004 Publication Date 2022-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:188609 Serial 7086  
Permanent link to this record
 

 
Author Ding, L.; Sapanathan, T.; Schryvers, D.; Simar, A.; Idrissi, H. pdf  url
doi  openurl
  Title On the formation of antiphase boundaries in Fe₄Al₁₃ intermetallics during a high temperature treatment Type A1 Journal article
  Year 2022 Publication Scripta materialia Abbreviated Journal Scripta Mater  
  Volume 215 Issue Pages 114726-6  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this paper, we report atomic scale observations and formation mechanisms of a high-density of antiphase boundaries (APBs) within an ultra-fine-grained Fe4Al13 intermetallic layer at an Al/steel interface after a heat treatment at 596 degrees C. The results reveal that the APBs are formed by nucleation and the glide of partial dislocations with Burgers vector of b/3[010] (b = 12.47 angstrom). The intensive activation of APBs locally transforms the Fe4Al13 structure from the quasicrystal approximant structure to a quasicrystal. Very few stacking faults and nanotwins are observed indicating that the formation of planar defects is mainly driven by this transformation. This new insight on the formation of high density of APBs could possibly lead to an improvement in toughness by increasing the strength/ductility balance of this intermetallic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000800016600003 Publication Date 2022-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 6  
  Call Number UA @ admin @ c:irua:188644 Serial 7088  
Permanent link to this record
 

 
Author Penders, A.G.; Konstantinović, M.J.; Van Renterghem, W.; Bosch, R.-W.; Schryvers, D.; Somville, F. pdf  url
doi  openurl
  Title Characterization of IASCC crack tips extracted from neutron-irradiated flux thimble tube specimens in view of a probabilistic fracture model Type A1 Journal article
  Year 2022 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 571 Issue Pages 154015-154016  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This study reports the properties of irradiation assisted stress corrosion crack tips extracted by means of focused-ion beam from 60 to 80 dpa neutron-irradiated O-ring specimens tested under straining conditions under a pressurized-water reactor environment. Various crack tip morphologies and surrounding deformation features were analyzed as a function of applied stress, surface oxidation state and loading form – constant versus cyclic. All investigated cracks exhibit grain boundary oxidation in front of the crack tip, with the extent of oxidation being proportional to applied stress. These findings clearly demonstrate that, under the subcritical crack propagation regime, the grain boundary oxide grows faster than the crack. On the other hand, crack tips appertaining to specimens with removed oxide layer at the outer surface show comparatively less oxidation at the crack tip, which could indicate towards crack initiation from regions that exemplify lower stress, such as the O-ring inner surface. Cyclic loading is found to have a more pronounced effect on the crack tip microstructure, demonstrating increased deformation twinning and -martensitic transformation, which signifies towards an increased susceptibility to intergranular failure. Still, the extent of crack tip grain boundary oxidation in this case agrees well with expected values for maximum stress applied during cyclic loading. All results are interpreted based on the probabilistic subcritical crack propagation mechanism and provide strong support to a stress-driven internal oxidation model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000872389200009 Publication Date 2022-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:190375 Serial 7135  
Permanent link to this record
 

 
Author Yang, T.; Kong, Y.; Du, Y.; Li, K.; Schryvers, D. url  doi
openurl 
  Title Discovery of core-shell quasicrystalline particles Type A1 Journal article
  Year 2023 Publication Scripta materialia Abbreviated Journal  
  Volume 222 Issue Pages 115040-115046  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Submicron-sized quasicrystalline particles were obtained in an Al-Zn-Mg-Cu alloy produced by traditional melting. These particles consist of an Al-Fe-Ni core and a Mg-Cu-Zn shell and were found to be stable and embedded randomly in the Al matrix. The diffraction patterns of these core-shell particles reveal a decagonal core and an icosahedral shell with, respectively, ten- and five-fold axes aligned. High resolution scanning transmission electron microscopy of the Mg-Cu-Zn shell confirms the five-fold symmetry atomic arrangement and the icosahedral structure. It can therefore be concluded that Fe and Ni impurities play an important role in mediating the formation of such an unusual ternary core-shell quasicrystalline particle. These findings provide some novel insights in the formation of quasicrystals in traditional industrial Al alloys.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000864491400005 Publication Date 2022-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 6; 2023 IF: 3.747  
  Call Number UA @ admin @ c:irua:191489 Serial 7144  
Permanent link to this record
 

 
Author Grieten, E.; Storme, P.; Caen, J.; Schalm, O.; Schryvers, D. pdf  openurl
  Title Application of atmospheric plasma-jets for the conservation of cultural heritage Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved no  
  Call Number UA @ admin @ c:irua:149629 Serial 7466  
Permanent link to this record
 

 
Author Yang, T.; Kong, Y.; Li, K.; Lu, Q.; Wang, Y.; Du, Y.; Schryvers, D. pdf  url
doi  openurl
  Title Quasicrystalline clusters transformed from C14-MgZn₂ nanoprecipitates in Al alloys Type A1 Journal article
  Year 2023 Publication Materials characterization Abbreviated Journal  
  Volume 199 Issue Pages 112772-112777  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ultrafine faulty C14-MgZn2 Laves phase precipitates containing quasicrystalline clusters and demonstrating the formation of binary quasicrystalline precipitates with Penrose-like random-tiling were observed in the over-aged FCC matrix of a commercial 7N01 Al-Zn-Mg alloy, using high angle annular dark field scanning transmission electron microscopy. The evolution from C14-Laves phase to quasicrystalline clusters is illustrated, and five-fold symmetry can be found in both real and reciprocal spaces. Our findings reveal the possibility of quasicrystalline formation from Laves phase in a highly plastic metal matrix like Al and demonstrate the structural relationship between Laves phase and quasicrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000954788800001 Publication Date 2023-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 4.7; 2023 IF: 2.714  
  Call Number UA @ admin @ c:irua:196106 Serial 8446  
Permanent link to this record
 

 
Author van den Broek, W.; Verbeeck, J.; de Backer, S.; Scheunders, P.; Schryvers, D. pdf  doi
openurl 
  Title Acquisition of the EELS data cube by tomographic reconstruction Type A1 Journal article
  Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 106 Issue 4/5 Pages 269-276  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Energy filtered TEM, EFTEM, provides three-dimensional data, two spatial and one spectral dimension. We propose to acquire these data by measuring a series of images with a defocused energy filter. It will be shown that each image is a projection of the data on the detector and that reconstruction of the data out of a sufficient number of such projections using a tomographic reconstruction algorithm is possible. This technique uses only a fraction of the electron dose an energy filtered series (EFS) needs for the same spectral and spatial resolution and the same mean signal-to-noise ratio. (c) 2005 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000236042300003 Publication Date 2005-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 6 Open Access  
  Notes (up) Approved Most recent IF: 2.843; 2006 IF: 1.706  
  Call Number UA @ lucian @ c:irua:56910UA @ admin @ c:irua:56910 Serial 55  
Permanent link to this record
 

 
Author Peirs, J.; Verleysen, P.; Tirry, W.; Rabet, L.; Schryvers, D.; Degrieck, J. doi  openurl
  Title Dynamic shear localization in Ti6Al4V Type P1 Proceeding
  Year 2011 Publication Procedia Engineering T2 – 11th International Conference on the Mechanical Behavior of Materials, (ICM), 2011, Como, ITALY (ICM11) Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract The alloy Ti6Al4V is known to be prone to the formation of adiabatic shear bands when dynamically loaded in shear. This causes a catastrophic decrease of the load carrying capacity and is usually followed by fracture. Although, the main mechanism is recognized to be the competition between strain hardening and thermal softening, a detailed understanding of the role of microstructural plasticity mechanisms and macroscopic loading conditions does not exist yet. To study strain localization and shear fracture, different high strain rate shear tests have been carried out: compression of hat-shaped specimens, torsion of thin walled tubular specimens and in-plane shear tests. The value of the three techniques in studying shear localization is evaluated. Post-mortem analysis of the fracture surface and the materials' microstructure is performed with optical and electron microscopy. In all cases a ductile fracture is observed. SEM and TEM techniques are used to study the local microstructure and composition in the shear band and as such the driving mechanism for the ASB formation. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICM11  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000300451302060 Publication Date 2011-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 10 Series Issue Edition  
  ISSN 1877-7058; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:113069 Serial 767  
Permanent link to this record
 

 
Author Hamon, A.-L.; Verbeeck, J.; Schryvers, D.; Benedikt, J.; van den Sanden, R.M.C.M. pdf  doi
openurl 
  Title ELNES study of carbon K-edge spectra of plasma deposited carbon films Type A1 Journal article
  Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 14 Issue Pages 2030-2035  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron energy loss spectroscopy was used to investigate the bonding of plasma deposited carbon films. The experimental conditions include the use of a specific collection angle for which the shape of the spectra is free of the orientation dependency usually encountered in graphite due to its anisotropic structure. The first quantification process of the energy loss near-edge structure was performed by a standard fit of the collected spectrum, corrected for background and multiple scattering, with three Gaussian functions followed by a comparison with the graphite spectrum obtained under equivalent experimental conditions. In a second approach a fitting model directly incorporating the background subtraction and multiple scattering removal was applied. The final numerical results are interpreted in view of the deposition conditions of the films and the actual fitting procedure with the related choice of parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000222312500017 Publication Date 2004-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.626 Times cited 61 Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:48782UA @ admin @ c:irua:48782 Serial 1025  
Permanent link to this record
 

 
Author Oleshko, V.; Schryvers, D.; Gijbels, R.; Jacob, W. pdf  openurl
  Title Investigation of Ag, Ag2S and Ag(Br,I) small particles by HREM and AEM Type H3 Book chapter
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages 293-294  
  Keywords H3 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication s.l. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:20553 Serial 1729  
Permanent link to this record
 

 
Author Potapov, P.L.; Kulkova, S.E.; Schryvers, D.; Verbeeck, J. doi  openurl
  Title Structural and chemical effects on EELS L3,2 ionization edges in Ni-based intermetallic compounds Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 64 Issue Pages 184110,1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000172239400038 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 44 Open Access  
  Notes (up) Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:48393 Serial 3192  
Permanent link to this record
 

 
Author Du, C.; Hoefnagels, J.P.M.; Kolling, S.; Geers, M.G.D.; Sietsma, J.; Petrov, R.; Bliznuk, V.; Koenraad, P.M.; Schryvers, D.; Amin-Ahmadi, B. pdf  doi
openurl 
  Title Martensite crystallography and chemistry in dual phase and fully martensitic steels Type A1 Journal article
  Year 2018 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 139 Issue Pages 411-420  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Lath martensite is important in industry because it is the key strengthening component in many advanced high strength steels. The study of crystallography and chemistry of lath martensite is extensive in the literature, however, mostly based on fully martensitic steels. In this work, lath martensite in dual phase steels is investigated with a focus on the substructure identification of the martensite islands and microstructural bands using electron backscattered diffraction, and on the influence of the accompanied tempering process during industrial coating process on the distribution of alloying elements using atom probe tomography. Unlike findings for the fully martensitic steels, no martensite islands with all 24 Kurdjumov-Sachs variants have been observed. Almost all martensite islands contain only one main packet with all six variants and minor variants from the remaining three packets of the same prior austenite grain. Similarly, the martensite bands are typically composed of connected domains originating from prior austenite grains, each containing one main packets (mostly with all variants) and few separate variants. The effect of tempering at similar to 450 degrees C (due to the industrial zinc coating process) has also been investigated. The results show a strong carbon partitioning to lath boundaries and Cottrell atmospheres at dislocation core regions due to the thermal process of coating. In contrast, auto-tempering contributes to the carbon redistribution only in a limited manner. The substitutional elements are all homogenously distributed. The phase transformation process has two effects on the material: mechanically, the earlier-formed laths are larger and softer and therefore more ductile (as revealed by nanoindentation); chemically, due to the higher dislocation density inside the later-formed laths, which are generally smaller, carbon Cottrell atmospheres are predominantly observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000431469300044 Publication Date 2018-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 2.714  
  Call Number UA @ lucian @ c:irua:151554 Serial 5033  
Permanent link to this record
 

 
Author Schryvers, D.; Ma, Y.; Toth, L.; Tanner, L. pdf  openurl
  Title Electron microscopy study of twinning in the Ni5Al3 bainitic phase Type A3 Journal Article
  Year 1994 Publication TMS Abbreviated Journal  
  Volume Issue Pages  
  Keywords A3 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract This contribution describes conventional and high resolution electron microscopy results on the different twinning arrangements in NisAl3 precipitates grown inside the B2 austenite phase. Short annealings introduce self-accommodating three-pointed star shaped precipitates consisting of twin related parts of different variants of the NisAl3 structure. Longer annealings result in plates growing separately from these wings and developing microtwinning in order to accommodate stress built-up at the interfaces with the surrounding matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited Open Access  
  Notes (up) Approved no  
  Call Number EMAT @ emat @ Serial 5055  
Permanent link to this record
 

 
Author Schryvers, D.; Van Landuyt, J. pdf  openurl
  Title Electron microscopy study of twin sequences and branching in NissAl34 3R martensite Type A3 Journal Article
  Year 1992 Publication ICOMAT Abbreviated Journal  
  Volume Issue Pages  
  Keywords A3 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Microtwin sequences in Ni66Al34 martensite plates of different size were investigated by electron microscopy. Although mostly irregular sequences were observed an average twin width w can be determined which increases with twin length L following the expected relation w ~ sqrt(L). High resolution electron microscopy was used to study the twin branching close to the plate boundaries and an atomic model for the branching of a microtwin and the changes in twin thickness is suggested  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited Open Access  
  Notes (up) Approved no  
  Call Number EMAT @ emat @ Serial 5054  
Permanent link to this record
 

 
Author Tanner, L.E.; Shapiro, S.M.; Krumhansl, J.A; Schryvers, D.; Noda, Y.; Yamada, Y.; Barsch, G.R.; Gooding, R.; Moss, S.C. pdf  openurl
  Title Firsto order phase transformation in the Ni-Al system Type A3 Journal Article
  Year 1992 Publication Metallurgy and Ceramics Abbreviated Journal  
  Volume Issue Pages  
  Keywords A3 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract First-order displacive phase transformations in alloys and compounds are of high technological importance. We have studied this class of phase transformation in the high-temperature-stable Ni-Al f32(B2) phase as a function of composition, temperature, and stress using transmission electron microscopy and neutron scattering. The results show in detail the direct relationship between the unusually low energies of the transformation-related phonon modes and the development of pre-transformation microstructures (strain-embryos, etc.) via anharmonic coupling processes that ultimately lead to the nucleation and growth of the low-temperature martensitic phases. With these results, it is now possible to develop effective models for nonclassical heterogeneous nucleation of martensite transformations in bulk materials. This tills a critical gap and sets the stage for us to proceed in developing a more global understanding of condensed matter transformations including the coupling of displacive with replacive mechanisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited Open Access  
  Notes (up) Approved no  
  Call Number EMAT @ emat @ Serial 5053  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: