|   | 
Details
   web
Records
Author Filippousi, M.; Papadimitriou, S.A.; Bikiaris, D.N.; Pavlidou, E.; Angelakeris, M.; Zamboulis, D.; Tian, H.; Van Tendeloo, G.
Title Novel coreshell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers : preparation, characterization and release properties Type A1 Journal article
Year 2013 Publication International journal of pharmaceutics Abbreviated Journal Int J Pharmaceut
Volume 448 Issue 1 Pages 221-230
Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)
Abstract Theranostic polymeric nanocarriers loaded with anticancer drug Taxol and superparamagnetic iron oxide nanocrystals have been developed for possible magnetic resonance imaging (MRI) use and cancer therapy. Multifunctional nanocarriers with a coreshell structure have been prepared by coating superparamagnetic Fe3O4 nanoparticles with block copolymer of poly(ethylene glycol)-b-poly(propylene succinate) with variable molecular weights of the hydrophobic block poly(prolylene succinate). The multifunctional polymer nano-vehicles were prepared using a nanoprecipitation method. Scanning transmission electron microscopy revealed the encapsulation of magnetic nanoparticles inside the polymeric matrix. Energy dispersive X-ray spectroscopy and electron energy loss spectroscopy mapping allowed us to determine the presence of the different material ingredients in a quantitative way. The diameter of the nanoparticles is below 250 nm yielding satisfactory encapsulation efficiency. The nanoparticles exhibit a biphasic drug release pattern in vitro over 15 days depending on the molecular weight of the hydrophobic part of the polymer matrix. These new systems where anti-cancer therapeutics like Taxol and iron oxide nanoparticles (IOs) are co-encapsulated into new facile polymeric nanoparticles, could be addressed as potential multifunctional vehicles for simultaneous drug delivery and targeting imaging as well as real time monitoring of therapeutic effects.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000319052000026 Publication Date 2013-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-5173; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.649 Times cited 29 Open Access
Notes (down) Countatoms Approved Most recent IF: 3.649; 2013 IF: 3.785
Call Number UA @ lucian @ c:irua:107348 Serial 2374
Permanent link to this record
 

 
Author Abakumov, A.M.; Batuk, M.; Tsirlin, A.A.; Tyablikov, O.A.; Sheptyakov, D.V.; Filimonov, D.S.; Pokholok, K.V.; Zhidal, V.S.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.;
Title Structural and magnetic phase transitions in the AnBnO3n-2 anion-deficient perovskites Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue 14 Pages 7834-7843
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Novel anion-deficient perovskite-based ferrites Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 were synthesized by solid-state reaction in air. Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 belong to the perovskite-based AnBnO3n2 homologous series with n = 5 and 6, respectively, with a unit cell related to the perovskite subcell ap as ap√2 × ap × nap√2. Their structures are derived from the perovskite one by slicing it with 1/2[110]p(1̅01)p crystallographic shear (CS) planes. The CS operation results in (1̅01)p-shaped perovskite blocks with a thickness of (n 2) FeO6 octahedra connected to each other through double chains of edge-sharing FeO5 distorted tetragonal pyramids which can adopt two distinct mirror-related configurations. Ordering of chains with a different configuration provides an extra level of structure complexity. Above T ≈ 750 K for Pb2Ba2BiFe5O13 and T ≈ 400 K for Pb1.5Ba2.5Bi2Fe6O16 the chains have a disordered arrangement. On cooling, a second-order structural phase transition to the ordered state occurs in both compounds. Symmetry changes upon phase transition are analyzed using a combination of superspace crystallography and group theory approach. Correlations between the chain ordering pattern and octahedral tilting in the perovskite blocks are discussed. Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 undergo a transition into an antiferromagnetically (AFM) ordered state, which is characterized by a G-type AFM ordering of the Fe magnetic moments within the perovskite blocks. The AFM perovskite blocks are stacked along the CS planes producing alternating FM and AFM-aligned FeFe pairs. In spite of the apparent frustration of the magnetic coupling between the perovskite blocks, all n = 4, 5, 6 AnFenO3n2 (A = Pb, Bi, Ba) feature robust antiferromagnetism with similar Néel temperatures of 623632 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000322087100006 Publication Date 2013-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 10 Open Access
Notes (down) Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:109213 Serial 3196
Permanent link to this record
 

 
Author Kundu, S.; Kundu, P.; Van Tendeloo, G.; Ravishankar, N.
Title Au2Sx/CdS nanorods by cation exchange : mechanistic insights into the competition between cation-exchange and metal ion reduction Type A1 Journal article
Year 2014 Publication Small Abbreviated Journal Small
Volume 10 Issue 19 Pages 3895-3900
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Thumbnail image of graphical abstract It is well known that metals with higher electron affinity like Au tend to undergo reduction rather than cation-exchange. It is experimentally shown that under certain conditions cation-exchange is dominant over reduction. Thermodynamic calculation further consolidates the understanding and paves the way for better predictability of cation-exchange/reduction reactions for other systems.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000344451900011 Publication Date 2014-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 8 Open Access
Notes (down) countatoms Approved Most recent IF: 8.643; 2014 IF: 8.368
Call Number UA @ lucian @ c:irua:118010 Serial 3514
Permanent link to this record
 

 
Author Pasquini, L.; Sacchi, M.; Brighi, M.; Boelsma, C.; Bals, S.; Perkisas, T.; Dam, B.
Title Hydride destabilization in core-shell nanoparticles Type A1 Journal article
Year 2014 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
Volume 39 Issue 5 Pages 2115-2123
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We present a model that describes the effect of elastic constraint on the thermodynamics of hydrogen absorption and desorption in biphasic core-shell nanoparticles, where the core is a hydride forming metal. In particular, the change of the hydride formation enthalpy and of the equilibrium pressure for the metal/hydride transformation are described as a function of nanoparticles radius, shell thickness, and elastic properties of both core and shell. To test the model, the hydrogen sorption isotherms of Mg-MgO core-shell nanoparticles, synthesized by inert gas condensation, were measured by means of optical hydrogenography. The model's predictions are in good agreement with the experimentally determined plateau pressure of hydrogen absorption. The features that a core-shell systems should exhibit in view of practical hydrogen storage applications are discussed with reference to the model and the experimental results. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000331344800022 Publication Date 2014-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 32 Open Access Not_Open_Access
Notes (down) COST Action MP1103 Approved Most recent IF: 3.582; 2014 IF: 3.313
Call Number UA @ lucian @ c:irua:115785 Serial 1528
Permanent link to this record
 

 
Author Mooij, L.; Perkisas, T.; Palsson, G.; Schreuders, H.; Wolff, M.; Hjorvarsson, B.; Bals, S.; Dam, B.
Title The effect of microstructure on the hydrogenation of Mg/Fe thin film multilayers Type A1 Journal article
Year 2014 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
Volume 39 Issue 30 Pages 17092-17103
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoconfined magnesium hydride can be simultaneously protected and thermodynamically destabilized when interfaced with materials such as Ti and Fe. We study the hydrogenation of thin layers of Mg (<14 nm) nanoconfined in one dimension within thin film Fe/Mg/Fe/Pd multilayers by the optical technique Hydrogenography. The hydrogenation of nanosized magnesium layers in Fe/Mg/Fe multilayers surprisingly shows the presence of multiple plateau pressures, whose nature is thickness dependent. In contrast, hydrogen desorption occurs via a single plateau which does not depend on the Mg layer thickness. From structural and morphological analyses with X-ray diffraction/reflectometry and cross-section TEM, we find that the Mg layer roughness is large when deposited on Fe and furthermore contains high-angle grain boundaries (GB's). When grown on Ti, the Mg layer roughness is low and no high-angle GB's are detected. From a Ti/Mg/Fe multilayer, in which the Mg layer is flat and has little or no GB's, we conclude that MgH2 is indeed destabilized by the interface with Fe. In this case, both the ab- and desorption plateau pressures are increased by a factor two compared to the hydrogenation of Mg within Ti/Mg/Ti multilayers. We hypothesize that the GB's in the Fe/Mg/Fe multilayer act as diffusion pathways for Pd, which is known to greatly alter the hydrogenation behavior of Mg when the two materials share an interface. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000343839000031 Publication Date 2014-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 15 Open Access Not_Open_Access
Notes (down) COST Action MP1103 Approved Most recent IF: 3.582; 2014 IF: 3.313
Call Number UA @ lucian @ c:irua:121175 Serial 3575
Permanent link to this record
 

 
Author Fedina, L.; Lebedev, O.I.; Van Tendeloo, G.; van Landuyt, J.; Mironov, O.A.; Parker, E.H.C.
Title In situ HREM irradiation study of point-defect clustering in MBE-grown strained Si1-xGex/(001)Si structures Type A1 Journal article
Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 61 Issue 15 Pages 10336-10345
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present a detailed analysis of the point-defect clustering in strained Si/Si(1-x)Ge(x)/(001)Si structures, including the interaction of the point defects with the strained interfaces and the sample surface during 400 kV electron irradiation at room temperature. Point-defect cluster formation is very sensitive to the type and magnitude of the strain in the Si and Si(1-x)Ge(x) layers. A small compressive strain (-0.3%) in the SiGe alloy causes an aggregation of vacancies in the form of metastable [110]-oriented chains. They are located on {113} planes and further recombine with interstitials. Tensile strain in the Si layer causes an aggregation of interstitial atoms in the forms of additional [110] rows which are inserted on {113} planes with [001]-split configurations. The chainlike configurations are characterized by a large outward lattice relaxation for interstitial rows (0.13 +/-0.01 nm) and a very small inward relaxation for vacancy chains (0.02+/-0.01 nm). A compressive strain higher than -0.5% strongly decreases point-defect generation inside the strained SiGe alloy due to the large positive value of the formation volume of a Frenkel pair. This leads to the suppression of point-defect clustering in a strained SiGe alloy so that SiGe relaxes via a diffusion of vacancies from the Si layer, giving rise to an intermixing at the Si/SiGe interface. In material with a 0.9% misfit a strongly increased flow of vacancies from the Si layer to the SiGe layer and an increased biaxial strain in SiGe bath promote the preferential aggregation of vacancies in the (001) plane, which relaxes to form intrinsic 60 degrees dislocation loops.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000086606200082 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes (down) Conference Name: Microsc. Semicond. Mater. Conf. Approved Most recent IF: 3.836; 2000 IF: NA
Call Number UA @ lucian @ c:irua:103456 Serial 1577
Permanent link to this record
 

 
Author Tokei, Z.; Lanckmans, F.; van den Bosch, G.; Van Hove, M.; Maex, K.; Bender, H.; Hens, S.; van Landuyt, J.
Title Reliability of copper dual damascene influenced by pre-clean Type P1 Proceeding
Year 2002 Publication Analysis Of Integrated Circuits Abbreviated Journal
Volume Issue Pages 118-123
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos 000177689400022 Publication Date 2003-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access
Notes (down) Conference name: Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:104170 Serial 2865
Permanent link to this record
 

 
Author Arenas-Vivo, A.; Rojas, S.; Ocaña, I.; Torres, A.; Liras, M.; Salles, F.; Arenas-Esteban, D.; Bals, S.; Ávila, D.; Horcajada, P.
Title Ultrafast reproducible synthesis of a Ag-nanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow Type A1 Journal article
Year 2021 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A
Volume 9 Issue 28 Pages 15704-15713
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The (photo)catalytic properties of metal–organic frameworks (MOFs) can be enhanced by post-synthetic inclusion of metallic species in their porosity. Due to their extraordinarily high surface area and well defined porous structure, MOFs can be used for the stabilization of metal nanoparticles with adjustable size within their porosity. Originally, we present here an optimized ultrafast photoreduction protocol for the<italic>in situ</italic>synthesis of tiny and monodisperse silver nanoclusters (AgNCs) homogeneously supported on a photoactive porous titanium carboxylate MIL-125-NH<sub>2</sub>MOF. The strong metal–framework interaction between –NH<sub>2</sub>and Ag atoms influences the AgNC growth, leading to the surfactant-free efficient catalyst AgNC@MIL-125-NH<sub>2</sub>with improved visible light absorption. The potential use of AgNC@MIL-125-NH<sub>2</sub>was further tested in challenging applications: (i) the photodegradation of the emerging organic contaminants (EOCs) methylene blue (MB-dye) and sulfamethazine (SMT-antibiotic) in water treatment, and (ii) the catalytic hydrogenation of<italic>p</italic>-nitroaniline (4-NA) to<italic>p</italic>-phenylenediamine (PPD) with industrial interest. It is noteworthy that compared with the pristine MIL-125-NH<sub>2</sub>, the composite presents an improved catalytic activity and stability, being able to photodegrade 92% of MB in 60 min and 96% of SMT in 30 min, and transform 100% of 4-NA to PPD in 30 min. Aside from these very good results, this study describes for the first time the use of a MOF in a visible light continuous flow reactor for wastewater treatment. With only 10 mg of AgNC@MIL-125-NH<sub>2</sub>, high SMT removal efficiency over 70% is maintained after >2 h under water flow conditions found in real wastewater treatment plants, signaling a future real application of MOFs in water remediation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000671839200001 Publication Date 2021-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 18 Open Access OpenAccess
Notes (down) Comunidad de Madrid, CAM PEJD-2016/IND-2828 Talento Modality 2, 2017-T2/IND-5149 ; Secretaría de Estado de Investigación, Desarrollo e Innovación, Raphuel project (ENE2016-79608-C2-1-R) Retos Project MAT2017-84385-R ; Ministerio de Ciencia e Innovación, Juan de la Cierva Incorporación Fellowship (grant agreement no. IJC2019-038894-I) MOFSEIDON project (PID2019-104228RB-I00) Ramón y Cajal, Grant Agreements 2014-15039 and 2015-18677 ; Fundación BBVA, IN[17]CBBQUI_0197 ; H2020 European Research Council, ERC Consolidator Grant REALNANO 815128 Grant Agreement no. 731019 (EUSMI) ; sygmaSB; Approved Most recent IF: 8.867
Call Number EMAT @ emat @c:irua:179791 Serial 6802
Permanent link to this record
 

 
Author Villani, K.; Vermandel, W.; Smets, K.; Liang, D.; Van Tendeloo, G.; Martens, J.A.
Title Platinum particle size and support effects in NOx mediated carbon oxidation over platinum catalysts Type A1 Journal article
Year 2006 Publication Environmental science & technology Abbreviated Journal Environ Sci Technol
Volume 40 Issue 8 Pages 2727-2733
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Platinum metal was dispersed on microporous, mesoporous, and nonporous support materials including the zeolites Na-Y, Ba-Y, Ferrierite, ZSM-22, ETS-10, and AlPO-11, alumina, and titania. The oxidation of carbon black loosely mixed with catalyst powder was monitored gravimetrically in a gas stream containing nitric oxide, oxygen, and water. The carbon oxidation activity of the catalysts was found to be uniquely related to the Pt dispersion and little influenced by support type. The optimum dispersion is around 3-4% corresponding to relatively large Pt particle sizes of 2040 nm. The carbon oxidation activity reflects the NO oxidation activity of the platinum catalyst, which reaches an optimum in the 20-40 nm Pt particle size range. The lowest carbon oxidation temperatures were achieved with platinum loaded ZSM-22 and AlPO-11 zeolite crystallites bearing platinum of optimum dispersion on their external surfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000236992700038 Publication Date 2006-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.198 Times cited 29 Open Access
Notes (down) Comet; Goa Approved Most recent IF: 6.198; 2006 IF: 4.040
Call Number UA @ lucian @ c:irua:103628 Serial 2651
Permanent link to this record
 

 
Author Van Eyndhoven, G.; Kurttepeli, M.; van Oers, C.J.; Cool, P.; Bals, S.; Batenburg, K.J.; Sijbers, J.
Title Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 148 Issue 148 Pages 10-19
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab; Laboratory of adsorption and catalysis (LADCA)
Abstract Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm POre REconstruction and Segmentation is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000345973000002 Publication Date 2014-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 7 Open Access OpenAccess
Notes (down) Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:119083 Serial 2672
Permanent link to this record
 

 
Author Xia, C.; Winckelmans, N.; Prins, P.T.; Bals, S.; Gerritsen, H.C.; de Mello Donegá, C.
Title Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth Type A1 Journal article
Year 2018 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 140 Issue 140 Pages 5755-5763
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2–xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000431600000016 Publication Date 2018-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 43 Open Access OpenAccess
Notes (down) Chenghui Xia acknowledges China Scholarship Council (CSC) for financial support (NO. 201406330055). S.B and N.W. acknowledge funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant Number ECHO.712.014.001. The authors thank Xiaobin Xie and Da Wang for some TEM measurements, Donglong Fu for XRD measurements, Christina H. M. van Oversteeg for ICP-OES measurements, and Chun-Che Lin for suggestions regarding the synthesis. ECAS_Sara (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858
Call Number EMAT @ emat @c:irua:150362UA @ admin @ c:irua:150362 Serial 4917
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W.
Title Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis Type A1 Journal article
Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 200 Issue 200 Pages 31-38
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Affordable silver-polymer core-shell nanoparticles are prepared using the layer-by-layer (LbL) technique. The metallic silver core is encapsulated with an ultra-thin protective shell that prevents oxidation and clustering without compromising the plasmonic properties. The core-shell nanoparticles retain their plasmonic near field enhancement effect, as studied from finite element numerical simulations. Control over the shell thickness up to the sub-nanometer level is there for key. The particles are used to prepare a plasmonic Ag-TiO2 photocatalyst of which the gas phase photocatalytic activity is monitored over a period of four months. The described system outperforms pristine TiO2 and retains its plasmonic enhancement in contrast to TiO2 modified with bare silver nanoparticles. With this an important step is made toward the development of long-term stable plasmonic (photocatalytic) applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384775600004 Publication Date 2016-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 45 Open Access OpenAccess
Notes (down) CD, SL and SWV acknowledge the Research Foundation − Flanders (FWO) for financial support. CD further acknowledges BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014). SB acknowledges the European Research Council for the ERC Starting Grant #335078-COLOURATOM.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446
Call Number c:irua:134384 c:irua:134384UA @ admin @ c:irua:134384 Serial 4104
Permanent link to this record
 

 
Author Yang, C.; Batuk, M.; Jacquet, Q.; Rousse, G.; Yin, W.; Zhang, L.; Hadermann, J.; Abakumov, A.M.; Cibin, G.; Chadwick, A.; Tarascon, J.-M.; Grimaud, A.
Title Revealing pH-Dependent Activities and Surface Instabilities for Ni-Based Electrocatalysts during the Oxygen Evolution Reaction Type A1 Journal article
Year 2018 Publication ACS energy letters Abbreviated Journal Acs Energy Lett
Volume Issue Pages 2884-2890
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Multiple electrochemical processes are involved at the catalyst/ electrolyte interface during the oxygen evolution reaction (OER). With the purpose of elucidating the complexity of surface dynamics upon OER, we systematically studied two Ni-based crystalline oxides (LaNiO3−δ and La2Li0.5Ni0.5O4) and compared them with the state-of-the-art Ni−Fe (oxy)- hydroxide amorphous catalyst. Electrochemical measurements such as rotating ring disk electrode (RRDE) and electrochemical quartz microbalance microscopy (EQCM) coupled with a series of physical characterizations including transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) were conducted to unravel the exact pH effect on both the OER activity and the catalyst stability. We demonstrate that for Ni-based crystalline catalysts the rate for surface degradation depends on the pH and is greater than the rate for surface reconstruction. This behavior is unlike that for the amorphous Ni oxyhydroxide catalyst, which is found to be more stable and pH-independent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453805100005 Publication Date 2018-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access: Available from 06.11.2019
Notes (down) C.Y., J.-M.T., and A.G. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC GrantProject 670116-ARPEMA. A.G. acknowledges financial support from the ANR MIDWAY (Project ID ANR-17-CE05- 0008). We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under Proposal sp12559. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:155046 Serial 5067
Permanent link to this record
 

 
Author Xia, C.; Pedrazo-Tardajos, A.; Wang, D.; Meeldijk, J.D.; Gerritsen, H.C.; Bals, S.; de Donega, C.M.
Title Seeded growth combined with cation exchange for the synthesis of anisotropic Cu2-xS/ZnS, Cu2-xS, and CuInS2 nanorods Type A1 Journal article
Year 2021 Publication Chemistry of materials Abbreviated Journal
Volume 33 Issue 1 Pages 102-116
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Colloidal copper(I) sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention for a wide range of applications because of their unique optoelectronic properties, driving scientists to explore the potential of using Cu2-xS NCs as seeds in the synthesis of heteronanocrystals to achieve new multifunctional materials. Herein, we developed a multistep synthesis strategy toward Cu2-xS/ZnS heteronanorods. The Janus-type Cu2-xS/ZnS heteronanorods are obtained by the injection of hexagonal high-chalcocite Cu2-xS seed NCs in a hot zinc oleate solution in the presence of suitable surfactants, 20 s after the injection of sulfur precursors. The Cu2-xS seed NCs undergo rapid aggregation and coalescence in the first few seconds after the injection, forming larger NCs that act as the effective seeds for heteronucleation and growth of ZnS. The ZnS heteronucleation occurs on a single (100) facet of the Cu2-xS seed NCs and is followed by fast anisotropic growth along a direction that is perpendicular to the c-axis, thus leading to Cu2-xS/ZnS Janus-type heteronanorods with a sharp heterointerface. Interestingly, the high-chalcocite crystal structure of the injected Cu2-xS seed NCs is preserved in the Cu2-xS segments of the heteronanorods because of the highthermodynamic stability of this Cu2-xS phase. The Cu2-xS/ZnS heteronanorods are subsequently converted into single-component Cu2-xS and CuInS2 nanorods by postsynthetic topotactic cation exchange. This work expands the possibilities for the rational synthesis of colloidal multicomponent heteronanorods by allowing the design principles of postsynthetic heteroepitaxial seeded growth and nanoscale cation exchange to be combined, yielding access to a plethora of multicomponent heteronanorods with diameters in the quantum confinement regime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000610984700009 Publication Date 2020-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 10 Open Access OpenAccess
Notes (down) C.X. acknowledges China Scholarship Council (CSC) for the financial support (grant number 201406330055). C.d.M.D. acknowledges funding from the European Commission for access to the EMAT facilities (grant number EUSMI E180900184). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. acknowledges support by means of the ERC Consolidator grant no. 815128 REALNANO. The authors thank Donglong Fu for XRD measurements.; sygma Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:176587 Serial 6732
Permanent link to this record
 

 
Author Das, P.P.; Guzzinati, G.; Coll, C.; Gomez Perez, A.; Nicolopoulos, S.; Estrade, S.; Peiro, F.; Verbeeck, J.; Zompra, A.A.; Galanis, A.S.
Title Reliable Characterization of Organic & Pharmaceutical Compounds with High Resolution Monochromated EEL Spectroscopy Type A1 Journal article
Year 2020 Publication Polymers Abbreviated Journal Polymers-Basel
Volume 12 Issue 7 Pages 1434
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Organic and biological compounds (especially those related to the pharmaceutical industry) have always been of great interest for researchers due to their importance for the development of new drugs to diagnose, cure, treat or prevent disease. As many new API (active pharmaceutical ingredients) and their polymorphs are in nanocrystalline or in amorphous form blended with amorphous polymeric matrix (known as amorphous solid dispersion—ASD), their structural identification and characterization at nm scale with conventional X-Ray/Raman/IR techniques becomes difficult. During any API synthesis/production or in the formulated drug product, impurities must be identified and characterized. Electron energy loss spectroscopy (EELS) at high energy resolution by transmission electron microscope (TEM) is expected to be a promising technique to screen and identify the different (organic) compounds used in a typical pharmaceutical or biological system and to detect any impurities present, if any, during the synthesis or formulation process. In this work, we propose the use of monochromated TEM-EELS, to analyze selected peptides and organic compounds and their polymorphs. In order to validate EELS for fingerprinting (in low loss/optical region) and by further correlation with advanced DFT, simulations were utilized.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000556786700001 Publication Date 2020-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4360 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.364 Times cited 6 Open Access OpenAccess
Notes (down) C.C., F.P., S.E. acknowledges the Spanish government for projects MAT2016-79455-P, Research Network RED2018-102609-T and the FPI (BES-2017-080045) grant of Ministerio de Ciència, Innovación y Universidades. G.G. acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO). P.P.D., A.G.P., S.N. gratefully acknowledge much helpful discussion on EELS study for organic compounds with Dr. Andrey Chuvilin (CIC NANOGUNE, Donostia—San Sebastian, Spain). The authors also acknowledge Raúl Arenal (University de Zaragoza, Spain) for useful discussion on EELS. The authors acknowledge also Ulises Julio Amador Elizondo (Universidad CEU San Pablo, Spain) for kindly provide the aripiprazole and piroxicam samples for EELS study.; EUSMI_TA; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:170603 Serial 6400
Permanent link to this record
 

 
Author Mikhailova, D.; Karakulina, O.M.; Batuk, D.; Hadermann, J.; Abakumov, A.M.; Herklotz, M.; Tsirlin, A.A.; Oswald, S.; Giebeler, L.; Schmidt, M.; Eckert, J.; Knapp, M.; Ehrenberg, H.
Title Layered-to-Tunnel Structure Transformation and Oxygen Redox Chemistry in LiRhO2upon Li Extraction and Insertion Type A1 Journal article
Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 55 Issue 55 Pages 7079-7089
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Layered Li(M,Li)O2 (where M is a transition metal) ordered rock-salt-type structures are used in advanced metal-ion batteries as one of the best hosts for the reversible intercalation of Li ions. Besides the conventional redox reaction involving oxidation/reduction of the M cation upon Li extraction/insertion, creating oxygen-located holes because of the partial oxygen oxidation increases capacity while maintaining the oxidized oxygen species in the lattice through high covalency of the M–O bonding. Typical degradation mechanism of the Li(M,Li)O2 electrodes involves partially irreversible M cation migration toward the Li positions, resulting in gradual capacity/voltage fade. Here, using LiRhO2 as a model system (isostructural and isoelectronic to LiCoO2), for the first time, we demonstrate an intimate coupling between the oxygen redox and M cation migration. A formation of the oxidized oxygen species upon electrochemical Li extraction coincides with transformation of the layered Li1–xRhO2 structure into the γ-MnO2-type rutile–ramsdellite intergrowth LiyRh3O6 structure with rutile-like [1 × 1] channels along with bigger ramsdellite-like [2 × 1] tunnels through massive and concerted Rh migration toward the empty positions in the Li layers. The oxidized oxygen dimers with the O–O distances as short as 2.26 Å are stabilized in this structure via the local Rh–O configuration reminiscent to that in the μ-peroxo-μ-hydroxo Rh complexes. The LiyRh3O6 structure is remarkably stable upon electrochemical cycling illustrating that proper structural implementation of the oxidized oxygen species can open a pathway toward deliberate employment of the anion redox chemistry in high-capacity/high-voltage positive electrodes for metal-ion batteries. Upon chemical or electrochemical oxidation, layered LiRhO2 shows a unique structural transformation that involves both cation migration and oxidation of oxygen resulting in a stable tunnel-like rutile−ramsdellite intergrowth LiyRh3O6 structure. This structure demonstrates excellent performance with the steady and reversible capacity of ∼200 mAh/g. The stability of LiyRh3O6 is rooted in the accommodation of partially oxidized oxygen species through the formation of short O−O distances that are compatible with the connectivity of RhO6 octahedra.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380181400035 Publication Date 2016-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 12 Open Access
Notes (down) Bundesministerium fur Bildung und Forschung, 03SF0477B ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 4.857
Call Number EMAT @ emat @ c:irua:140848 Serial 4424
Permanent link to this record
 

 
Author Zelaya, E.; Schryvers, D.
Title FCC surface precipitation in Cu-Zn-Al after low angle GA+ ion irradiation Type A1 Journal article
Year 2010 Publication Materials transactions Abbreviated Journal Mater Trans
Volume 51 Issue 12 Pages 2177-2180
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The precipitation of a disordered FCC surface structure after low angle Ga+ ion irradiation during focused ion beam thinning of a B2 Cu-Zn-Al alloy with e/a=1.48 is reported. Conventional as well as high-resolution transmission electron microscopy techniques reveal FCC layers on both sides of the thinned sample. The occurrence of this structure is attributed to disordering and dezincification of the alloy resulting from the sputtering process during the irradiation. Changes in crystallographic sample orientation with respect to the incoming ion beam do not have a significant effect on the appearance of the FCC surface structure.
Address
Corporate Author Thesis
Publisher Place of Publication Sendai Editor
Language Wos 000287390300009 Publication Date 2010-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1347-5320;1345-9678; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.713 Times cited 2 Open Access
Notes (down) Bof; Fwo Approved Most recent IF: 0.713; 2010 IF: 0.787
Call Number UA @ lucian @ c:irua:85997 Serial 1175
Permanent link to this record
 

 
Author Lamoen, D.; March, N.H.
Title Orientational disorder in some molecular solids in relation to the boson peak in glasses Type A1 Journal article
Year 2009 Publication Physics letters : A Abbreviated Journal Phys Lett A
Volume 373 Issue 7 Pages 799-800
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Orientational disorder in some molecular solids is discussed in relation to the emphasis placed on transverse vibrational modes in glasses as the origin of the observed boson peak in two very recent contributions in Nature Materials. In particular, facts are here presented for (i) CH4, (ii) C60 and (iii) ethanol in their solid phases for (a) specific heat and (b) neutron scattering. The results for ethanol in particular do not fit in with the interpretation of the boson peak in terms of transverse acoustic phonons in disordered systems. Glasses will therefore have to be separated into at least two classes where the physical interpretation of the boson peak is concerned.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000263515500020 Publication Date 2009-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.772 Times cited 3 Open Access
Notes (down) Bof Approved Most recent IF: 1.772; 2009 IF: 2.009
Call Number UA @ lucian @ c:irua:72917 Serial 2516
Permanent link to this record
 

 
Author Matthai, C.C.; March, N.H.; Lamoen, D.
Title Supercooled molecular liquids and the glassy phases of chemically bonded N, P, As, Si and Ge Type A1 Journal article
Year 2009 Publication Physics and chemistry of liquids Abbreviated Journal Phys Chem Liq
Volume 47 Issue 6 Pages 607-613
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Glassy phases which have insulating character exist for a variety of monatomic species. By contrast, until recently, it has been possible to make bulk metallic glasses (BMG) by vitrification only for multicomponent systems. After a relatively brief summary on supercooling of a few molecular liquids, we review some of the recently reported results on molecular assemblies of the series N, P, As and amorphous Si and Ge. Based on these results, we suggest that the transition metals with their directional bonding might be suitable candidates for the production of BMG by vitrification.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000273047400003 Publication Date 2009-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9104;1029-0451; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.145 Times cited 1 Open Access
Notes (down) BoF Approved Most recent IF: 1.145; 2009 IF: 0.580
Call Number UA @ lucian @ c:irua:80653 Serial 3376
Permanent link to this record
 

 
Author Nistor, L.C.; Van Tendeloo, G.; Dincã, G.
Title Crystallographic aspects related to the high pressure-high temperature phase transformation of boron nitride Type A1 Journal article
Year 2005 Publication Philosophical magazine Abbreviated Journal Philos Mag
Volume 85 Issue 11 Pages 1145-1158
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000227675400003 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.505 Times cited 13 Open Access
Notes (down) Bil 01/73; Iap V-1 Approved Most recent IF: 1.505; 2005 IF: 1.470
Call Number UA @ lucian @ c:irua:54756 Serial 587
Permanent link to this record
 

 
Author Nistor, L.C.; Richard, O.; Zhao, C.; Bender, H.; Van Tendeloo, G.
Title Thermal stability of atomic layer deposited Zr:Al mixed oxide thin films: an in situ transmission electron microscopy study Type A1 Journal article
Year 2005 Publication Journal of materials research Abbreviated Journal J Mater Res
Volume 20 Issue 7 Pages 1741-1750
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000230296100012 Publication Date 2005-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0884-2914;2044-5326; ISBN Additional Links UA library record; WoS full record
Impact Factor 1.673 Times cited Open Access
Notes (down) Bil 01/73; IAP V-1 Approved Most recent IF: 1.673; 2005 IF: 2.104
Call Number UA @ lucian @ c:irua:54884 Serial 3631
Permanent link to this record
 

 
Author Ghica, C.; Nistor, L.C.; Bender, H.; Richard, O.; Van Tendeloo, G.; Ulyashin, A.;
Title Characterization of {111} planar defects induced in silicon by hydrogen plasma treatments Type A1 Journal article
Year 2006 Publication Philosophical magazine Abbreviated Journal Philos Mag
Volume 86 Issue 32 Pages 5137-5151
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000239756300010 Publication Date 2006-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.505 Times cited 12 Open Access
Notes (down) Bil 01/73 Approved Most recent IF: 1.505; 2006 IF: 1.354
Call Number UA @ lucian @ c:irua:60895 Serial 315
Permanent link to this record
 

 
Author Nistor, L.C.; Ghica, C.; Matei, D.; Dinescu, G.; Dinescu, M.; Van Tendeloo, G.
Title Growth and characterization of a-axis textured ZnO thin films Type A1 Journal article
Year 2005 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth
Volume 277 Issue Pages 26-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000228737900005 Publication Date 2005-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.751 Times cited 44 Open Access
Notes (down) Bil 01/73 Approved Most recent IF: 1.751; 2005 IF: 1.681
Call Number UA @ lucian @ c:irua:54787 Serial 1390
Permanent link to this record
 

 
Author Ghica, C.; Nistor, L.C.; Bender, H.; Richard, O.; Van Tendeloo, G.; Ulyashin, A.
Title TEM characterization of extended defects induced in Si wafers by H-plasma treatment Type A1 Journal article
Year 2007 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 40 Issue 2 Pages 395-400
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000243725800017 Publication Date 2007-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 10 Open Access
Notes (down) Bil 01/73 Approved Most recent IF: 2.588; 2007 IF: 2.200
Call Number UA @ lucian @ c:irua:62601 Serial 3476
Permanent link to this record
 

 
Author Yu, C.-P.; Friedrich, T.; Jannis, D.; Van Aert, S.; Verbeeck, J.
Title Real-Time Integration Center of Mass (riCOM) Reconstruction for 4D STEM Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A real-time image reconstruction method for scanning transmission electron microscopy (STEM) is proposed. With an algorithm requiring only the center of mass of the diffraction pattern at one probe position at a time, it is able to update the resulting image each time a new probe position is visited without storing any intermediate diffraction patterns. The results show clear features at high spatial frequency, such as atomic column positions. It is also demonstrated that some common post-processing methods, such as band-pass filtering, can be directly integrated in the real-time processing flow. Compared with other reconstruction methods, the proposed method produces high-quality reconstructions with good noise robustness at extremely low memory and computational requirements. An efficient, interactive open source implementation of the concept is further presented, which is compatible with frame-based, as well as event-based camera/file types. This method provides the attractive feature of immediate feedback that microscope operators have become used to, for example, conventional high-angle annular dark field STEM imaging, allowing for rapid decision-making and fine-tuning to obtain the best possible images for beam-sensitive samples at the lowest possible dose.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000792176100001 Publication Date 2022-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 7 Open Access OpenAccess
Notes (down) Bijzonder Onderzoeksfonds UGent; H2020 European Research Council, 770887 ; H2020 European Research Council, 823717 ; H2020 European Research Council, ESTEEM3 / 823717 ; H2020 European Research Council, PICOMETRICS / 770887 ; Fonds Wetenschappelijk Onderzoek, 30489208 ; Herculesstichting; esteem3reported; esteem3jra Approved Most recent IF: 2.8
Call Number EMAT @ emat @c:irua:188538 Serial 7068
Permanent link to this record
 

 
Author Tarakina, N.V.; Nikulina, E.A.; Hadermann, J.; Kellerman, D.G.; Tyutunnik, A.P.; Berger, I.F.; Zubkov, V.G.; Van Tendeloo, G.
Title Crystal structure and magnetic properties of complex oxides Mg4-xNixO9, 0\leq x\leq4 Type A1 Journal article
Year 2007 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 180 Issue 11 Pages 3180-3187
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In the Mg4−xNixNb2O9 (0x4) system two ranges of solid solution have been found. One of the solid solutions has a corundum-related structure type (space group ); the second one adopts the II-Ni4Nb2O9 structure type (space group Pbcn). The unit cell constants and atomic positions have been determined and refined using neutron powder diffraction data. Electron diffraction and high-resolution transmission electron microscopy (HRTEM) from MgNi3Nb2O9 crystals identify the presence of planar defects and the intergrowth of several (structurally related) phases. The magnetic susceptibility of Mg3NiNb2O9, measured in the temperature range T=2300 K, shows no indications of magnetic ordering at low temperatures, while for MgNi3Nb2O9 there is a magnetic ordering at temperatures below 45.5 K.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000260636200025 Publication Date 2007-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 3 Open Access
Notes (down) Belgium Science Policy Approved Most recent IF: 2.299; 2007 IF: 2.149
Call Number UA @ lucian @ c:irua:72944 Serial 559
Permanent link to this record
 

 
Author Nematollahi, P.; Barbiellini, B.; Bansil, A.; Lamoen, D.; Qingying, J.; Mukerjee, S.; Neyts, E.C.
Title Identification of a Robust and Durable FeN4CxCatalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand Type A1 Journal article
Year 2022 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume Issue Pages 7541-7549
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although recent studies have advanced the understanding of pyrolyzed

Fe−N−C materials as oxygen reduction reaction (ORR) catalysts, the atomic and

electronic structures of the active sites and their detailed reaction mechanisms still remain unknown. Here, based on first-principles density functional theory (DFT) computations, we discuss the electronic structures of three FeN4 catalytic centers with different local topologies of the surrounding C atoms with a focus on unraveling the mechanism of their ORR activity in acidic electrolytes. Our study brings back a forgotten, synthesized pyridinic Fe−N coordinate to the community’s attention, demonstrating that this catalyst can exhibit excellent activity for promoting direct four-electron ORR through the addition of a fifth ligand such as −NH2, −OH, and −SO4. We also identify sites with good stability properties through the combined use of our DFT calculations and Mössbauer spectroscopy data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000823193100001 Publication Date 2022-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS full record; WoS citing articles
Impact Factor 12.9 Times cited Open Access OpenAccess
Notes (down) Basic Energy Sciences, DE-FG02-07ER46352 ; Fonds Wetenschappelijk Onderzoek, 1261721N ; Opetus- ja Kulttuuriministeri?; Department of Energy, DE-EE0008416 ; Approved Most recent IF: 12.9
Call Number EMAT @ emat @c:irua:189000 Serial 7073
Permanent link to this record
 

 
Author Yang, S.; Liu, Z.; An, H.; Arnouts, S.; de Ruiter, J.; Rollier, F.; Bals, S.; Altantzis, T.; Figueiredo, M.C.; Filot, I.A.W.; Hensen, E.J.M.; Weckhuysen, B.M.; van der Stam, W.
Title Near-unity electrochemical CO₂ to CO conversion over Sn-doped copper oxide nanoparticles Type A1 Journal article
Year 2022 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 12 Issue 24 Pages 15146-15156
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Bimetallic electrocatalysts have emerged as a viable strategy to tune the electrocatalytic CO2 reduction reaction (eCO2RR) for the selective production of valuable base chemicals and fuels. However, obtaining high product selectivity and catalyst stability remain challenging, which hinders the practical application of eCO2RR. In this work, it was found that a small doping concentration of tin (Sn) in copper oxide (CuO) has profound influence on the catalytic performance, boosting the Faradaic efficiency (FE) up to 98% for carbon monoxide (CO) at -0.75 V versus RHE, with prolonged stable performance (FE > 90%) for up to 15 h. Through a combination of ex situ and in situ characterization techniques, the in situ activation and reaction mechanism of the electrocatalyst at work was elucidated. In situ Raman spectroscopy measurements revealed that the binding energy of the crucial adsorbed *CO intermediate was lowered through Sn doping, thereby favoring gaseous CO desorption. This observation was confirmed by density functional theory, which further indicated that hydrogen adsorption and subsequent hydrogen evolution were hampered on the Sn-doped electrocatalysts, resulting in boosted CO formation. It was found that the pristine electrocatalysts consisted of CuO nanoparticles decorated with SnO2 domains, as characterized by ex situ high-resolution scanning transmission electron microscopy and X-ray photoelectron spectroscopy measurements. These pristine nanoparticles were subsequently in situ converted into a catalytically active bimetallic Sn-doped Cu phase. Our work sheds light on the intimate relationship between the bimetallic structure and catalytic behavior, resulting in stable and selective oxide-derived Sn-doped Cu electrocatalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000900052400001 Publication Date 2022-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.9 Times cited 16 Open Access OpenAccess
Notes (down) B.M.W., S.Y., M.C.F., E.J.M.H., and W.v.d.S. acknowledge support from the Strategic UU-TU/e Alliance project ?Joint Centre for Chemergy Research?. S.B. acknowledges support from the European Research Council (ERC Consolidator grant #815128 REALNANO) . Z.L. acknowledges financial support of the China Scholarship Council and the Netherlands Organization for Scientific Research for access to computa-tional resources for carrying out the DFT calculations reported in this work. S.A. and T.A. acknowledge funding from theUniversity of Antwerp Research fund (BOF) . The authors also thank Dr. Jochem Wijten and Joris Janssens (Inorganic Chemistry and Catalysis, Utrecht University) for helpful technical support. Sander Deelen (Faculty of Science, Utrecht University) is acknowledged for the design of the in situ XRD cell. Approved Most recent IF: 12.9
Call Number UA @ admin @ c:irua:192742 Serial 7325
Permanent link to this record
 

 
Author Yang, S.; An, H.; Arnouts, S.; Wang, H.; Yu, X.; de Ruiter, J.; Bals, S.; Altantzis, T.; Weckhuysen, B.M.; van der Stam, W.
Title Halide-guided active site exposure in bismuth electrocatalysts for selective CO₂ conversion into formic acid Type A1 Journal article
Year 2023 Publication Nature Catalysis Abbreviated Journal
Volume 6 Issue 9 Pages 796-806
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract It remains a challenge to identify the active sites of bismuth catalysts in the electrochemical CO2 reduction reaction. Here we show through in situ characterization that the activation of bismuth oxyhalide electrocatalysts to metallic bismuth is guided by the halides. In situ X-ray diffraction results show that bromide promotes the selective exposure of planar bismuth surfaces, whereas chloride and iodide result in more disordered active sites. Furthermore, we find that bromide-activated bismuth catalysts outperform the chloride and iodide counterparts, achieving high current density (>100 mA cm(-2)) and formic acid selectivity (>90%), suggesting that planar bismuth surfaces are more active for the electrochemical CO2 reduction reaction. In addition, in situ X-ray absorption spectroscopy measurements reveal that the reconstruction proceeds rapidly in chloride-activated bismuth and gradually when bromide is present, facilitating the formation of ordered planar surfaces. These findings show the pivotal role of halogens on selective facet exposure in activated bismuth-based electrocatalysts during the electrochemical CO2 reduction reaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001050367400001 Publication Date 2023-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2520-1158 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 37.8 Times cited 13 Open Access OpenAccess
Notes (down) B.M.W. acknowledges support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research' as well as from the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). We also thank J. Wijten, J. Janssens and T. Prins (all from the Inorganic Chemistry and Catalysis group, Utrecht University) for helpful technical support. S. Deelen (Faculty of Science, Utrecht University) and L. Wu (Inorganic Chemistry and Catalysis group, Utrecht University) are acknowledged for the design of the in situ XRD cell. We also acknowledge B. Detlefs, P. Glatzel and V. Paidi (ESRF) for the support during the HERFD-XANES measurements on the ID26 beamline of the ESRF. Approved Most recent IF: 37.8; 2023 IF: NA
Call Number UA @ admin @ c:irua:199190 Serial 8877
Permanent link to this record
 

 
Author Zhao, H.; Hu, Z.; Liu, J.; Li, Y.; Wu, M.; Van Tendeloo, G.; Su, B.-L.
Title Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO 2 -Au-CdS photonic crystals Type A1 Journal article
Year 2018 Publication Nano energy Abbreviated Journal Nano Energy
Volume 47 Issue Pages 266-274
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The slow photon effect, a structural effect of photonic crystal photocatalyst, is very efficient in the enhancement of photocatalytic reactions. However, slow photons in powdered photonic crystal photocatalyst have rarely been discussed because they are usually randomly oriented when the photocatalytic reaction happens in solution under constant stirring. In this work, for the first time we design a gradient ternary TiO2-Au-CdS photonic crystal based on three-dimensionally ordered macroporous (3DOM) TiO2 as skeleton, Au as electron transfer medium and CdS as active material for photocatalytic H2 production under visible-light. As a result, this gradient ternary photocatalyst is favorable to simultaneously enhance light absorption, extend the light responsive region and reduce the recombination rate of the charge carriers. In particular, we found that slow photons at blue-edge exhibit much higher photocatalytic activity than that at red-edge. The photonic crystal photocatalyst with a macropore size of 250 nm exhibits the highest visible-light H2 production rate of 3.50 mmolh⁻¹g⁻¹ due to the slow photon energy at the blue-edge to significantly enhance the incident photons utilization. This work verifies that slow photons at the blue-edge can largely enhance light harvesting and sheds a light on designing the powdered photonic crystal photocatalyst to promote the photocatalytic H2 production via slow photon effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430057000027 Publication Date 2018-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.343 Times cited 33 Open Access OpenAccess
Notes (down) B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is financially supported the National KeyR&D Program of China (2016YFA0202602), National Natural Science Foundation of China (U1663225, 51502225), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), Hubei Provincial Natural Science Foundation (2015CFB516), International Science &Technology Cooperation Program of China (2015DFE52870) and the Fundamental Research Funds for the Central Universities (WUT: 2016III029). Approved Most recent IF: 12.343
Call Number EMAT @ lucian @c:irua:150721 Serial 4924
Permanent link to this record