|   | 
Details
   web
Records
Author Nematollahi, P.; Neyts, E.C.
Title Linking bi-metal distribution patterns in porous carbon nitride fullerene to its catalytic activity toward gas adsorption Type A1 Journal article
Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 11 Issue 7 Pages 1794
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Immobilization of two single transition metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. If the substrate contains more than one vacancy site, the combination of TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bi-metal composition. By means of DFT calculations, we modeled three dissimilar bi-metal atoms (Ti, Mn, and Cu) doped into the six porphyrin-like cavities of porous C24N24 fullerene, considering different bi-metal distribution patterns for each binary complex, viz. TixCuz@C24N24, TixMny@C24N24, and MnyCuz@C24N24 (with x, y, z = 0-6). We elucidate whether controlling the distribution of bi-metal atoms into the C24N24 cavities can alter their catalytic activity toward CO2, NO2, H-2, and N-2 gas capture. Interestingly, Ti2Mn4@C24N24 and Ti2Cu4@C24N24 complexes showed the highest activity and selectively toward gas capture. Our findings provide useful information for further design of novel few-atom carbon-nitride-based catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000676140500001 Publication Date 2021-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.553
Call Number UA @ admin @ c:irua:180372 Serial 8174
Permanent link to this record
 

 
Author Tchakoua, T.; Powell, A.D.; Gerrits, N.; Somers, M.F.; Doblhoff-Dier, K.; Busnengo, H.F.; Kroes, G.-J.
Title Simulating highly activated sticking of H₂ on Al(110) : quantum versus quasi-classical dynamics Type A1 Journal article
Year 2023 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal
Volume 127 Issue 11 Pages 5395-5407
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We evaluate the importance of quantum effects on the sticking of H2 on Al(110) for conditions that are close to those of molecular beam experiments that have been done on this system. Calculations with the quasi-classical trajectory (QCT) method and with quantum dynamics (QD) are performed using a model in which only motion in the six molecular degrees of freedom is allowed. The potential energy surface used has a minimum barrier height close to the value recently obtained with the quantum Monte Carlo method. Monte Carlo averaging over the initial rovibrational states allowed the QD calculations to be done with an order of magnitude smaller computational expense. The sticking probability curve computed with QD is shifted to lower energies relative to the QCT curve by 0.21 to 0.05 kcal/mol, with the highest shift obtained for the lowest incidence energy. Quantum effects are therefore expected to play a small role in calculations that would evaluate the accuracy of electronic structure methods for determining the minimum barrier height to dissociative chemisorption for H2 + Al(110) on the basis of the standard procedure for comparing results of theory with molecular beam experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000971346700001 Publication Date 2023-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7; 2023 IF: 4.536
Call Number UA @ admin @ c:irua:196071 Serial 8525
Permanent link to this record
 

 
Author Vereecke, G.; De Coster, H.; Van Alphen, S.; Carolan, P.; Bender, H.; Willems, K.; Ragnarsson, L.-A.; Van Dorpe, P.; Horiguchi, N.; Holsteyns, F.
Title Wet etching of TiN in 1-D and 2-D confined nano-spaces of FinFET transistors Type A1 Journal article
Year 2018 Publication Microelectronic engineering Abbreviated Journal
Volume 200 Issue Pages 56-61
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In the manufacturing of multi-Vt FinFET transistors, the gate material deposited in the nano-spaces left by the removed dummy gate must be etched back in mask-defined wafer areas. Etch conformality is a necessary condition for the control of under-etch at the boundary between areas defined by masking. We studied the feasibility of TiN etching by APM (ammonia peroxide mixture, also known as SC1) in nano-confined volumes representative of FinFET transistors of the 7 nm node and below, namely nanotrenches with 1-D confinement and nanoholes with 2-D confinement. TiN etching was characterized for rate and conformality using different electron microscopy techniques. Etching in closed nanotrenches was conformal, starting and progressing all along the 2-D seam, with a rate that was 38% higher compared to a planar film. Etching in closed nanoholes proved also to be conformal and faster than planar films, but with a delay to open the 1-D seam that seemed to depend strongly on small variations in the hole diameter. However, holes between the fins at the bottom of the removed dummy gate, are not circular and do present 2-D seams that should lend themselves for an easier start of conformal etching as compared to the circular nanoholes used in this study. Finally, to explain the higher etch rate observed in nano-confined features, concentrations of ions in nanoholes were calculated taking the overlap of electrostatic double layers (EDL) into account. With negatively charged TiN walls, as measured by streaming potential on planar films, ammonium was the dominant ion in nanoholes. As no chemical reaction proposed in the literature for TiN etching matched with this finding, we proposed that the formation of ammine complexes, dissolving the formed Ti oxide, was the rate-determining step.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000449134800010 Publication Date 2018-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:155414 Serial 8757
Permanent link to this record
 

 
Author Slaets, J.; Loenders, B.; Bogaerts, A.
Title Plasma-based dry reforming of CH4: Plasma effects vs. thermal conversion Type A1 Journal Article
Year 2024 Publication Fuel Abbreviated Journal Fuel
Volume 360 Issue Pages 130650
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work we evaluate the chemical kinetics of dry reforming of methane in warm plasmas (1000–4000 K) using modelling with a newly developed chemistry set, for a broad range of parameters (temperature, power density and CO2/CH4 ratio). We compare the model against thermodynamic equilibrium concentrations, serving as validation of the thermal chemical kinetics. Our model reveals that plasma-specific reactions (i.e., electron impact collisions) accelerate the kinetics compared to thermal conversion, rather than altering the overall kinetics pathways and intermediate products, for gas temperatures below 2000 K. For higher temperatures, the kinetics are dominated by heavy species collisions and are strictly thermal, with negligible influence of the electrons and ions on the overall kinetics. When studying the effects of different gas mixtures on the kinetics, we identify important intermediate species, side reactions and side products. The use of excess CO2 leads to H2O formation, at the expense of H2 formation, and the CO2 conversion itself is limited, only approaching full conversion near 4000 K. In contrast, full conversion of both reactants is only kinetically limited for mixtures with excess CH4, which also gives rise to the formation of C2H2, alongside syngas. Within the given parameter space, our model predicts the 30/70 ratio of CO2/CH4 to be the most optimal for syngas formation with a H2/CO ratio of 2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001138077700001 Publication Date 2023-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access Not_Open_Access
Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182 – SCOPE ERC Synergy project), the Catalisti-ICON project BluePlasma (Project No. HBC.2022.0445), the FWO-SBO project PlasMaCatDESIGN (FWO Grant ID S001619N), the Independent Research Fund Denmark (Project No. 0217-00231B) and through long-term structural funding (Methusalem). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. We also thank Bart Wanten, Roel Michiels, Pepijn Heirman, Claudia Verheyen, dr. Senne Van Alphen, dr. Elise Vervloessem, dr. Kevin van ’t Veer, dr. Joshua Boothroyd, dr. Omar Biondo and dr. Eduardo Morais for their expertise and feedback regarding the kinetics scheme. Approved Most recent IF: 7.4; 2024 IF: 4.601
Call Number PLASMANT @ plasmant @c:irua:201669 Serial 8973
Permanent link to this record
 

 
Author Salden, A.; Budde, M.; Garcia-Soto, C.A.; Biondo, O.; Barauna, J.; Faedda, M.; Musig, B.; Fromentin, C.; Nguyen-Quang, M.; Philpott, H.; Hasrack, G.; Aceto, D.; Cai, Y.; Jury, F.A.; Bogaerts, A.; Da Costa, P.; Engeln, R.; Galvez, M.E.; Gans, T.; Garcia, T.; Guerra, V.; Henriques, C.; Motak, M.; Navarro, M.V.; Parvulescu, V.I.; Van Rooij, G.; Samojeden, B.; Sobota, A.; Tosi, P.; Tu, X.; Guaitella, O.
Title Meta-analysis of CO₂ conversion, energy efficiency, and other performance data of plasma-catalysis reactors with the open access PIONEER database Type A1 Journal article
Year 2023 Publication Journal of energy chemistry Abbreviated Journal
Volume 86 Issue Pages 318-342
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper brings the comparison of performances of CO2 conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field, organised in an open access online data-base. This tool is open to all users to carry out their own analyses, but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made, and ultimately to improve the efficiency of CO2 conversion by plasma-catalysis. The creation of this database and data-base user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO2 con-version processes, be it methanation, dry reforming of methane, methanolisation, or others. As a result of this rapid increase, there is a need for a set of standard procedures to rigorously compare performances of different systems. However, this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures. Fortunately how-ever, the accumulated data within the CO2 plasma-catalysis community has become large enough to war-rant so-called “big data” studies more familiar in the fields of medicine and the social sciences. To enable comparisons between multiple data sets and make future research more effective, this work proposes the first database on CO2 conversion performances by plasma-catalysis open to the whole community. This database has been initiated in the framework of a H2020 European project and is called the “PIONEER DataBase”. The database gathers a large amount of CO2 conversion performance data such as conversion rate, energy efficiency, and selectivity for numerous plasma sources coupled with or without a catalyst. Each data set is associated with metadata describing the gas mixture, the plasma source, the nature of the catalyst, and the form of coupling with the plasma. Beyond the database itself, a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public. The simple and fast visualisation of the state of the art puts new results into context, identifies literal gaps in data, and consequently points towards promising research routes. More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling. Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO2 plasma-catalytic studies. Finally, the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool. (c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. This is an open access article under the CC BY license (http://creati- vecommons.org/licenses/by/4.0/).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001083545900001 Publication Date 2023-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-4956 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.1 Times cited Open Access
Notes Approved Most recent IF: 13.1; 2023 IF: 2.594
Call Number UA @ admin @ c:irua:200416 Serial 9056
Permanent link to this record
 

 
Author Osorio-Tejada, J.; Escriba-Gelonch, M.; Vertongen, R.; Bogaerts, A.; Hessel, V.
Title CO₂ conversion to CO via plasma and electrolysis : a techno-economic and energy cost analysis Type A1 Journal article
Year 2024 Publication Energy & environmental science Abbreviated Journal
Volume Issue Pages
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Electrification and carbon capture technologies are essential for achieving net-zero emissions in the chemical sector. A crucial strategy involves converting captured CO2 into CO, a valuable chemical feedstock. This study evaluates the feasibility of two innovative methods: plasma activation and electrolysis, using clean electricity and captured CO2. Specifically, it compares a gliding arc plasma reactor with an embedded novel carbon bed system to a modern zero-gap type low-temperature electrolyser. The plasma method stood out with an energy cost of 19.5 GJ per tonne CO, marking a 43% reduction compared to electrolysis and conventional methods. CO production costs for plasma- and electrolysis-based plants were $671 and $962 per tonne, respectively. However, due to high uncertainty regarding electrolyser costs, the CO production costs in electrolysis-based plants may actually range from $570 to $1392 per tonne. The carbon bed system in the plasma method was a key factor in facilitating additional CO generation from O-2 and enhancing CO2 conversion, contributing to its cost-effectiveness. Challenges for electrolysis included high costs of equipment and low current densities. Addressing these limitations could significantly decrease production costs, but challenges arise from the mutual relationship between intrinsic parameters, such as CO2 conversion, CO2 input flow, or energy cost. In a future scenario with affordable feedstocks and equipment, costs could drop below $500 per tonne for both methods. While this may be more challenging for electrolysis due to complexity and expensive catalysts, plasma-based CO production appears more viable and competitive.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001218045900001 Publication Date 2024-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205986 Serial 9138
Permanent link to this record
 

 
Author Manaigo, F.; Bahnamiri, O.S.; Chatterjee, A.; Panepinto, A.; Krumpmann, A.; Michiels, M.; Bogaerts, A.; Snyders, R.
Title Electrical stability and performance of a nitrogen-oxygen atmospheric pressure gliding arc plasma Type A1 Journal article
Year 2024 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 12 Issue 13 Pages 5211-5219
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nonthermal plasmas are currently being studied as a green alternative to the Haber-Bosch process, which is, today, the dominant industrial process allowing for the fixation of nitrogen and, as such, a fundamental component for the production of nitrogen-based industrial fertilizers. In this context, the gliding arc plasma (GAP) is considered a promising choice among nonthermal plasma options. However, its stability is still a key parameter to ensure industrial transfer of the technology. Nowadays, the conventional approach to stabilize this plasma process is to use external resistors. Although this indeed allows for an enhancement of the plasma stability, very little is reported about how it impacts the process efficiency, both in terms of NOx yield and energy cost. In this work, this question is specifically addressed by studying a DC-powered GAP utilized for nitrogen fixation into NOx at atmospheric pressure stabilized by variable external resistors. Both the performance and the stability of the plasma are reported as a function of the utilization of the resistors. The results confirm that while the use of a resistor indeed allows for a strong stabilization of the plasma without impacting the NOx yield, especially at high plasma current, it dramatically impacts the energy cost of the process, which increases from 2.82 to 7.9 MJ/mol. As an alternative approach, we demonstrate that the replacement of the resistor by an inductor is promising since it allows for decent stabilization of the plasma, while it does not affect either the energy cost of the process or the NOx yield.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001186347900001 Publication Date 2024-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:204774 Serial 9146
Permanent link to this record
 

 
Author Tsonev, I.; Ahmadi Eshtehardi, H.; Delplancke, M.-P.; Bogaerts, A.
Title Importance of geometric effects in scaling up energy-efficient plasma-based nitrogen fixation Type A1 Journal article
Year 2024 Publication Sustainable energy & fuels Abbreviated Journal
Volume Issue Pages 1-19
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Despite the recent promising potential of plasma-based nitrogen fixation, the technology faces significant challenges in efficient upscaling. To tackle this challenge, we investigate two reactors, i.e., a small one, operating in a flow rate range of 5-20 ln min-1 and current range of 200-500 mA, and a larger one, operating at higher flow rate (100-300 ln min-1) and current (400-1000 mA). Both reactors operate in a pin-to-pin configuration and are powered by direct current (DC) from the same power supply unit, to allow easy comparison and evaluate the effect of upscaling. In the small reactor, we achieve the lowest energy cost (EC) of 2.8 MJ mol-1, for a NOx concentration of 1.72%, at a flow rate of 20 ln min-1, yielding a production rate (PR) of 33 g h-1. These values are obtained in air; in oxygen-enriched air, the results are typically better, at the cost of producing oxygen-enriched air. In the large reactor, the higher flow rates reduce the NOx concentration due to lower SEI, while maintaining a similar EC. This stresses the important effect of the geometrical configuration of the arc, which is typically concentrated in the center of the reactor, resulting in limited coverage of the reacting gas flow, and this is identified as the limiting factor for upscaling. However, our experiments reveal that by changing the reactor configuration, and thus the plasma geometry and power deposition mechanisms, the amount of gas treated by the plasma can be enhanced, leading to successful upscaling. To obtain more insights in our experiments, we performed thermodynamic equilibrium calculations. First of all, they show that our measured lowest EC closely aligns with the calculated minimum thermodynamic equilibrium at atmospheric pressure. In addition, they reveal that the limited NOx production in the large reactor results from the contracted nature of the plasma. To solve this limitation, we let the large reactor operate in so-called torch configuration. Indeed, the latter enhances the NOx concentrations compared to the pin-to-pin configuration, yielding a PR of 80 g h-1 at an EC of 2.9 MJ mol-1 and NOx concentration of 0.31%. This illustrates the importance of reactor design in upscaling. With the focus on feasibility evaluation of scaling-up plasma-based nitrogen fixation by combined experiments and thermodynamic modelling, we aim to tackle the challenge of design and development of an energy-efficient and scaled-up plasma reactor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001203657700001 Publication Date 2024-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205435 Serial 9155
Permanent link to this record
 

 
Author Fang, W.; Wang, X.; Li, S.; Hao, Y.; Yang, Y.; Zhao, W.; Liu, R.; Li, D.; Li, C.; Gao, X.; Wang, L.; Guo, H.; Yi, Y.
Title Plasma-catalytic one-step steam reforming of CH₄ to CH₃OH and H₂ promoted by oligomerized [Cu-O-Cu] species on zeolites Type A1 Journal article
Year 2024 Publication Green chemistry : cutting-edge research for a greener sustainable future Abbreviated Journal
Volume 26 Issue 9 Pages 5150-5154
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Oligomerized [Cu-O-Cu] species are reported to be efficient in promoting plasma catalytic one-step steam reforming of methane to methanol and hydrogen, achieving 6.8% CH4 conversion and 73.1% CH3OH selectivity without CO2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001195192800001 Publication Date 2024-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205514 Serial 9165
Permanent link to this record
 

 
Author Le Compte, M.; Cardenas De La Hoz, E.; Peeters, S.; Smits, E.; Lardon, F.; Roeyen, G.; Vanlanduit, S.; Prenen, H.; Peeters, M.; Lin, A.; Deben, C.
Title Multiparametric tumor organoid drug screening using widefield live-cell imaging for bulk and single-organoid analysis Type A1 Journal article
Year 2022 Publication Jove-Journal Of Visualized Experiments Abbreviated Journal Jove-J Vis Exp
Volume Issue 190 Pages 1-18
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Center for Oncological Research (CORE)
Abstract Patient-derived tumor organoids (PDTOs) hold great promise for preclinical and translational research and predicting the patient therapy response from ex vivo drug screenings. However, current adenosine triphosphate (ATP)-based drug screening assays do not capture the complexity of a drug response (cytostatic or cytotoxic) and intratumor heterogeneity that has been shown to be retained in PDTOs due to a bulk readout. Live-cell imaging is a powerful tool to overcome this issue and visualize drug responses more in-depth. However, image analysis software is often not adapted to the three-dimensionality of PDTOs, requires fluorescent viability dyes, or is not compatible with a 384-well microplate format. This paper describes a semi-automated methodology to seed, treat, and image PDTOs in a high-throughput, 384-well format using conventional, widefield, live-cell imaging systems. In addition, we developed viability marker-free image analysis software to quantify growth rate-based drug response metrics that improve reproducibility and correct growth rate variations between different PDTO lines. Using the normalized drug response metric, which scores drug response based on the growth rate normalized to a positive and negative control condition, and a fluorescent cell death dye, cytotoxic and cytostatic drug responses can be easily distinguished, profoundly improving the classification of responders and non-responders. In addition, drug-response heterogeneity can by quantified from single-organoid drug response analysis to identify potential, resistant clones. Ultimately, this method aims to improve the prediction of clinical therapy response by capturing a multiparametric drug response signature, which includes kinetic growth arrest and cell death quantification. ,
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000928020400010 Publication Date 2022-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1940-087x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.2
Call Number UA @ admin @ c:irua:193168 Serial 7271
Permanent link to this record
 

 
Author Cassimon, J.; Kovács, A.; Neyts, E.; Cornet, I.; Billen, P.
Title Deacetylation of mannosylerythritol lipids in hydrophobic natural deep eutectic solvents Type A1 Journal article
Year 2023 Publication European journal of organic chemistry Abbreviated Journal
Volume 27 Issue 5 Pages e202300934-10
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Mannosylerythritol lipids (MELs) are a promising group of biosurfactants due to their high fermentation yield, selfassembly and biological activity. During fermentation by Pseudozyma aphidis, a mixture of MELs with different levels of acylation is formed, of which the fully deacetylated form is the most valuable. In order to reduce the environmental impact of deacetylation, an enzymatic process using natural deep eutectic solvents (NADES) has been developed. We tested the deacetylation of a purified MELs mixture with immobilized Candida antarctica lipase B enzyme and 2-ethylhexanol as co-substrate in 140 h reactions with different NADES. We identified hydrophobic NADES systems with similar yields and kinetics as in pure 2-ethylhexanol solvent. Our results indicate that deacetylation of MELs mixtures in NADES as a solvent is possible with yields comparable to pure co-substrate and that hydrophobic NADES without carboxylic acid compounds facilitate the reaction to the greatest extent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-193x; 1099-0690 ISBN Additional Links UA library record
Impact Factor 2.8 Times cited Open Access
Notes Approved Most recent IF: 2.8; 2023 IF: 2.834
Call Number UA @ admin @ c:irua:201382 Serial 9017
Permanent link to this record
 

 
Author Lin, A.; Gorbanev, Y.; De Backer, J.; Van Loenhout, J.; Van Boxem, W.; Lemière, F.; Cos, P.; Dewilde, S.; Smits, E.; Bogaerts, A.
Title Non‐Thermal Plasma as a Unique Delivery System of Short‐Lived Reactive Oxygen and Nitrogen Species for Immunogenic Cell Death in Melanoma Cells Type A1 Journal article
Year 2019 Publication Advanced Science Abbreviated Journal Adv Sci
Volume 6 Issue 6 Pages 1802062
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462613100001 Publication Date 2019-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.034 Times cited 39 Open Access OpenAccess
Notes This study was funded in part by the Flanders Research Foundation (grant no. 12S9218N) and the European Marie Sklodowska-Curie Individual Fellowship within Horizon2020 (LTPAM) grant no. 743151). The microsecond-pulsed power supply was purchased following discussions with the C. & J. Nyheim Plasma Institute at Drexel University. The authors would like to thank Dr. Erik Fransen for his expertise and guidance with the statistical models and analysis used here. The authors would also like to thank Dr. Sander Bekeschus of the Leibniz Institute for Plasma Science and Technology for the discussions at conferences and workshops. A.L. contributed to the design and carrying out of all experiments. A.L. also wrote the manuscript. Y.G. contributed to the design and carrying out of experiments involving chemical measurements. Y.G. also contributed to writing the chemical portions of the manuscript. J.D.B. contributed to the design and carrying out of in vivo experiments. J.D.B. also contributed to writing the portions of the manuscript involving animal experiments and care. J.V.L. contributed to the optimization of the calreticulin protocol used in the experiments. W.V.B. contributed to optimization of colorimetric assays used in the experiments. F.L. contributed to mass spectrometry measurements. P.C., S.D., E.S., and A.B. provided workspace, equipment, and valuable discussions for the project. All authors participated in the review of the manuscript.; Flanders Research Foundation, 12S9218N ; European Marie Sklodowska-Curie Individual Fellowship within Horizon2020, 743151 ; Approved Most recent IF: 9.034
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:156548 Serial 5165
Permanent link to this record
 

 
Author Živanić, M.; Espona‐Noguera, A.; Verswyvel, H.; Smits, E.; Bogaerts, A.; Lin, A.; Canal, C.
Title Injectable Plasma‐Treated Alginate Hydrogel for Oxidative Stress Delivery to Induce Immunogenic Cell Death in Osteosarcoma Type A1 Journal Article
Year 2023 Publication Advanced functional materials Abbreviated Journal Adv Funct Materials
Volume Issue Pages
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Cold atmospheric plasma (CAP) is a source of cell‐damaging oxidant molecules that may be used as low‐cost cancer treatment with minimal side effects. Liquids treated with cold plasma and enriched with oxidants are a modality for non‐invasive treatment of internal tumors with cold plasma via injection. However, liquids are easily diluted with body fluids which impedes high and localized delivery of oxidants to the target. As an alternative, plasma‐treated hydrogels (PTH) emerge as vehicles for the precise delivery of oxidants. This study reports an optimal protocol for the preparation of injectable alginate PTH that ensures the preservation of plasma‐generated oxidants. The generation, storage, and release of oxidants from the PTH are assessed. The efficacy of the alginate PTH in cancer treatment is demonstrated in the context of cancer cell cytotoxicity and immunogenicity–release of danger signals and phagocytosis by immature dendritic cells, up to now unexplored for PTH. These are shown in osteosarcoma, a hard‐to‐treat cancer. The study aims to consolidate PTH as a novel cold plasma treatment modality for non‐invasive or postoperative tumor treatment. The results offer a rationale for further exploration of alginate‐based PTHs as a versatile platform in biomedical engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001129424500001 Publication Date 2023-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record
Impact Factor 19 Times cited Open Access
Notes Fonds Wetenschappelijk Onderzoek, 1S67621N ; European Cooperation in Science and Technology, COST Action CA20114 ; Agència de Gestió d'Ajuts Universitaris i de Recerca, SGR2022‐1368 ; Agencia Estatal de Investigación, PID2019‐ 103892RB‐I00/AEI/10.13039/501100011033 ; Instituto de Salud Carlos III, IHRC22/00003 ; Approved Most recent IF: 19; 2023 IF: 12.124
Call Number PLASMANT @ plasmant @c:irua:202030 Serial 8979
Permanent link to this record
 

 
Author Engelmann, Y.; Mehta, P.; Neyts, E.C.; Schneider, W.F.; Bogaerts, A.
Title Predicted Influence of Plasma Activation on Nonoxidative Coupling of Methane on Transition Metal Catalysts Type A1 Journal article
Year 2020 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 8 Issue 15 Pages 6043-6054
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract The combination of catalysis and nonthermal plasma holds promise for enabling difficult chemical conversions. The possible synergy between both depends strongly on the nature of the reactive plasma species and the catalyst material. In this paper, we show how vibrationally excited species and plasma-generated radicals interact with transition metal catalysts and how changing the catalyst material can improve the conversion rates and product selectivity. We developed a microkinetic model to investigate the impact of vibrational excitations and plasma-generated radicals on the nonoxidative coupling of methane over transition metal surfaces. We predict a significant increase in ethylene formation for vibrationally excited methane. Plasma-generated radicals have a stronger impact on the turnover frequencies with high selectivity toward ethylene on noble catalysts and mixed selectivity on non-noble catalysts. In general, we show how the optimal catalyst material depends on the desired products as well as the plasma conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526884000025 Publication Date 2020-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access
Notes Herculesstichting; University of Notre Dame; Universiteit Antwerpen; Division of Engineering Education and Centers, EEC-1647722 ; We would like to thank Tom Butterworth for his work on methane vibrational distribution functions (VDF) and for sharing his thoughts and experiences on this matter, specifically regarding the VDF of the degenerate modes of methane. We ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article https://dx.doi.org/10.1021/acssuschemeng.0c00906 ACS Sustainable Chem. Eng. 2020, 8, 6043−6054 6052 also acknowledge financial support from the DOC-PRO3 and the TOP-BOF projects of the University of Antwerp. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the University of Antwerp. Support for W.F.S. was provided by the National Science Foundation under cooperative agreement no. EEC-1647722, an Engineering Research Center for the Innovative and Strategic Transformation of Alkane Resources (CISTAR). P.M. acknowledges support through the Eilers Graduate Fellowship of the University of Notre Dame. Approved Most recent IF: 8.4; 2020 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:169228 Serial 6366
Permanent link to this record
 

 
Author van ‘t Veer, K.; Engelmann, Y.; Reniers, F.; Bogaerts, A.
Title Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 42 Pages 22871-22883
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract Plasma-catalytic ammonia synthesis is receiving ever increasing attention, especially in packed bed dielectric barrier discharge (DBD) reactors. The latter typically operate in the filamentary regime when used for gas conversion applications. While DBDs are in principle well understood and already applied in the industry, the incorporation of packing materials and catalytic surfaces considerably adds to the complexity of the plasma physics and chemistry governing the ammonia formation. We employ a plasma kinetics model to gain insights into the ammonia formation mechanisms, paying special attention to the role of filamentary microdischarges and their afterglows. During the microdischarges, the synthesized ammonia is actually decomposed, but the radicals created upon electron impact dissociation of N2 and H2 and the subsequent catalytic reactions cause a net ammonia gain in the afterglows of the microdischarges. Under our plasma conditions, electron impact dissociation of N2 in the gas phase followed by the adsorption of N atoms is identified as a rate-limiting step, instead of dissociative adsorption of N2 on the catalyst surface. Both elementary Eley−Rideal and Langmuir−Hinshelwood reaction steps can be found important in plasma-catalytic NH3 synthesis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000585970300002 Publication Date 2020-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ;This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182-SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Järi Van den Hoek and Dr. Yury Gorbanev for providing the experimentally measured electrical characteristics and Dr. Fatme Jardali for creating the TOC graphics. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:173587 Serial 6428
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Engelmann, Y.; van ‘t Veer, K.; Postma, R.S.; Bogaerts, A.; Lefferts, L.
Title Plasma-driven catalysis: green ammonia synthesis with intermittent electricity Type A1 Journal article
Year 2020 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 22 Issue 19 Pages 6258-6287
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract Ammonia is one of the most produced chemicals, mainly synthesized from fossil fuels for fertilizer applications. Furthermore, ammonia may be one of the energy carriers of the future, when it is produced from renewable electricity. This has spurred research on alternative technologies for green ammonia production. Research on plasma-driven ammonia synthesis has recently gained traction in academic literature. In the current review, we summarize the literature on plasma-driven ammonia synthesis. We distinguish between mechanisms for ammonia synthesis in the presence of a plasma, with and without a catalyst, for different plasma conditions. Strategies for catalyst design are discussed, as well as the current understanding regarding the potential plasma-catalyst synergies as function of the plasma conditions and their implications on energy efficiency. Finally, we discuss the limitations in currently reported models and experiments, as an outlook for research opportunities for further unravelling the complexities of plasma-catalytic ammonia synthesis, in order to bridge the gap between the currently reported models and experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000575015700002 Publication Date 2020-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited 4 Open Access
Notes ; ; Approved Most recent IF: 9.8; 2020 IF: 9.125
Call Number PLASMANT @ plasmant @c:irua:172671 Serial 6430
Permanent link to this record
 

 
Author Michiels, R.; Engelmann, Y.; Bogaerts, A.
Title Plasma Catalysis for CO2Hydrogenation: Unlocking New Pathways toward CH3OH Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 47 Pages 25859-25872
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract We developed a microkinetic model to reveal the effects of plasma-generated radicals, intermediates, and vibrationally excited species on the catalytic hydrogenation of CO2 to CH3OH on a Cu(111) surface. As a benchmark, we first present the mechanisms of thermal catalytic CH3OH formation. Our model predicts that the reverse water-gas shift reaction followed by CO hydrogenation, together with the formate path, mainly contribute to CH3OH formation in thermal catalysis. Adding plasma-generated radicals and intermediates results in a higher CH3OH turnover frequency (TOF) by six to seven orders of magnitude, showing the potential of plasma-catalytic CO2 hydrogenation into CH3OH, in accordance with the literature. In addition, CO2 vibrational excitation further increases the CH3OH TOF, but the effect is limited due to relatively low vibrational temperatures under typical plasma catalysis conditions. The predicted increase in CH3OH formation by plasma catalysis is mainly attributed to the increased importance of the formate path. In addition, the conversion of plasma-generated CO to HCO* and subsequent HCOO* or H2CO* formation contribute to CH3OH formation. Both pathways bypass the HCOO* formation from CO2, which is the main bottleneck in the process. Hence, our model points toward the important role of CO, but also O, OH, and H radicals, as they influence the reactions that consume CO2 and CO. In addition, our model reveals that the H pressure should not be smaller than ca. half of the O pressure in the plasma as this would cause O* poisoning, which would result in very small product TOFs. Thus, plasma conditions should be targeted with a high CO and H content as this is favorable for CH3OH formation, while the O content should be minimized.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000595545800023 Publication Date 2020-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access Not_Open_Access: Available from 15.07.2021
Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 1114921N ; H2020 European Research Council, 810182 ; We acknowledge the financial support from the Fund for Scientific Research (FWO-Vlaanderen; grant ID 1114921N) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 810182 − SCOPE ERC Synergy project) as well as from the DOC-PRO3 and the TOPBOF projects of the University of Antwerp. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:173864 Serial 6443
Permanent link to this record
 

 
Author Loenders, B.; Engelmann, Y.; Bogaerts, A.
Title Plasma-Catalytic Partial Oxidation of Methane on Pt(111): A Microkinetic Study on the Role of Different Plasma Species Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue 5 Pages 2966-2983
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract We use microkinetic modeling to examine the potential of plasma-catalytic partial oxidation (POX) of CH4 as a promising new approach to produce oxygenates. We study how different plasma species affect POX of CH4 on the Pt(111) surface, and we discuss the associated kinetic and mechanistic changes. We discuss the effect of vibrationally excited CH4 and O2, as well as plasma-generated radicals and stable intermediates. Our results show that vibrational excitation enhances the turnover frequency (TOF) of catalytic CH4 dissociation and has good potential for improving the selectivities toward CH3OH, HCOOH, and C2 hydrocarbons. Nevertheless, when also considering plasma-generated radicals, we find that these species mainly govern the surface chemistry. Additionally, we find that plasma-generated radicals and stable intermediates enhance the TOFs of COx and oxygenates, increase the selectivity toward oxygenates, and make the formation of HCOOH more significant on Pt(111). We also briefly illustrate the potential impact of Eley−Rideal reactions that involve plasma-generated radicals. Finally, we reveal how various radicals affect the catalyst surface chemistry and we link this to the formation of different products. This allows us to make suggestions on how the plasma composition should be altered to improve the formation of desired products.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000619760700017 Publication Date 2021-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access OpenAccess
Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, S001619N ; H2020 European Research Council, 810182 ; We thank Tom Butterworth for the interesting discussions regarding the calculation of the vibrational populations of methane and for taking the time to share his thoughts and experiences on the matter. This research is supported by the FWO-SBO project PLASMACATDesign (grant number S001619N). We also acknowledge financial support from the TOP-BOF project of the University of Antwerp and from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement no. 810182SCOPE ERC Synergy project). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the University of Antwerp. Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:175873 Serial 6672
Permanent link to this record
 

 
Author Snoeckx, R.; Heijkers, S.; Van Wesenbeeck, K.; Lenaerts, S.; Bogaerts, A.
Title CO2conversion in a dielectric barrier discharge plasma: N2in the mix as a helping hand or problematic impurity? Type A1 Journal article
Year 2016 Publication Energy & environmental science Abbreviated Journal Energ Environ Sci
Volume 9 Issue 9 Pages 999-1011
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Carbon dioxide conversion and utilization has gained significant interest over the years. A novel gas conversion technique with great potential in this area is plasma technology. A lot of research has already been performed, but mostly on pure gases. In reality, N2 will always be an important impurity in effluent

gases. Therefore, we performed an extensive combined experimental and computational study on the effect of N2 in the range of 1–98% on CO2 splitting in dielectric barrier discharge (DBD) plasma. The presence of up to 50% N2 in the mixture barely influences the effective (or overall) CO2 conversion and energy efficiency, because the N2 metastable molecules enhance the absolute CO2 conversion, and this compensates for the lower CO2 fraction in the mixture. Higher N2 fractions, however, cause a drop in the CO2 conversion and energy efficiency. Moreover, in the entire CO2/N2 mixing ratio, several harmful compounds, i.e., N2O and NOx compounds, are produced in the range of several 100 ppm. The reaction pathways for the formation of these compounds are explained based on a kinetic analysis, which allows proposing solutions on how to prevent the formation of these harmful compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372243600030 Publication Date 2015-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.518 Times cited 68 Open Access
Notes The authors acknowledge financial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO), as well as the Fund for Scientific Research Flanders (FWO). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 29.518
Call Number c:irua:133169 Serial 4020
Permanent link to this record
 

 
Author Ramakers, M.; Heijkers, S.; Tytgat, T.; Lenaerts, S.; Bogaerts, A.
Title Combining CO2 conversion and N2 fixation in a gliding arc plasmatron Type A1 Journal article
Year 2019 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util
Volume 33 Issue Pages 121-130
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Industry needs a flexible and efficient technology to convert CO2 into useful products, which fits in the Carbon Capture and Utilization (CCU) philosophy. Plasma technology is intensively being investigated for this purpose. A promising candidate is the gliding arc plasmatron (GAP). Waste streams of CO2 are often not pure and contain N2 as important impurity. Therefore, in this paper we provide a detailed experimental and computational study of the combined CO2 and N2 conversion in a GAP. Is it possible to take advantage of the presence of N2 in the mixture and to combine CO2 conversion with N2 fixation? Our experiments and simulations reveal that N2 actively contributes to the process of CO2 conversion, through its vibrational levels. In addition, NO and NO2 are formed, with concentrations around 7000 ppm, which is slightly too low for valorization, but by improving the reactor design it must be possible to further increase their concentrations. Other NO-based molecules, in particular the strong greenhouse gas N2O, are not formed in the GAP, which is an important result. We also compare our results with those obtained in other plasma reactors to clarify the differences in underlying plasma processes, and to demonstrate the superiority of the GAP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000487274100013 Publication Date 2019-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.292 Times cited 3 Open Access Not_Open_Access: Available from 23.05.2021
Notes Fund for Scientific Research Flanders, G.0383.16N ; Excellence of Science program of the Fund for Scientific Research, G0F9618N ; Hercules Foundation, the Flemish Government; UAntwerpen; We acknowledge financial support from the Fund for Scientific Research Flanders (FWO; Grant no. G.0383.16N) and the Excellence of Science program of the Fund for Scientific Research (FWO-FNRS; Grant no. G0F9618N; EOS ID: 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Finally, we also want to thank Dr. Ramses Snoeckx for the very interesting discussions, and A. Fridman and A. Rabinovich for developing the GAP. Approved Most recent IF: 4.292
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159984 Serial 5173
Permanent link to this record
 

 
Author Snoeckx, R.; Van Wesenbeeck, K.; Lenaerts, S.; Cha, M.S.; Bogaerts, A.
Title Suppressing the formation of NOxand N2O in CO2/N2dielectric barrier discharge plasma by adding CH4: scavenger chemistry at work Type A1 Journal article
Year 2019 Publication Sustainable Energy & Fuels Abbreviated Journal Sustainable Energy Fuels
Volume 3 Issue 6 Pages 1388-1395
Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract The need for carbon negative technologies led to the development of a wide array of novel CO<sub>2</sub>conversion techniques. Most of them either rely on high temperatures or generate highly reactive O species, which can lead to the undesirable formation of NO<sub>x</sub>and N<sub>2</sub>O when the CO<sub>2</sub>feeds contain N<sub>2</sub>. Here, we show that, for plasma-based CO<sub>2</sub>conversion, adding a hydrogen source, as a chemical oxygen scavenger, can suppress their formation,<italic>in situ</italic>. This allows the use of low-cost N<sub>2</sub>containing (industrial and direct air capture) feeds, rather than expensive purified CO<sub>2</sub>. To demonstrate this, we add CH<sub>4</sub>to a dielectric barrier discharge plasma used for converting impure CO<sub>2</sub>. We find that when adding a stoichiometric amount of CH<sub>4</sub>, 82% less NO<sub>2</sub>and 51% less NO are formed. An even higher reduction (96 and 63%) can be obtained when doubling this amount. However, in that case the excess radicals promote the formation of by-products, such as HCN, NH<sub>3</sub>and CH<sub>3</sub>OH. Thus, we believe that by using an appropriate amount of chemical scavengers, we can use impure CO<sub>2</sub>feeds, which would bring us closer to ‘real world’ conditions and implementation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000469258600021 Publication Date 2019-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G0F9618N ; Universiteit Antwerpen; King Abdullah University of Science and Technology, BAS/1/1384-01-01 ;The research reported in this publication was supported by funding from the “Excellence of Science Program” (Fund for Scientic Research Flanders (FWO): grant no. G0F9618N; EOS ID: 30505023). The authors R. S. and M. S. C. acknowledge nancial support from King Abdullah University of Science and Technology (KAUST), under award number BAS/1/1384-01-01. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160268 Serial 5188
Permanent link to this record
 

 
Author Parrilla, M.; Vanhooydonck, A.; Watts, R.; De Wael, K.
Title Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids Type A1 Journal article
Year 2022 Publication Biosensors and bioelectronics Abbreviated Journal
Volume 197 Issue Pages
Keywords (up) A1 Journal article; Engineering sciences. Technology; Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Wearable electrochemical sensors are driven by the user-friendly capability of on-site detection of key biomarkers for health management. Despite the advances in biomolecule monitoring such as glucose, still, several unmet clinical challenges need to be addressed. For example, patients suffering from phenylketonuria (PKU) should be able to monitor their phenylalanine (PHE) level in a rapid, decentralized, and affordable manner to avoid high levels of PHE in the body which can lead to a profound and irreversible mental disability. Herein, we report a wearable wristband electrochemical sensor for the monitoring of PHE tackling the necessity of controlling PHE levels in PHE hydroxylase deficiency patients. The proposed electrochemical sensor is based on a screen-printed electrode (SPE) modified with a membrane consisting of Nafion, to avoid interferences in biofluids. The membrane also consists of sodium 1,2-naphthoquinone-4-sulphonate for the in situ derivatization of PHE into an electroactive product, allowing its electrochemical oxidation at the surface of the SPE in alkaline conditions. Importantly, the electrochemical sensor is integrated into a wristband configuration to enhance user interaction and engage the patient with PHE self-monitoring. Besides, a paper-based sampling strategy is designed to alkalinize the real sample without the need for sample pretreatment, and thus simplify the analytical process. Finally, the wearable device is tested for the determination of PHE in saliva and blood serum. The proposed wristband-based sensor is expected to impact the PKU self-monitoring, facilitating the daily lives of PKU patients toward optimal therapy and disease management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000719366400003 Publication Date 2021-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:183086 Serial 8957
Permanent link to this record
 

 
Author Asapu, R.; Ciocarlan, R.-G.; Claes, N.; Blommaerts, N.; Minjauw, M.; Ahmad, T.; Dendooven, J.; Cool, P.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W.
Title Plasmonic Near-Field Localization of Silver Core–Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 9 Pages 41577-41585
Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Silver nanoparticles are widely used in the field of plasmonics because of their unique optical properties. The wavelength-dependent surface plasmon resonance gives rise to a strongly enhanced electromagnetic field, especially at so-called hot spots located in the nanogap in-between metal nanoparticle assemblies. Therefore, the interparticle distance is a decisive factor in plasmonic applications, such as surface-enhanced Raman spectroscopy (SERS). In this study, the aim is to engineer this interparticle distance for silver nanospheres using a convenient wet-chemical approach and to predict and quantify the corresponding enhancement factor using both theoretical and experimental tools. This was done by building a tunable ultrathin polymer shell around the nanoparticles using the layer-by-layer method, in which the polymer shell acts as the separating interparticle spacer layer. Comparison of different theoretical approaches and corroborating the results with SERS analytical experiments using silver and silver−polymer core−shell nanoparticle clusters as SERS substrates was also done. Herewith, an approach is provided to estimate the extent of plasmonic near-field enhancement both theoretically as well as experimentally.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000417005900057 Publication Date 2017-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 29 Open Access OpenAccess
Notes financial support through a research fellowship. C.D. wishes to thank the Hercules foundation for the financial support (SPINAL). P.C. and R.-G.C. acknowledge financial support by FWO Vlaanderen (project no. G038215N). N.C. and S.B. acknowledge the financial support from the European Research Council (ERC starting grant #335078-COLOURATOM). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.504
Call Number EMAT @ emat @c:irua:147243 Serial 4804
Permanent link to this record
 

 
Author Verbruggen, S.W.; Lenaerts, S.; Denys, S.
Title Analytic versus CFD approach for kinetic modeling of gas phase photocatalysis Type A1 Journal article
Year 2015 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 262 Issue Pages 1-8
Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this work two methods for determining the LangmuirHinshelwood kinetic parameters for a slit-shaped flat bed photocatalytic reactor are compared: an analytic mass transfer based model adapted from literature and a computational fluid dynamics (CFD) approach that was used in conjunction with a simplex optimization routine. Despite the differences between both approaches, similar values for the kinetic parameters and similar trends in terms of their UV intensity dependence were found. Using an effectiveness-NTU (number of transfer units) approach, the analytic mass transfer based method could quantify the relative contributions of the rate limiting steps through a reaction effectiveness parameter. The numeric CFD approach on the other hand could yield the two kinetic parameters that determine the photocatalytic reaction rate simultaneously. Furthermore, it proved to be more accurate as it accounts for the spatial variation of flow rate, reaction rate and concentrations at the surface of the photocatalyst. We elaborate this dual kinetic analysis with regard to the photocatalytic degradation of acetaldehyde in air over a silicon wafer coated with a layer of TiO2 P25 (Evonik) and study the usefulness and limitations of both strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347577700001 Publication Date 2014-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 30 Open Access
Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. ; Approved Most recent IF: 6.216; 2015 IF: 4.321
Call Number UA @ admin @ c:irua:119724 Serial 5927
Permanent link to this record
 

 
Author Van Eynde, E.; Tytgat, T.; Smits, M.; Verbruggen, S.W.; Hauchecorne, B.; Lenaerts, S.
Title Biotemplated diatom silica-titania materials for air purification Type A1 Journal article
Year 2013 Publication Photochemical & photobiological sciences Abbreviated Journal Photoch Photobio Sci
Volume 12 Issue 4 Pages 690-695
Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract We present a novel manufacture route for silicatitania photocatalysts using the diatom microalga Pinnularia sp. Diatoms self-assemble into porous silica cell walls, called frustules, with periodic micro-, meso- and macroscale features. This unique hierarchical porous structure of the diatom frustule is used as a biotemplate to incorporate titania by a solgel methodology. Important material characteristics of the modified diatom frustules under study are morphology, crystallinity, surface area, pore size and optical properties. The produced biosilicatitania material is evaluated towards photocatalytic activity for NOx abatement under UV radiation. This research is the first step to obtain sustainable, well-immobilised silicatitania photocatalysts using diatoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316572500016 Publication Date 2012-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1474-905x; 1474-9092 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.344 Times cited 18 Open Access
Notes ; ; Approved Most recent IF: 2.344; 2013 IF: 2.939
Call Number UA @ admin @ c:irua:106625 Serial 5930
Permanent link to this record
 

 
Author van Walsem, J.; Verbruggen, S.W.; Modde, B.; Lenaerts, S.; Denys, S.
Title CFD investigation of a multi-tube photocatalytic reactor in non-steady-state conditions Type A1 Journal article
Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 304 Issue Pages 808-816
Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A novel multi-tube photoreactor is presented with a high efficiency (over 90% conversion) toward the degradation of acetaldehyde in air under UV conditions with an incident intensity of 2.1 mW cm−2. A CFD model was developed to simulate the transient adsorption and photocatalytic degradation processes of acetaldehyde in this reactor design and to estimate the corresponding kinetic parameters through an optimization routine using the experimentally determined outlet concentration profiles. The CFD model takes into account the entire reactor geometry and all relevant flow parameters, in contrast to analytical methods that often oversimplify the physical and chemical process characteristics. Using CFD, we show that both adsorption and desorption rate constants increase by respectively one and two orders of magnitude when the UV light is switched on, which clearly affects the transient behavior. The agreement of the experimental and modelled concentration profiles is excellent as evidenced by a coefficient of determination of at least 0.965. To demonstrate the reliability and accuracy of all parameters obtained from the modelling approach, an ultimate validation test was performed using other conditions than the ones used for estimating the kinetic parameters. The model was able to accurately simulate simultaneous adsorption, desorption and photocatalytic degradation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384777200089 Publication Date 2016-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 10 Open Access
Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. ; Approved Most recent IF: 6.216
Call Number UA @ admin @ c:irua:139620 Serial 5933
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; van Walsem, J.; Tytgat, T.; Lenaerts, S.; Denys, S.
Title CFD modeling of transient adsorption/desorption behavior in a gas phase photocatalytic fiber reactor Type A1 Journal article
Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 292 Issue Pages 42-50
Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract We present the use of computational fluid dynamics (CFD) for accurately determining the adsorption parameters of acetaldehyde on photocatalytic fiber filter material, integrated in a continuous flow system. Unlike the traditional analytical analysis based on Langmuir adsorption, not only steady-state situations but also transient phenomena can be accounted for. Air displacement effects in the reactor and gas detection cell are investigated and inherently made part of the model. Incorporation of a surface aldol condensation reaction in the CFD analysis further improves the accuracy of the model which enables to extract precise, intrinsic adsorption parameters for situations in which analytical analysis would otherwise fail.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373648000005 Publication Date 2016-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 12 Open Access
Notes ; S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. M.K. acknowledges the IWT for a Ph.D. fellowship. Konstantina Kalafata and Ioanna Fasaki are greatly thanked for providing the NanoPhos suspension. Bioscience Engineering bachelor students M. Gerritsma, J. Helsen and Y. Riahi Drif are thanked for their assistance in performing the adsorption experiments. ; Approved Most recent IF: 6.216
Call Number UA @ admin @ c:irua:130876 Serial 5934
Permanent link to this record
 

 
Author Tytgat, T.; Hauchecorne, B.; Smits, M.; Verbruggen, S.; Lenaerts, S.
Title Concept and validation of a fully automated photocatalytic test setup Type A1 Journal article
Year 2012 Publication Journal of laboratory automation Abbreviated Journal Jala-J Lab Autom
Volume 17 Issue 2 Pages 134-143
Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Photocatalytic activity can be studied by several methods, each with its own strengths and weaknesses. To study photocatalytic activity in an easy, user-friendly, and realistic way, a completely new setup has been built. The setup is modularly constructed around Fourier transform infrared spectroscopy (FTIR) spectroscopy at the heart of it, resulting in great versatility. Complementary software has been written for automatic control of the setup and for processing the generated data. Two pollutants, oil and n-octane, are tested to validate the performance of the setup. These validation experiments confirm the usefulness and added value of the setup in general and of the FTIR detection methodology as well. It becomes clear that a system of online measurements with good repeatability, accuracy, and user-friendliness has been created.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304775300006 Publication Date 2014-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-0682 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.85 Times cited 15 Open Access
Notes ; The authors disclosed receipt of the following financial support for the research and/or authorship of this article: This work was supported by a Ph.D. grant (T. Tytgat) funded by the Institute of Innovation by Science and Technology in Flanders (IWT) and by a Ph.D. grant (S. Verbruggen) from the Research Foundation of Flanders (FWO). Other funding was made possible by the University of Antwerp. ; Approved Most recent IF: 2.85; 2012 IF: 1.457
Call Number UA @ admin @ c:irua:96649 Serial 5935
Permanent link to this record
 

 
Author Deng, S.; Verbruggen, S.W.; Lenaerts, S.; Martens, J.A.; Van den Berghe, S.; Devloo-Casier, K.; Devulder, W.; Dendoover, J.; Deduytsche, D.; Detavernier, C.
Title Controllable nitrogen doping in as deposited TiO2 film and its effect on post deposition annealing Type A1 Journal article
Year 2014 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 32 Issue 1 Pages 01a123
Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In order to narrow the band gap of TiO2, nitrogen doping by combining thermal atomic layer deposition (TALD) of TiO2 and plasma enhanced atomic layer deposition (PEALD) of TiN has been implemented. By altering the ratio between TALD TiO2 and PEALD TiN, the as synthesized TiOxNy films showed different band gaps (from 1.91 eV to 3.14 eV). In situ x-ray diffraction characterization showed that the crystallization behavior of these films changed after nitrogen doping. After annealing in helium, nitrogen doped TiO2 films crystallized into rutile phase while for the samples annealed in air a preferential growth of the anatase TiO2 along (001) orientation was observed. Photocatalytic tests of the degradation of stearic acid were done to evaluate the effect of N doping on the photocatalytic activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000335847600023 Publication Date 2013-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 10 Open Access
Notes ; The authors wish to thank the Research Foundation-Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement Nos. 239865-COCOON and 246791-COUNTATO. The authors also acknowledge the support from UGENT-GOA-01G01513 and IWT-SBO SOSLion. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem). J.D. acknowledges the Flemisch FWO for a postdoctoral fellowship. ; Approved Most recent IF: 1.374; 2014 IF: 2.322
Call Number UA @ admin @ c:irua:117296 Serial 5936
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W.
Title Coupled plasmon modes in 2D gold nanoparticle clusters and their effect on local temperature control Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 50 Pages 30594-30603
Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Assemblies of closely separated gold nanoparticles exhibit a strong collective plasmonic response due to coupling of the plasmon modes of the individual nanostructures. In the context of self-assembly of nanoparticles, close-packed two-dimensional (2D) clusters of spherical nanoparticles present an important composite system that promises numerous applications. The present study probes the collective plasmonic characteristics and resulting photothermal behavior of close-packed 2D Au nanoparticle clusters to delineate the effects of the cluster size, interparticle distance, and particle size. Smaller nanoparticles (20 and 40 nm in diameter) that exhibit low individual scattering and high absorption were considered for their relevance to photothermal applications. In contrast to typical literature studies, the present study compares the optical response of clusters of different sizes ranging from a single nanoparticle up to large assemblies of 61 nanoparticles. Increasing the cluster size induces significant changes to the spectral position and optophysical characteristics. Based on the model outcome, an optimal cluster size for maximum absorption per nanoparticle is also determined for enhanced photothermal effects. The effect of the particle size and interparticle distance is investigated to elucidate the nature of interaction in terms of near-field and far-field coupling. The photothermal effect resulting from absorption is compared for different cluster sizes and interparticle distances considering a homogeneous water medium. A strong dependence of the steady-state temperature of the nanoparticles on the cluster size, particle position in the cluster, incident light polarization, and interparticle distance provides new physical insight into the local temperature control of plasmonic nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000503919500061 Publication Date 2019-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:164530 Serial 5938
Permanent link to this record