|   | 
Details
   web
Records
Author Amelinckx, S.; van Heurck, C.; van Dyck, D.; Van Tendeloo, G.
Title A peculiar diffraction effect in FCC crystals of C60 Type A1 Journal article
Year 1992 Publication Physica status solidi: A: applied research Abbreviated Journal
Volume 131 Issue Pages 589-604
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos A1992JE20400030 Publication Date 2007-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 13 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:4371 Serial 2568
Permanent link to this record
 

 
Author van Dyck, D.; Van Aert, S.; den Dekker, A.J.
Title Physical limits on atomic resolution Type A1 Journal article
Year 2004 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 10 Issue Pages 153-157
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000188882100022 Publication Date 2004-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 14 Open Access
Notes Approved Most recent IF: 1.891; 2004 IF: 2.389
Call Number UA @ lucian @ c:irua:47515 Serial 2616
Permanent link to this record
 

 
Author Verbeeck, J.; van Dyck, D.; Lichte, H.; Potapov, P.; Schattschneider, P.
Title Plasmon holographic experiments: theoretical framework Type A1 Journal article
Year 2005 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 102 Issue 3 Pages 239-255
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract A theoretical framework is described to understand the results of plasmon holography experiments leading to insight in the meaning of the experimental results and pointing out directions for future experiments. The framework is based on the formalism of mutual intensity to describe how coherence is transferred through an optical system. For the inelastic interaction with the object, an expression for the volume. plasmon excitations in a free electron gas is used as a model for the behaviour of aluminium. The formalism leads to a clear graphical intuitive tool for under-standing the experiments. It becomes evident that the measured coherence is solely related to the angular distribution of the plasmon scattering in the case of bulk plasmons. After describing the framework, the special case of coherence outside a spherical particle is treated and the seemingly controversial idea of a plasmon with a limited coherence length obtained front experiments is clarified. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000226436600010 Publication Date 2004-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 43 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2005 IF: 2.490
Call Number UA @ lucian @ c:irua:57133UA @ admin @ c:irua:57133 Serial 2643
Permanent link to this record
 

 
Author Rosenauer, A.; Gerthsen, D.; Van Aert, S.; van Dyck, D.; den Dekker, A.J.
Title Present state of the composition evaluation of ternary semiconductor nanostructures by lattice fringe analysis Type A1 Journal article
Year 2003 Publication Institute of physics conference series Abbreviated Journal
Volume Issue 180 Pages 19-22
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Semiconductor heterostructures are used for the fabrication of optoelectronic devices. Performance of such devices is governed by their chemical morphology. The composition distribution of quantum wells and dots is influenced by kinetic growth processes which are not understood completely at present. To obtain more information about these effects, methods for composition determination with a spatial resolution at a near atomic scale are necessary. In this paper we focus on the present state of the composition evaluation by the lattice fringe analysis (CELFA) technique and explain the basic ideas, optimum imaging conditions, precision and accuracy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7503-0979-2 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:95118 Serial 2710
Permanent link to this record
 

 
Author Van Aert, S.; Verbeeck, J.; Erni, R.; Bals, S.; Luysberg, M.; van Dyck, D.; Van Tendeloo, G.
Title Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 10 Pages 1236-1244
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000270015200004 Publication Date 2009-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 166 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:78585UA @ admin @ c:irua:78585 Serial 2748
Permanent link to this record
 

 
Author Van Aert, S.; van Dyck, D.; den Dekker, A.J.
Title Resolution of coherent and incoherent imaging systems reconsidered: classical criteria and a statistical alternative Type A1 Journal article
Year 2006 Publication Optics express Abbreviated Journal Opt Express
Volume 14 Issue 9 Pages 3830-3839
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000237296200013 Publication Date 2006-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 45 Open Access
Notes Fwo Approved Most recent IF: 3.307; 2006 IF: 4.009
Call Number UA @ lucian @ c:irua:58262 Serial 2883
Permanent link to this record
 

 
Author Van Tendeloo, G.; op de Beeck, M.; De Meulenaere, P.; van Dyck, D.
Title Towards quantitative high resolution electron microscopy? Type A1 Journal article
Year 1995 Publication Institute of physics conference series Abbreviated Journal
Volume 147 Issue Pages 67-72
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The basics of the interpretation of high resolution images showing detail of the order of 0.1 nm are shortly explained here. The use of a field emission source, a CCD camera and an adapted reconstruction method for restoring the projected crystal potential (focus variation method) allows a quantitative interpretation of HREM images. Examples of partially disordered alloys and carbonate ordering in high Tc superconductors are presented.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1995BE67F00014 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7503-0357-3; 0951-3248; 0305-2346 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:13015 Serial 3688
Permanent link to this record
 

 
Author Van Tendeloo, G.; Schryvers, D.; van Dyck, D.; van Landuyt, J.; Amelinckx, S.
Title Up close: Center for Electron Microscopy of Materials Science at the University of Antwerp Type A1 Journal article
Year 1994 Publication MRS bulletin Abbreviated Journal Mrs Bull
Volume Issue Pages 57-59
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Pittsburgh, Pa Editor
Language Wos A1994PH66300015 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record;
Impact Factor 5.667 Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:9996 Serial 3821
Permanent link to this record
 

 
Author Tsai, C.-Y.; Chang, Y.-C.; Lobato, I.; Van Dyck, D.; Chen, F.-R.
Title Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages 27701
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 A resolution but using a strongly reduced number of images.
Address Department of Engineering and System Science, Tsing-Hua University, HsinChu 300, Taiwan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000377670500001 Publication Date 2016-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited Open Access
Notes D. Van Dyck acknowledges the financial support from the Fund for Scientific Research – Flanders (FWO) under Project nos. VF04812N and G.0188.08. F. R. Chen would like to thank the support from NSC 101-2221-E-007- 063-MY3 and MOST 104-2321-B-007-004. We are grateful for the use of the Tecnai F20 in the Cryo-EM Core Facility, Department of Academic Affairs and Instrument Service at Academia Sinica. Approved Most recent IF: 4.259
Call Number c:irua:134038 Serial 4087
Permanent link to this record
 

 
Author Lobato, I.; Van Dyck, D.
Title MULTEM : a new multislice program to perform accurate and fast electron diffraction and imaging simulations using graphics processing units with CUDA Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 156 Issue 156 Pages 9-17
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The main features and the GPU implementation of the MULTEM program are presented and described. This new program performs accurate and fast multislice simulations by including higher order expansion of the multislice solution of the high energy Schrodinger equation, the correct subslicing of the three-dimensional potential and top-bottom surfaces. The program implements different kinds of simulation for CTEM, STEM, ED, PED, CBED, ADF-TEM and ABF-HC with proper treatment of the spatial and temporal incoherences. The multislice approach described here treats the specimen as amorphous material which allows a straightforward implementation of the frozen phonon approximation. The generalized transmission function for each slice is calculated when is needed and then discarded. This allows us to perform large simulations that can include millions of atoms and keep the computer memory requirements to a reasonable level. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000361001800003 Publication Date 2015-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 32 Open Access
Notes Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number UA @ lucian @ c:irua:127848 Serial 4209
Permanent link to this record
 

 
Author Alania, M.; De Backer, A.; Lobato, I.; Krause, F.F.; Van Dyck, D.; Rosenauer, A.; Van Aert, S.
Title How precise can atoms of a nanocluster be located in 3D using a tilt series of scanning transmission electron microscopy images? Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 181 Issue 181 Pages 134-143
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In this paper, we investigate how precise atoms of a small nanocluster can ultimately be located in three dimensions (3D) from a tilt series of images acquired using annular dark field (ADF) scanning transmission electron microscopy (STEM). Therefore, we derive an expression for the statistical precision with which the 3D atomic position coordinates can be estimated in a quantitative analysis. Evaluating this statistical precision as a function of the microscope settings also allows us to derive the optimal experimental design. In this manner, the optimal angular tilt range, required electron dose, optimal detector angles, and number of projection images can be determined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411170800016 Publication Date 2016-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 3 Open Access OpenAccess
Notes The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483-ESTEEM2. The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, G.0368.15N, and WO.010.16N) and a post-doctoral grant to A. De Backer, and from the DFG under contract No. RO-2057/4-2. Approved Most recent IF: 2.843
Call Number EMAT @ emat @ c:irua:144432 Serial 4618
Permanent link to this record
 

 
Author Pourbabak, S.; Wang, X.; Van Dyck, D.; Verlinden, B.; Schryvers, D.
Title Ni cluster formation in low temperature annealed Ni50.6Ti49.4 Type A1 Journal article
Year 2017 Publication Functional materials letters Abbreviated Journal Funct Mater Lett
Volume 10 Issue 10 Pages 1740005
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Various low temperature treatments of Ni50.6Ti49.4 have shown an unexpected effect on the martensitic start temperature. Periodic diffuse intensity distributions in reciprocal space indicate the formation of short pure Ni strings along the <111> directions in the B2 ordered lattice, precursing the formation of Ni4Ti3 precipitates formed at higher annealing temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000395164100006 Publication Date 2017-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1793-6047 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.234 Times cited 4 Open Access Not_Open_Access
Notes The authors like to thank the Flemish Science Foundation FWO for financial support under project G.0366.15N “Influence of nano- and microstructural features and defects in fine-grained Ni-Ti on the thermal and mechanical reversibility of the martensitic transformation and the shape memory and superelastic behavior”. We are also very grateful to Prof. Dr. Jan Van Humbeeck for initiating this work, for his continuous support and inspiring discussions. Approved Most recent IF: 1.234
Call Number EMAT @ emat @ c:irua:142545 Serial 4619
Permanent link to this record
 

 
Author Robert, Hl.; Lobato, I.; Lyu, Fj.; Chen, Q.; Van Aert, S.; Van Dyck, D.; Müller-Caspary, K.
Title Dynamical diffraction of high-energy electrons investigated by focal series momentum-resolved scanning transmission electron microscopy at atomic resolution Type A1 Journal article
Year 2022 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 233 Issue Pages 113425
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract We report a study of scattering dynamics in crystals employing momentum-resolved scanning transmission

electron microscopy under varying illumination conditions. As we perform successive changes of the probe

focus, multiple real-space signals are obtained in dependence of the shape of the incident electron wave.

With support from extensive simulations, each signal is shown to be characterised by an optimum focus for

which the contrast is maximum and which differs among different signals. For instance, a systematic focus

mismatch is found between images formed by high-angle scattering, being sensitive to thickness and chemical

composition, and the first moment in diffraction space, being sensitive to electric fields. It follows that a single

recording at one specific probe focus is usually insufficient to characterise materials comprehensively. Most

importantly, we demonstrate in experiment and simulation that the second moment (
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000734396800009 Publication Date 2021-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited Open Access OpenAccess
Notes We thank Dr. Florian Winkler for valuable discussions and experimental work at the early stages of this study. This work was supported by the Initiative and Network Fund of the Helmholtz Association (Germany) under contracts VH-NG-1317 and ZT-I-0025. This project furthermore received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 770887). Approved Most recent IF: 2.2
Call Number EMAT @ emat @c:irua:184833 Serial 6898
Permanent link to this record
 

 
Author van Dyck, D.; Van Aert, S.; Croitoru, M.
Title Atomic resolution electron tomography: a dream? Type A1 Journal article
Year 2006 Publication International journal of materials research Abbreviated Journal Int J Mater Res
Volume 97 Issue 7 Pages 872-879
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000239916700003 Publication Date 2013-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-5282;2195-8556; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.681 Times cited 6 Open Access
Notes Approved Most recent IF: 0.681; 2006 IF: NA
Call Number UA @ lucian @ c:irua:60965 Serial 176
Permanent link to this record
 

 
Author Croitoru, M.D.; van Dyck, D.; Van Aert, S.; Bals, S.; Verbeeck, J.
Title An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 106 Issue 10 Pages 933-940
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab
Abstract We propose an improved image simulation procedure for atomic-resolution annular dark-field scanning transmission electron microscopy (STEM) based on the multislice formulation, which takes thermal diffuse scattering fully into account. The improvement with regard to the classical frozen phonon approach is realized by separating the lattice configuration statistics from the dynamical scattering so as to avoid repetitive calculations. As an example, the influence of phonon scattering on the image contrast is calculated and investigated. STEM image simulation of crystals can be applied with reasonable computing times to problems involving a large number of atoms and thick or large supercells.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000240397200006 Publication Date 2006-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 18 Open Access
Notes Fwo; Fwo-V Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:87604UA @ admin @ c:irua:87604 Serial 876
Permanent link to this record
 

 
Author Schalm, O.; van der Linden, V.; Frederickx, P.; Luyten, S.; van der Snickt, G.; Caen, J.; Schryvers, D.; Janssens, K.; Cornelis, E.; van Dyck, D.; Schreiner, M.
Title Enamels in stained glass windows: preparation, chemical composition, microstructure and causes of deterioration Type A1 Journal article
Year 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 64 Issue 8 Pages 812-820
Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Vision lab
Abstract Stained glass windows incorporating dark blue and purple enamel paint layers are in some cases subject to severe degradation while others from the same period survived the ravages of time. A series of dark blue, greenblue and purple enamel glass paints from the same region (Northwestern Europe) and from the same period (16early 20th centuries) has been studied by means of a combination of microscopic X-ray fluorescence analysis, electron probe micro analysis and transmission electron microscopy with the aim of better understanding the causes of the degradation. The chemical composition of the enamels diverges from the average chemical composition of window glass. Some of the compositions appear to be unstable, for example those with a high concentration of K2O and a low content of CaO and PbO. In other cases, the deterioration of the paint layers was caused by the less than optimal vitrification of the enamel during the firing process. Recipes and chemical compositions indicate that glassmakers of the 1617th century had full control over the color of the enamel glass paints they made. They mainly used three types of coloring agents, based on Co (dark blue), Mn (purple) and Cu (light-blue or greenblue) as coloring elements. Bluepurple enamel paints were obtained by mixing two different coloring agents. The coloring agent for redpurple enamel, introduced during the 19th century, was colloidal gold embedded in grains of lead glass.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000269995300018 Publication Date 2009-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 28 Open Access
Notes Iuap Vi/6; Fwo; Goa Approved Most recent IF: 3.241; 2009 IF: 2.719
Call Number UA @ lucian @ c:irua:79647 Serial 1035
Permanent link to this record
 

 
Author Croitoru, M.D.; van Dyck, D.; Liu, Y.Z.; Zhang, Z.
Title Measurement of specimen thickness by phase change determination in TEM Type A1 Journal article
Year 2008 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 108 Issue 12 Pages 1616-1622
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT); Vision lab
Abstract A non-destructive method for measuring the thickness of thin amorphous films composed of light elements has been developed. The method employs the statistics of the phase of the electron exit wave function. The accuracy of this method has been checked numerically by the multislice method and compared with that based on the mean inner potential.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000260808300016 Publication Date 2008-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 2 Open Access
Notes Approved Most recent IF: 2.843; 2008 IF: 2.629
Call Number UA @ lucian @ c:irua:75643 Serial 1961
Permanent link to this record
 

 
Author van Dyck, D.; Croitoru, M.D.
Title Statistical method for thickness measurement of amorphous objects Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 90 Issue 24 Pages 241911-241913
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT); Vision lab
Abstract The authors propose a nondestructive method for the determination of the thickness of an amorphous sample. This method is based on the statistics of the phase of the electron exit wave function, which depend on the number of atoms traversed by the incident electron which itself is a function of the thickness of the object. The accuracy of this method has been checked numerically by the multislice method and compared with that based on the mean inner potential. (c) 2007 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000247305400033 Publication Date 2007-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 4 Open Access
Notes Fwo Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:102671 Serial 3158
Permanent link to this record