|   | 
Details
   web
Records
Author Osca, J.; Sorée, B.
Title Torque field and skyrmion motion by spin transfer torque in a quasi-2D interface in presence of strong spin-orbit interaction Type A1 Journal article
Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 130 Issue 13 Pages 133903
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the torque field and skyrmion motion at an interface between a ferromagnet hosting a skyrmion and a material with a strong spin-orbit interaction. We analyze both semiconductor materials and topological insulators using a Hamiltonian model that includes a linear term. The spin torque-inducing current is considered to flow in the single band limit; therefore, a quantum model of current is used. Skyrmion motion due to spin transfer torque proves to be more difficult in the presence of a spin-orbit interaction in the case where only interface in-plane currents are present. However, edge effects in narrow nanowires can be used to drive the skyrmion motion and to exert a limited control on its motion direction. We also show the differences and similarities between torque fields due to electric current in the many and single band limits. Published under an exclusive license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000755090400003 Publication Date 2021-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:186452 Serial 7034
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Temst, K.; Vandenberghe, W.G.; Sorée, B.
Title Atomistic modeling of spin and electron dynamics in two-dimensional magnets switched by two-dimensional topological insulators Type A1 Journal article
Year 2023 Publication Physical review applied Abbreviated Journal
Volume 19 Issue 1 Pages 014040-14049
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract To design fast memory devices, we need material combinations that can facilitate fast read and write operations. We present a heterostructure comprising a two-dimensional (2D) magnet and a 2D topological insulator (TI) as a viable option for designing fast memory devices. We theoretically model the spin-charge dynamics between 2D magnets and 2D TIs. Using the adiabatic approximation, we combine the nonequi-librium Green's function method for spin-dependent electron transport and a time-quantified Monte Carlo method for simulating magnetization dynamics. We show that it is possible to switch a magnetic domain of a ferromagnet using the spin torque from spin-polarized edge states of a 2D TI. We show further that the switching of 2D magnets by TIs is strongly dependent on the interface exchange (Jint), and an opti-mal interface exchange, is required for efficient switching. Finally, we compare experimentally grown Cr compounds and show that Cr compounds with higher anisotropy (such as CrI3) result in a lower switching speed but a more stable magnetic order.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000920227500002 Publication Date 2023-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.6; 2023 IF: 4.808
Call Number UA @ admin @ c:irua:194312 Serial 7283
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Fischetti, M.V.; Sorée, B.; Vandenberghe, W.G.
Title Image-force barrier lowering in top- and side-contacted two-dimensional materials Type A1 Journal article
Year 2022 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 198 Issue Pages 108458-4
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We compare the image-force barrier lowering (IFBL) and calculate the resulting contact resistance for four different metal-dielectric-two-dimensional (2D) material configurations. We analyze edge contacts in three different geometries (a homogeneous dielectric throughout, including the 2D layer; a homogeneous dielectric surrounding the 2D layer, both ungated and back gated) and also a top-contact assuming a homogeneous dielectric. The image potential energy of each configuration is determined and added to the Schottky energy barrier which is calculated assuming a textbook Schottky potential. For each configuration, the contact resistivity is calculated using the WKB approximation and the effective mass approximation using either SiO2 or HfO2 as the surrounding dielectric. We obtain the lowest contact resistance of 1 k Omega mu m by n-type doping an edge contacted transition metal-dichalcogenide (TMD) monolayer, sandwiched between SiO2 dielectric, with similar to 1012 cm-2 donor atoms. When this optimal configuration is used, the contact resistance is lowered by a factor of 50 compared to the situation when the IFBL is not considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000876289800003 Publication Date 2022-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 1.7
Call Number UA @ admin @ c:irua:191556 Serial 7312
Permanent link to this record
 

 
Author Duflou, R.; Ciubotaru, F.; Vaysset, A.; Heyns, M.; Sorée, B.; Radu, I.P.; Adelmann, C.
Title Micromagnetic simulations of magnetoelastic spin wave excitation in scaled magnetic waveguides Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal
Volume 111 Issue 19 Pages 192411
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the excitation of spin waves in scaled magnetic waveguides using the magnetoelastic effect. In uniformly magnetized systems, normal strains parallel or perpendicular to the magnetization direction do not lead to spin wave excitation since the magnetoelastic torque is zero. Using micromagnetic simulations, we show that the nonuniformity of the magnetization in submicron waveguides due to the effect of the demagnetizing field leads to the excitation of spin waves for oscillating normal strains both parallel and perpendicular to the magnetization. The excitation by biaxial normal in-plane strain was found to be much more efficient than that by uniaxial normal out-of-plane strain. For narrow waveguides with a width of 200 nm, the excitation efficiency of biaxial normal in-plane strain was comparable to that of shear strain. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414975500027 Publication Date 2017-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152599 Serial 8247
Permanent link to this record
 

 
Author Lauwens, J.; Kerkhofs, L.; Sala, A.; Sorée, B.
Title Superconductor-semiconductor hybrid capacitance with a nonlinear charge-voltage profile Type A1 Journal article
Year 2024 Publication Journal of physics: D: applied physics Abbreviated Journal
Volume 57 Issue 2 Pages 025301-25309
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electronic devices that work in the quantum regime often employ hybrid nanostructures to bring about a nonlinear behaviour. The nonlinearity that these can provide has proven to be useful, in particular, for applications in quantum computation. Here we present a hybrid device that acts as a capacitor with a nonlinear charge-voltage relation. The device consists of a nanowire placed between the plates of a coplanar capacitor, with a co-parallel alignment. At low temperatures, due to the finite density of states on the nanowire, the charge distribution in the capacitor is uneven and energy-dependent, resulting in a charge-dependent effective capacitance. We study this system analytically and numerically, and show that the nonlinearity of the capacitance is significant enough to be utilized in circuit quantum electrodynamics. The resulting nonlinearity can be switched on, modulated, and switched off by an external potential, thus making this capacitive device highly versatile for uses in quantum computation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001082883200001 Publication Date 2023-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.4; 2024 IF: 2.588
Call Number UA @ admin @ c:irua:200300 Serial 9099
Permanent link to this record
 

 
Author Vermeulen, B.B.; Monteiro, M.G.; Giuliano, D.; Sorée, B.; Couet, S.; Temst, K.; Nguyen, V.D.
Title Magnetization-switching dynamics driven by chiral coupling Type A1 Journal article
Year 2024 Publication Physical review applied Abbreviated Journal
Volume 21 Issue 2 Pages 024050-11
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Dzyaloshinskii-Moriya interaction (DMI) is known to play a central role in stabilizing chiral spin textures such as skyrmions and domain walls (DWs). Electrical manipulation of DW and skyrmion motion offers possibilities for next-generation, scalable and energy-efficient spintronic devices. However, achieving the full potential of these nanoscale devices requires overcoming several challenges, including reliable electrical write and read techniques for these magnetic objects, and addressing pinning and Joule-heating concerns. Here, through micromagnetic simulations and analytical modeling, we show that DMI can directly induce magnetization switching of a nanomagnet with perpendicular magnetic anisotropy (PMA). We find that the switching is driven by the interplay between the DMI-induced magnetic frustration and the PMA. By introducing magnetic tunnel junctions to electrically access and control the magnetization direction of the PMA nanomagnet, we first show the potential of this concept to enable high-density fieldfree spin-orbit torque magnetic random-access memory. Ultimately, we demonstrate that it offers a way of transferring and processing spin information for logic operation without relying on current-driven DW or skyrmion motion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001187487900001 Publication Date 2024-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access
Notes Approved Most recent IF: 4.6; 2024 IF: 4.808
Call Number UA @ admin @ c:irua:205518 Serial 9157
Permanent link to this record
 

 
Author Sorée, B.; Magnus, W.; Pourtois, G.
Title Analytical and self-consistent quantum mechanical model for a surrounding gate MOS nanowire operated in JFET mode Type A1 Journal article
Year 2008 Publication Journal of computational electronics Abbreviated Journal J Comput Electron
Volume 7 Issue 3 Pages 380-383
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We derive an analytical model for the electrostatics and the drive current in a silicon nanowire operating in JFET mode. We show that there exists a range of nanowire radii and doping densities for which the nanowire JFET satisfies reasonable device characteristics. For thin nanowires we have developed a self-consistent quantum mechanical model to obtain the electronic structure.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000208473800067 Publication Date 2008-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited 70 Open Access
Notes Approved Most recent IF: 1.526; 2008 IF: NA
Call Number UA @ lucian @ c:irua:89504 Serial 107
Permanent link to this record
 

 
Author Pham, A.-T.; Zhao, Q.-T.; Jungemann, C.; Meinerzhagen, B.; Mantl, S.; Sorée, B.; Pourtois, G.
Title Comparison of strained SiGe heterostructure-on-insulator (0 0 1) and (1 1 0) PMOSFETs : CV characteristics, mobility, and ON current Type A1 Journal article
Year 2011 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 65-66 Issue Pages 64-71
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Strained SiGe heterostructure-on-insulator (0 0 1) and (1 1 0) PMOSFETs are investigated including important aspects like CV characteristics, mobility, and ON current. The simulations are based on the self-consistent solution of 6 × 6 k · p Schrödinger Equation, multi subband Boltzmann Transport Equation and Poisson Equation, and capture size quantization, strain, crystallographic orientation, and SiGe alloy effects on a solid physical basis. The simulation results are validated by comparison with different experimental data sources. The simulation results show that the strained SiGe HOI PMOSFET with (1 1 0) surface orientation has a higher gate capacitance and a much higher mobility and ON current compared to a similar device with the traditional (0 0 1) surface orientation.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000297182700012 Publication Date 2011-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.58 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 1.58; 2011 IF: 1.397
Call Number UA @ lucian @ c:irua:92866 Serial 433
Permanent link to this record
 

 
Author Compemolle, S.; Pourtois, G.; Sorée, B.; Magnus, W.; Chibotaru, L.F.; Ceulemans, A.
Title Conductance of a copper-nanotube bundle interface: impact of interface geometry and wave-function interference Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue 19 Pages 193406,1-4
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000256971600032 Publication Date 2008-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:70215 Serial 479
Permanent link to this record
 

 
Author Pham, A.-T.; Sorée, B.; Magnus, W.; Jungemann, C.; Meinerzhagen, B.; Pourtois, G.
Title Quantum simulations of electrostatics in Si cylindrical junctionless nanowire nFETs and pFETs with a homogeneous channel including strain and arbitrary crystallographic orientations Type A1 Journal article
Year 2012 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 71 Issue Pages 30-36
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Simulation results of electrostatics in Si cylindrical junctionless nanowire transistors with a homogenous channel are presented. Junctionless transistors including strain and arbitrary crystallographic orientations are studied. Size quantization effects are simulated by self-consistent solutions of the Poisson and Schrodinger equations. The 6 x 6 k.p method is employed for the calculation of the valence subband structure in a junctionless nanowire pFET. The influence of stress/strain and crystallographic channel orientation on to the electrostatics in terms of subband structure, charge density, and C-V curve is systematically studied. (C) 2011 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000303033800007 Publication Date 2011-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.58 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 1.58; 2012 IF: 1.482
Call Number UA @ lucian @ c:irua:98245 Serial 2786
Permanent link to this record
 

 
Author Magnus, W.; Brosens, F.; Sorée, B.
Title Modeling drive currents and leakage currents : a dynamic approach Type A1 Journal article
Year 2009 Publication Journal of computational electronics Abbreviated Journal J Comput Electron
Volume 8 Issue 3/4 Pages 307-323
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract The dynamics of electrons and holes propagating through the nano-scaled channels of modern semiconductor devices can be seen as a widespread manifestation of non-equilibrium statistical physics and its ruling principles. In this respect both the devices that are pushing conventional CMOS technology towards the final frontiers of Moores law and the upcoming set of alternative, novel nanostructures grounded on entirely new concepts and working principles, provide an almost unlimited playground for assessing physical models and numerical techniques emerging from classical and quantum mechanical non-equilibrium theory. In this paper we revisit the Boltzmann as well as the WignerBoltzmann equation which offers a valuable platform to study transport of charge carriers taking part in drive currents. We focus on a numerical procedure that regained attention recently as an alternative tool to solve the time-dependent Boltzmann equation for inhomogeneous systems, such as the channel regions of field-effect transistors, and we discuss its extension to the WignerBoltzmann equation. Furthermore, we pay attention to the calculation of tunneling leakage currents. The latter typically occurs in nano-scaled transistors when part of the carrier distribution sustaining the drive current is found to tunnel into the gate due the presence of an ultra-thin insulating barrier separating the gate from the channel region. In particular, we discuss the paradox related to the very existence of leakage currents established by electrons occupying quasi-bound states, while the (real) wave functions of the latter cannot carry net currents. Finally, we describe a simple model to resolve the paradox as well as to estimate gate currents provided the local carrier generation rates largely exceed the tunneling rates.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000208236100009 Publication Date 2009-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited 4 Open Access
Notes Approved Most recent IF: 1.526; 2009 IF: NA
Call Number UA @ lucian @ c:irua:89503 Serial 2110
Permanent link to this record
 

 
Author Magnus, W.; Brosens, F.; Sorée, B.
Title Time dependent transport in 1D micro- and nanostructures: solving the Boltzmann and Wigner-Boltzmann equations Type A1 Journal article
Year 2009 Publication Journal of physics : conference series Abbreviated Journal
Volume 193 Issue 1 Pages 012004,1-012004,4
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract For many decades the Boltzmann distribution function has been used to calculate the non-equilibrium properties of mobile particles undergoing the combined action of various scattering mechanisms and externally applied force fields. When the latter give rise to the occurrence of inhomogeneous potential profiles across the region through which the particles are moving, the numerical solution of the Boltzmann equation becomes a highly complicated task. In this work we highlight a particular algorithm that can be used to solve the time dependent Boltzmann equation as well as its quantum mechanical extension, the WignerBoltzmann equation. As an illustration, we show the calculated distribution function describing electrons propagating under the action of both a uniform and a pronouncedly non-uniform electric field.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000277100400004 Publication Date 2009-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:82861 Serial 3667
Permanent link to this record
 

 
Author Sels, D.; Sorée, B.; Groeseneken, G.
Title 2-D rotational invariant multi sub band Schrödinger-Poisson solver to model nanowire transistors Type A1 Journal article
Year 2010 Publication Abbreviated Journal
Volume Issue Pages 85-88
Keywords (up) A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Pisa University Press Place of Publication Pisa Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title 14th International Workshop on Computational Electronics
Series Volume Series Issue Edition
ISSN 978-1-4244-9381-4 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:91699 Serial 6
Permanent link to this record
 

 
Author O'Regan, T.P.; Hurley, P.K.; Sorée, B.; Fischetti, M.V.
Title Modeling the capacitance-voltage response of In0.53Ga0.47As metal-oxide-semiconductor structures : charge quantization and nonparabolic corrections Type A1 Journal article
Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue 21 Pages 213514,1-213514,3
Keywords (up) A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract The capacitance-voltage (C-V) characteristic is calculated for p-type In<sub>0.53</sub>Ga<sub>0.47</sub>As metal-oxide-semiconductor (MOS) structures based on a self-consistent PoissonSchrödinger solution. For strong inversion, charge quantization leads to occupation of the satellite valleys which appears as a sharp increase in the capacitance toward the oxide capacitance. The results indicate that the charge quantization, even in the absence of interface defects (D<sub>it</sub>), is a contributing factor to the experimental observation of an almost symmetric C-V response for In<sub>0.53</sub>Ga<sub>0.47</sub>As MOS structures. In addition, nonparabolic corrections are shown to enhance the depopulation of the Γ valley, shifting the capacitance increase to lower inversion charge densities.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000278183200090 Publication Date 2010-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 26 Open Access
Notes Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:89509 Serial 2143
Permanent link to this record
 

 
Author Verhulst, A.; Sorée, B.; Leonelli, D.; Vandenberghe, W.G.; Groeseneken, G.
Title Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor Type A1 Journal article
Year 2010 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 107 Issue 2 Pages 024518,1-024518,8
Keywords (up) A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract Tunnel field-effect transistors (TFETs) are potential successors of metal-oxide-semiconductor FETs because scaling the supply voltage below 1 V is possible due to the absence of a subthreshold-swing limit of 60 mV/decade. The modeling of the TFET performance, however, is still preliminary. We have developed models allowing a direct comparison between the single-gate, double-gate, and gate-all-around configuration at high drain voltage, when the drain-voltage dependence is negligible, and we provide improved insight in the TFET physics. The dependence of the tunnel current on device parameters is analyzed, in particular, the scaling with gate-dielectric thickness, channel thickness, and dielectric constants of gate dielectric and channel material. We show that scaling the gate-dielectric thickness improves the TFET performance more than scaling the channel thickness and that improvements are often overestimated. There is qualitative agreement between our model and our experimental data.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000274180600122 Publication Date 2010-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 150 Open Access
Notes Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:89507 Serial 2146
Permanent link to this record
 

 
Author Balaban, S.N.; Pokatilov, E.P.; Fomin, V.M.; Gladilin, V.N.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; van Rossum, M.; Sorée, B.
Title Quantum transport in a cylindrical sub-0.1 μm silicon-based MOSFET Type A1 Journal article
Year 2002 Publication Solid-State Electronics Abbreviated Journal Solid State Electron
Volume 46 Issue Pages 435-444
Keywords (up) A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000174445000020 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.58 Times cited 16 Open Access
Notes Approved Most recent IF: 1.58; 2002 IF: 0.913
Call Number UA @ lucian @ c:irua:40880 Serial 2791
Permanent link to this record
 

 
Author Nourbakhsh, A.; Cantoro, M.; Klekachev, A.; Clemente, F.; Sorée, B.; van der Veen, M.H.; Vosch, T.; Stesmans, A.; Sels, B.; de Gendt, S.
Title Tuning the Fermi level of SiO2-supported single-layer graphene by thermal annealing Type A1 Journal article
Year 2010 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 114 Issue 5 Pages 6894-6900
Keywords (up) A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract The effects of thermal annealing in inert Ar gas atmosphere of SiO2-supported, exfoliated single-layer graphene are investigated in this work. A systematic, reproducible change in the electronic properties of graphene is observed after annealing. The most prominent Raman features in graphene, the G and 2D peaks, change in accord to what is expected in the case of hole doping. The results of electrical characterization performed on annealed, back-gated field-effect graphene devices show that the neutrality point voltage VNP increases monotonically with the annealing temperature, confirming the occurrence of excess hole accumulation. No degradation of the structural properties of graphene is observed after annealing at temperatures as high as 400 °C. Thermal annealing of single-layer graphene in controlled Ar atmosphere can therefore be considered a technique to reproducibly modify the electronic structure of graphene by tuning its Fermi level.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000276562500002 Publication Date 2010-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 54 Open Access
Notes Approved Most recent IF: 4.536; 2010 IF: 4.524
Call Number UA @ lucian @ c:irua:89508 Serial 3757
Permanent link to this record
 

 
Author Lujan, G.S.; Magnus, W.; Sorée, B.; Ragnarsson, L.A.; Trojman, L.; Kubicek, S.; De Gendt, S.; Heyns, A.; De Meyer, K.
Title Barrier permeation effects on the inversion layer subband structure and its applications to the electron mobility Type A1 Journal article
Year 2005 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 80 Issue Pages 82-85
Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The electron wave functions in the inversion layer are analyzed in the case where the dielectric barriers are not infinite. This forces the electron concentration closer to the interface silicon/oxide and reduces the subband energy. This treatment of the inversion layer is extended to the calculation of the electron mobility degradation due to remote Coulomb scattering on a high-k dielectric stacked transistor. The subband energy reduction leads to a decrease of the scattering charge needed to explain the experimental results. This model can also fit better the experimental data when compared with the case where no barrier permeation is considered.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000231517000021 Publication Date 2005-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 1 Open Access
Notes Approved Most recent IF: 1.806; 2005 IF: 1.347
Call Number UA @ lucian @ c:irua:102729 Serial 222
Permanent link to this record
 

 
Author Pathangi, H.; Cherman, V.; Khaled, A.; Sorée, B.; Groeseneken, G.; Witvrouw, A.
Title Towards CMOS-compatible single-walled carbon nanotube resonators Type A1 Journal article
Year 2013 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 107 Issue Pages 219-222
Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We report a totally CMOS-compatible fabrication technique to assemble horizontally suspended single-walled carbon nanotube (SWCNT) resonators. Individual SWCNTs are assembled in parallel at multiple sites by a technique called dielectrophoresis. The mechanical resonance frequencies of the suspended SWCNTs are in the range of 2035 MHz as determined from the piezoresistive response of the resonators during electrostatic actuation. The resistance of the suspended SWCNT either remains unchanged or increases or decreases significantly as a function of the actuation frequency. This can be explained by the effect the nanotube chirality has on the piezoresistive gauge factor.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000319855800040 Publication Date 2012-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 1.806; 2013 IF: 1.338
Call Number UA @ lucian @ c:irua:109260 Serial 3685
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W.
Title Resistivity scaling in metallic thin films and nanowires due to grain boundary and surface roughness scattering Type A1 Journal article
Year 2017 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 167 Issue 167 Pages 37-41
Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract A modeling approach, based on an analytical solution of the semiclassical multi-subband Boltzmann transport equation, is presented to study resistivity scaling in metallic thin films and nanowires due to grain boundary and surface roughness scattering. While taking into account the detailed statistical properties of grains, roughness and barrier material as well as the metallic band structure and quantum mechanical aspects of scattering and confinement, the model does not rely on phenomenological fitting parameters. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000390746000008 Publication Date 2016-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 1.806
Call Number UA @ lucian @ c:irua:140354 Serial 4460
Permanent link to this record
 

 
Author Zografos, O.; Dutta, S.; Manfrini, M.; Vaysset, A.; Sorée, B.; Naeemi, A.; Raghavan, P.; Lauwereins, R.; Radu, I.P.
Title Non-volatile spin wave majority gate at the nanoscale Type A1 Journal article
Year 2017 Publication AIP advances T2 – 61st Annual Conference on Magnetism and Magnetic Materials (MMM), OCT 31-NOV 04, 2016, New Orleans, LA Abbreviated Journal Aip Adv
Volume 7 Issue 5 Pages 056020
Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract A spin wave majority fork-like structure with feature size of 40 nm, is presented and investigated, through micromagnetic simulations. The structure consists of three merging out-of-plane magnetization spin wave buses and four magneto-electric cells serving as three inputs and an output. The information of the logic signals is encoded in the phase of the transmitted spin waves and subsequently stored as direction of magnetization of the magneto-electric cells upon detection. The minimum dimensions of the structure that produce an operational majority gate are identified. For all input combinations, the detection scheme employed manages to capture the majority phase result of the spin wave interference and ignore all reflection effects induced by the geometry of the structure. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos 000402797100177 Publication Date 2017-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.568 Times cited 13 Open Access
Notes ; ; Approved Most recent IF: 1.568
Call Number UA @ lucian @ c:irua:144288 Serial 4673
Permanent link to this record
 

 
Author Zografos, O.; Manfrini, M.; Vaysset, A.; Sorée, B.; Ciubotaru, F.; Adelmann, C.; Lauwereins, R.; Raghavan, P.; Radu, I.P.
Title Exchange-driven magnetic logic Type A1 Journal article
Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 7 Issue Pages 12154
Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Direct exchange interaction allows spins to be magnetically ordered. Additionally, it can be an efficient manipulation pathway for low-powered spintronic logic devices. We present a novel logic scheme driven by exchange between two distinct regions in a composite magnetic layer containing a bistable canted magnetization configuration. By applying a magnetic field pulse to the input region, the magnetization state is propagated to the output via spin-to-spin interaction in which the output state is given by the magnetization orientation of the output region. The dependence of this scheme with input field conditions is extensively studied through a wide range of micromagnetic simulations. These results allow different logic operating modes to be extracted from the simulation results, and majority logic is successfully demonstrated.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000411434900020 Publication Date 2017-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:146742 Serial 4784
Permanent link to this record
 

 
Author Dutta, S.; Zografos, O.; Gurunarayanan, S.; Radu, I.; Sorée, B.; Catthoor, F.; Naeemi, A.
Title Proposal for nanoscale cascaded plasmonic majority gates for non-Boolean computation Type A1 Journal article
Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 7 Issue Pages 17866
Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality – the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 mu m(2) for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.'));
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000418359600116 Publication Date 2017-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:148514 Serial 4891
Permanent link to this record
 

 
Author Andrikopoulos, D.; Sorée, B.
Title Skyrmion electrical detection with the use of three-dimensional Topological Insulators/Ferromagnetic bilayers Type A1 Journal article
Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 7 Issue Pages 17871
Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('The effect of the magnetic skyrmion texture on the electronic transport properties of the Tl surface state coupled to a thin-film FM is numerically investigated. It is shown that both Bloch (vortex) and Neel (hedgehog) skyrmion textures induce additional scattering on top of a homogeneous background FM texture which can modify the conductance of the system. The change in conductance depends on several factors including the skyrmion size, the dimensions of the FM and the exchange interaction strength. For the Neel skyrmion, the result of the interaction strongly depends on the skyrmion number N-sk and the skyrmion helicity h. For both skyrmion types, significant change of the resistance can be achieved, which is in the order of k Omega.'));
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000418359600121 Publication Date 2017-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 3 Open Access
Notes ; ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:148513 Serial 4896
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
Title Ab-initio study of magnetically intercalated platinum diselenide : the impact of platinum vacancies Type A1 Journal article
Year 2021 Publication Materials Abbreviated Journal Materials
Volume 14 Issue 15 Pages 4167
Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We study the magnetic properties of platinum diselenide (PtSe2) intercalated with Ti, V, Cr, and Mn, using first-principle density functional theory (DFT) calculations and Monte Carlo (MC) simulations. First, we present the equilibrium position of intercalants in PtSe2 obtained from the DFT calculations. Next, we present the magnetic groundstates for each of the intercalants in PtSe2 along with their critical temperature. We show that Ti intercalants result in an in-plane AFM and out-of-plane FM groundstate, whereas Mn intercalant results in in-plane FM and out-of-plane AFM. V intercalants result in an FM groundstate both in the in-plane and the out-of-plane direction, whereas Cr results in an AFM groundstate both in the in-plane and the out-of-plane direction. We find a critical temperature of <0.01 K, 111 K, 133 K, and 68 K for Ti, V, Cr, and Mn intercalants at a 7.5% intercalation, respectively. In the presence of Pt vacancies, we obtain critical temperatures of 63 K, 32 K, 221 K, and 45 K for Ti, V, Cr, and Mn-intercalated PtSe2, respectively. We show that Pt vacancies can change the magnetic groundstate as well as the critical temperature of intercalated PtSe2, suggesting that the magnetic groundstate in intercalated PtSe2 can be controlled via defect engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000682047700001 Publication Date 2021-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.654 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.654
Call Number UA @ admin @ c:irua:180540 Serial 6966
Permanent link to this record
 

 
Author Osca, J.; Moors, K.; Sorée, B.; Serra, L.
Title Fabry-Perot interferometry with gate-tunable 3D topological insulator nanowires Type A1 Journal article
Year 2021 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 32 Issue 43 Pages 435002
Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Three-dimensional topological insulator (3D TI) nanowires display remarkable magnetotransport properties that can be attributed to their spin-momentum-locked surface states such as quasiballistic transport and Aharonov-Bohm oscillations. Here, we focus on the transport properties of a 3D TI nanowire with a gated section that forms an electronic Fabry-Perot (FP) interferometer that can be tuned to act as a surface-state filter or energy barrier. By tuning the carrier density and length of the gated section of the wire, the interference pattern can be controlled and the nanowire can become fully transparent for certain topological surface-state input modes while completely filtering out others. We also consider the interplay of FP interference with an external magnetic field, with which Klein tunneling can be induced, and transverse asymmetry of the gated section, e.g. due to a top-gated structure, which displays an interesting analogy with Rashba nanowires. Due to its rich conductance phenomenology, we propose a 3D TI nanowire with gated section as an ideal setup for a detailed transport-based characterization of 3D TI nanowire surface states near the Dirac point, which could be useful towards realizing 3D TI nanowire-based topological superconductivity and Majorana bound states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000682173800001 Publication Date 2021-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.44
Call Number UA @ admin @ c:irua:180487 Serial 6990
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
Title Magnetic order and critical temperature of substitutionally doped transition metal dichalcogenide monolayers Type A1 Journal article
Year 2021 Publication npj 2D Materials and Applications Abbreviated Journal
Volume 5 Issue 1 Pages 54
Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we investigate the magnetic order in two-dimensional (2D) transition-metal-dichalcogenide (TMD) monolayers: MoS2, MoSe2, MoTe2, WSe2, and WS2 substitutionally doped with period four transition-metals (Ti, V, Cr, Mn, Fe, Co, Ni). We uncover five distinct magnetically ordered states among the 35 distinct TMD-dopant pairs: the non-magnetic (NM), the ferromagnetic with out-of-plane spin polarization (Z FM), the out-of-plane polarized clustered FMs (clustered Z FM), the in-plane polarized FMs (X-Y FM), and the anti-ferromagnetic (AFM) state. Ni and Ti dopants result in an NM state for all considered TMDs, while Cr dopants result in an anti-ferromagnetically ordered state for all the TMDs. Most remarkably, we find that Fe, Mn, Co, and V result in an FM ordered state for all the TMDs, except for MoTe2. Finally, we show that V-doped MoSe2 and WSe2, and Mn-doped MoS2, are the most suitable candidates for realizing a room-temperature FM at a 16-18% atomic substitution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000650635200004 Publication Date 2021-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:179063 Serial 7001
Permanent link to this record
 

 
Author Raymenants, E.; Bultynck, O.; Wan, D.; Devolder, T.; Garello, K.; Souriau, L.; Thiam, A.; Tsvetanova, D.; Canvel, Y.; Nikonov, D.E.; Young, I.A.; Heyns, M.; Sorée, B.; Asselberghs, I.; Radu, I.; Couet, S.; Nguyen, V.D.
Title Nanoscale domain wall devices with magnetic tunnel junction read and write Type A1 Journal article
Year 2021 Publication Nature Electronics Abbreviated Journal
Volume 4 Issue 6 Pages 392-398
Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The manipulation of fast domain wall motion in magnetic nanostructures could form the basis of novel magnetic memory and logic devices. However, current approaches for reading and writing domain walls require external magnetic fields, or are based on conventional magnetic tunnel junctions (MTJs) that are not compatible with high-speed domain wall motion. Here we report domain wall devices based on perpendicular MTJs that offer electrical read and write, and fast domain wall motion via spin-orbit torque. The devices have a hybrid free layer design that consists of platinum/cobalt (Pt/Co) or a synthetic antiferromagnet (Pt/Co/Ru/Co) into the free layer of conventional MTJs. We show that our devices can achieve good tunnelling magnetoresistance readout and efficient spin-transfer torque writing that is comparable to current magnetic random-access memory technology, as well as domain wall depinning efficiency that is similar to stand-alone materials. We also show that a domain wall conduit based on a synthetic antiferromagnet offers the potential for reliable domain wall motion and faster write speed compared with a device based on Pt/Co. Domain wall devices based on perpendicular magnetic tunnel junctions with a hybrid free layer design can offer electrical read and write, and fast domain wall motion driven via spin-orbit torque.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000665011500005 Publication Date 2021-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2520-1131 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:179673 Serial 7003
Permanent link to this record
 

 
Author Vanderveken, F.; Tyberkevych, V.; Talmelli, G.; Sorée, B.; Ciubotaru, F.; Adelmann, C.
Title Lumped circuit model for inductive antenna spin-wave transducers Type A1 Journal article
Year 2022 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 12 Issue 1 Pages 3796-13
Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We derive a lumped circuit model for inductive antenna spin-wave transducers in the vicinity of a ferromagnetic medium. The model considers the antenna's Ohmic resistance, its inductance, as well as the additional inductance due to the excitation of ferromagnetic resonance or spin waves in the ferromagnetic medium. As an example, the additional inductance is discussed for a wire antenna on top of a ferromagnetic waveguide, a structure that is characteristic for many magnonic devices and experiments. The model is used to assess the scaling properties and the energy efficiency of inductive antennas. Issues related to scaling antenna transducers to the nanoscale and possible solutions are also addressed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000826474600050 Publication Date 2022-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.6
Call Number UA @ admin @ c:irua:190001 Serial 7180
Permanent link to this record
 

 
Author Doevenspeck, J.; Zografos, O.; Gurunarayanan, S.; Lauwereins, R.; Raghavan, P.; Sorée, B.
Title Design and simulation of plasmonic interference-based majority gate Type A1 Journal article
Year 2017 Publication AIP advances Abbreviated Journal
Volume 7 Issue 6 Pages 065116
Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Major obstacles in current CMOS technology, such as the interconnect bottleneck and thermal heat management, can be overcome by employing subwavelength-scaled light in plasmonic waveguides and devices. In this work, a plasmonic structure that implements the majority (MAJ) gate function is designed and thoroughly studied through simulations. The structure consists of three merging waveguides, serving as the MAJ gate inputs. The information of the logic signals is encoded in the phase of transmitted surface plasmon polaritons (SPP). SPPs are excited at all three inputs and the phase of the output SPP is determined by theMAJof the input phases. The operating dimensions are identified and the functionality is verified for all input combinations. This is the first reported simulation of a plasmonic MAJ gate and thus contributes to the field of optical computing at the nanoscale. (C) 2017 Author(s).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404621200036 Publication Date 2017-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152632 Serial 7764
Permanent link to this record