|   | 
Details
   web
Records
Author Kaliyappan, P.; Paulus, A.; D’Haen, J.; Samyn, P.; Uytdenhouwen, Y.; Hafezkhiabani, N.; Bogaerts, A.; Meynen, V.; Elen, K.; Hardy, A.; Van Bael, M.K.
Title Probing the impact of material properties of core-shell SiO₂@TiO₂ spheres on the plasma-catalytic CO₂ dissociation using a packed bed DBD plasma reactor Type A1 Journal article
Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util
Volume 46 Issue Pages 101468
Keywords (down) A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis, a promising technology for conversion of CO2 into value-added chemicals near room temperature, is gaining increasing interest. A dielectric barrier discharge (DBD) plasma has attracted attention due to its simple design and operation at near ambient conditions, ease to implement catalysts in the plasma zone and upscaling ability to industrial applications. To improve its main drawbacks, being relatively low conversion and energy efficiency, a packing material is used in the plasma discharge zone of the reactor, sometimes decorated by a catalytic material. Nevertheless, the extent to which different properties of the packing material influence plasma performance is still largely unexplored and unknown. In this study, the particular effect of synthesis induced differences in the morphology of a TiO2 shell covering a SiO2 core packing material on the plasma conversion of CO2 is studied. TiO2 has been successfully deposited around 1.6–1.8 mm sized SiO2 spheres by means of spray coating, starting from aqueous citratoperoxotitanate(IV) precursors. Parameters such as concentration of the Ti(IV) precursor solutions and addition of a binder were found to affect the shells’ properties and surface morphology and to have a major impact on the CO2 conversion in a packed bed DBD plasma reactor. Core-shell SiO2@TiO2 obtained from 0.25 M citratoperoxotitante(IV) precursors with the addition of a LUDOX binder showed the highest CO2 conversion 37.7% (at a space time of 70 s corresponding to an energy efficiency of 2%) and the highest energy efficiency of 4.8% (at a space time of 2.5 s corresponding to a conversion of 3%).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000634280300004 Publication Date 2021-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.292 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.292
Call Number UA @ admin @ c:irua:175958 Serial 6773
Permanent link to this record
 

 
Author Ciocarlan, R.-G.; Blommaerts, N.; Lenaerts, S.; Cool, P.; Verbruggen, S.W.
Title Recent trends in plasmon‐assisted photocatalytic CO₂ reduction Type A1 Journal article
Year 2023 Publication Chemsuschem Abbreviated Journal
Volume 16 Issue 5 Pages e202201647-25
Keywords (down) A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4, CO, CH3OH/CH3CH2OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926901300001 Publication Date 2023-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.4; 2023 IF: 7.226
Call Number UA @ admin @ c:irua:193633 Serial 7335
Permanent link to this record
 

 
Author Kummamuru, N.B.; Watson, G.; Ciocarlan, R.-G.; Verbruggen, S.W.; Cool, P.; Van Der Voort, P.; Perreault, P.
Title Accelerated methane storage in clathrate hydrates using mesoporous (Organo-) silica materials Type A1 Journal article
Year 2023 Publication Fuel Abbreviated Journal
Volume 354 Issue Pages 129403-129418
Keywords (down) A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract Methane (CH4) clathrate hydrates have gained much attention in the ever-growing search for novel energy storage methods; however, they are currently limited due to their poor water-to-hydrate conversions and slow formation kinetics. To surmount these bottlenecks, significant research has been centered on the design of novel methods (porous media). In this vein, the present work explores two hydrophobic mesoporous solids, an alkyl-grafted mesoporous silica (SBA-15 C8) and a periodic mesoporous organosilica (Ring-PMO), in their ability to promote CH4 clathrates. Both materials have shown to facilitate CH4 clathrate formation at mild operating conditions (6 MPa and 269–276 K). The study revealed that the maximal CH4 storage capacities are strongly linked to the critical/optimal quantity of water in the system which was determined to be at 130% and 200% of the pore volume for SBA-15 C8 and Ring-PMO, respectively. Up to 90% and 95% of the maximum water-to-hydrate conversions were achieved in 90 min at the lowest experimental temperature and critical water content for SBA-15 C8 and Ring-PMO, respectively. At these conditions, SBA-15 C8 and Ring-PMO showed a maximum gas uptake of 98.2 and 101.2 mmol CH4/mol H2O, respectively. Both the materials exhibited no chemical or morphological changes post-clathrate formations (characterized using FT-IR, N2 sorption, XRD, and TEM), inferring their viability as clathrate promoters for multiple cycles. An integrated multistep model was considered adequate for representing the hydrate crystallization kinetics and fits well with the experimental kinetic data with a low average absolute deviation in water-to-hydrate conversions among the three distinct kinetic models analyzed. Overall, the results from this study demonstrate hydrophobic porous materials as effective promoters of CH4 clathrates, which could make clathrate-based CH4 storage and transport technology industrially viable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001059413200001 Publication Date 2023-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access Not_Open_Access: Available from 07.02.2024
Notes Approved Most recent IF: 7.4; 2023 IF: 4.601
Call Number UA @ admin @ c:irua:197987 Serial 8829
Permanent link to this record
 

 
Author Zhang, K.; Wang, J.; Ninakanti, R.; Verbruggen, S.W.
Title Solvothermal synthesis of mesoporous TiO2 with tunable surface area, crystal size and surface hydroxylation for efficient photocatalytic acetaldehyde degradation Type A1 Journal article
Year 2023 Publication Chemical engineering journal Abbreviated Journal
Volume 474 Issue Pages 145188-14
Keywords (down) A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract Photocatalytic acetaldehyde degradation exhibits satisfactory performance only at relatively low acetaldehyde flow rates, predominately below 10 × 10-3 mL/min, leaving ample room for improvement. Therefore, it is necessary to prepare more efficient photocatalysts for acetaldehyde degradation. Moreover, the impact of the interaction strength between the titania surface and surface water on the photocatalytic acetaldehyde efficiency is poorly understood. To address these issues, in this work a series of (0 0 1)-faceted anatase titania samples with various surface properties and structures were synthesized via a solvothermal method and tested at high acetaldehyde flow rates under UV light irradiation. With increasing solvothermal time, the pore volume, surface area, and the abundance of surface OH groups all increased, while the crystallite size decreased. These were all identified to be beneficial to promote the degradation performance. When the solvothermal temperature was 180 ℃ and the reaction time was 5 h, the prepared sample displayed the most efficient performance at 19.25× 10-3 mL/min of acetaldehyde (conversion of (74 ± 1)% versus (29 ± 1)% for P25), and achieved a 100 % conversion at 16 × 10-3 mL/min. A weaker interaction strength between surface water and the titania surface was found to improve the acetaldehyde adsorption capacity, thereby promoting the acetaldehyde degradation efficiency. The stability of the best performing sample was tested over 48 h, demonstrating a highly stable performance with no signs of deactivation. Even at a relative humidity of 30 %, the acetaldehyde conversion retains 82% of its efficiency in a dry atmosphere, highlighting its potential in practical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001144928800001 Publication Date 2023-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 06.02.2024
Notes Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:198652 Serial 8933
Permanent link to this record
 

 
Author Kummamuru, N.B.; Ciocarlan, R.-G.; Houlleberghs, M.; Martens, J.; Breynaert, E.; Verbruggen, S.W.; Cool, P.; Perreault, P.
Title Surface modification of mesostructured cellular foam to enhance hydrogen storage in binary THF/H₂ clathrate hydrate Type A1 Journal article
Year 2024 Publication Sustainable energy & fuels Abbreviated Journal
Volume Issue Pages 1-15
Keywords (down) A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract This study introduces solid-state tuning of a mesostructured cellular foam (MCF) to enhance hydrogen (H-2) storage in clathrate hydrates. Grafting of promoter-like molecules (e.g., tetrahydrofuran) at the internal surface of the MCF resulted in a substantial improvement in the kinetics of formation of binary H-2-THF clathrate hydrate. Identification of the confined hydrate as sII clathrate hydrate and enclathration of H-2 in its small cages was performed using XRD and high-pressure H-1 NMR spectroscopy respectively. Experimental findings show that modified MCF materials exhibit a similar to 1.3 times higher H-2 storage capacity as compared to non-modified MCF under the same conditions (7 MPa, 265 K, 100% pore volume saturation with a 5.56 mol% THF solution). The enhancement in H-2 storage is attributed to the hydrophobicity originating from grafting organic molecules onto pristine MCF, thereby influencing water interactions and fostering an environment conducive to H-2 enclathration. Gas uptake curves indicate an optimal tuning point for higher H-2 storage, favoring a lower density of carbon per nm(2). Furthermore, a direct correlation emerges between higher driving forces and increased H-2 storage capacity, culminating at 0.52 wt% (46.77 mmoles of H-2 per mole of H2O and 39.78% water-to-hydrate conversions) at 262 K for the modified MCF material with fewer carbons per nm(2). Notably, the substantial H-2 storage capacity achieved without energy-intensive processes underscores solid-state tuning's potential for H-2 storage in the synthesized hydrates. This study evaluated two distinct kinetic models to describe hydrate growth in MCF. The multistage kinetic model showed better predictive capabilities for experimental data and maintained a low average absolute deviation. This research provides valuable insights into augmenting H-2 storage capabilities and holds promising implications for future advancements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001208396000001 Publication Date 2024-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205764 Serial 9232
Permanent link to this record
 

 
Author Parrilla, M.; Vanhooydonck, A.; Johns, M.; Watts, R.; De Wael, K.
Title 3D-printed microneedle-based potentiometric sensor for pH monitoring in skin interstitial fluid Type A1 Journal article
Year 2023 Publication Sensors and actuators : B : chemical Abbreviated Journal
Volume 378 Issue Pages 133159-10
Keywords (down) A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Wearable electrochemical sensors are driven by the user-friendly capability of continuous monitoring of key biomarkers for diagnostic or therapeutic operations. Particularly, microneedle (MN)-based sensors can access the interstitial fluid (ISF) in the dermis layer of skin to carry out on-body transdermal detection of analytes. Interestingly, 3D-printing technology allows for rapid and versatile prototyping reaching micrometer resolution. Herein, for the first time, we explore 3D-printed hollow MN patches (1 mm height x 1 mm base with 0.3 mm hole) which are modified with conductive inks to develop a potentiometric sensor for pH monitoring. First, the piercing capability of 3D-printed MN patches is demonstrated by using the parafilm model and their insertion in porcine skin. Subsequently, the hollow MNs are filled with conductive inks to engineer a set of microelectrodes. Thereafter, the working and reference electrodes are properly modified with polyaniline and polyvinyl butyral, respectively, toward a highly stable potentiometric cell. A full in vitro characterization is performed within a broad range of pH (i.e. pH 4 to pH 9). Besides, the MN sensor is analytically assessed in phantom gel and pierced on porcine skin to evaluate the resilience of the MN sensor. Finally, the MN sensor is pierced on the forearm of a subject and tested for its on-body monitoring capability. Overall, 3D-printed MN-based potentiometric sensing brings a versatile and affordable technology to minimally-invasively monitor key physiological parameters in the body.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000904590500008 Publication Date 2022-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:192381 Serial 8824
Permanent link to this record
 

 
Author Calogiuri, T.; Hagens, M.; Van Groenigen, J.W.; Corbett, T.; Hartmann, J.; Hendriksen, R.; Janssens, I.; Janssens, I.A.; Ledesma Dominguez, G.; Loescher, G.; Mortier, S.; Neubeck, A.; Niron, H.; Poetra, R.P.; Rieder, L.; Struyf, E.; Van Tendeloo, M.; De Schepper, T.; Verdonck, T.; Vlaeminck, S.E.; Vicca, S.; Vidal, A.
Title Design and construction of an experimental setup to enhance mineral weathering through the activity of soil organisms Type A1 Journal article
Year 2023 Publication Journal of visualized experiments Abbreviated Journal
Volume Issue 201 Pages e65563-30
Keywords (down) A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Applied mathematics; Sustainable Energy, Air and Water Technology (DuEL); Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Enhanced weathering (EW) is an emerging carbon dioxide (CO2) removal technology that can contribute to climate change mitigation. This technology relies on accelerating the natural process of mineral weathering in soils by manipulating the abiotic variables that govern this process, in particular mineral grain size and exposure to acids dissolved in water. EW mainly aims at reducing atmospheric CO2 concentrations by enhancing inorganic carbon sequestration. Until now, knowledge of EW has been mainly gained through experiments that focused on the abiotic variables known for stimulating mineral weathering, thereby neglecting the potential influence of biotic components. While bacteria, fungi, and earthworms are known to increase mineral weathering rates, the use of soil organisms in the context of EW remains underexplored. This protocol describes the design and construction of an experimental setup developed to enhance mineral weathering rates through soil organisms while concurrently controlling abiotic conditions. The setup is designed to maximize weathering rates while maintaining soil organisms' activity. It consists of a large number of columns filled with rock powder and organic material, located in a climate chamber and with water applied via a downflow irrigation system. Columns are placed above a fridge containing jerrycans to collect the leachate. Representative results demonstrate that this setup is suitable to ensure the activity of soil organisms and quantify their effect on inorganic carbon sequestration. Challenges remain in minimizing leachate losses, ensuring homogeneous ventilation through the climate chamber, and avoiding flooding of the columns. With this setup, an innovative and promising approach is proposed to enhance mineral weathering rates through the activity of soil biota and disentangle the effect of biotic and abiotic factors as drivers of EW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001127854400015 Publication Date 2023-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1940-087x ISBN Additional Links UA library record; WoS full record
Impact Factor 1.2 Times cited Open Access
Notes Approved Most recent IF: 1.2; 2023 IF: 1.232
Call Number UA @ admin @ c:irua:200770 Serial 9019
Permanent link to this record
 

 
Author Kovács, A.; Billen, P.; Cornet, I.; Wijnants, M.; Neyts, E.C.
Title Modeling the physicochemical properties of natural deep eutectic solvents : a review Type A1 Journal article
Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 13 Issue 15 Pages 3789-3804
Keywords (down) A1 Journal article; Engineering sciences. Technology; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Natural deep eutectic solvents (NADES) are mixtures of naturally derived compounds with a significantly decreased melting point due to the specific interactions among the constituents. NADES have benign properties (low volatility, flammability, toxicity, cost) and tailorable physicochemical properties (by altering the type and molar ratio of constituents), hence they are often considered as a green alternative to common organic solvents. Modeling the relation between their composition and properties is crucial though, both for understanding and predicting their behavior. Several efforts were done to this end, yet this review aims at structuring the present knowledge as an outline for future research. First, we reviewed the key properties of NADES and relate them to their structure based on the available experimental data. Second, we reviewed available modeling methods applicable to NADES. At the molecular level, density functional theory and molecular dynamics allow interpreting density differences and vibrational spectra, and computation of interaction energies. Additionally, properties at the level of the bulk media can be explained and predicted by semi-empirical methods based on ab initio methods (COSMO-RS) and equation of state models (PC-SAFT). Finally, methods based on large datasets are discussed; models based on group contribution methods and machine learning. A combination of bulk media and dataset modeling allows qualitative prediction and interpretation of phase equilibria properties on the one hand, and quantitative prediction of melting point, density, viscosity, surface tension and refractive indices on the other hand. In our view, multiscale modeling, combining the molecular and macroscale methods, will strongly enhance the predictability of NADES properties and their interaction with solutes, yielding truly tailorable solvents to accommodate (bio)chemical reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000541499100001 Publication Date 2020-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access
Notes Approved Most recent IF: 8.4; 2020 IF: 7.226
Call Number UA @ admin @ c:irua:168851 Serial 6770
Permanent link to this record
 

 
Author Daems, D.; De Wael, K.; Vissenberg, K.; Van Camp, G.; Nagels, L.
Title Potentiometric sensors doped with biomolecules as a new approach to small molecule/biomolecule binding kinetics analysis Type A1 Journal article
Year 2014 Publication Biosensors and bioelectronics Abbreviated Journal Biosens Bioelectron
Volume 54 Issue Pages 515-520
Keywords (down) A1 Journal article; Engineering sciences. Technology; Integrated Molecular Plant Physiology Research (IMPRES); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The most successful binding kinetics analysis systems at this moment include surface plasmon resonance (SPR), quartz microcrystal balance (QMB) and surface acoustic wave (SAW). Although these are powerful methods, they generally are complex, expensive and require the use of monolayers. Here, we report on potentiometric sensors as an inexpensive and simple alternative to do binding kinetics analysis between small molecules in solution and biomolecules (covalently) attached in a biopolymer sensor coating layer. As an example, dopamine and an anti-dopamine aptamer were used as the small molecule and the biomolecule respectively. Binding between both follows a Langmuir adsorption type model and creates a surface potential. The system operates in Flow Injection Analysis mode (FIA). Besides being an interesting new binding kinetics tool, the approach allows systematic design of potentiometric biosensors (in the present study a dopamine sensor), and gives new insights into the functioning of ion-selective electrodes (ISEs).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000333071500077 Publication Date 2013-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.78 Times cited 10 Open Access
Notes ; Financial support for this work was provided by the University of Antwerp by granting L.N. and G.V.C. a BOF interdisciplinary research project. ; Approved Most recent IF: 7.78; 2014 IF: 6.409
Call Number UA @ admin @ c:irua:111678 Serial 5780
Permanent link to this record
 

 
Author Storme, P.; Fransen, E.; De Wael, K.; Caen, J.
Title X-Ray Fluorescence as an analytical tool for studying the copper matrices in the collection of the Museum Plantin-Moretus Type A1 Journal article
Year 2017 Publication De gulden passer Abbreviated Journal
Volume 95 Issue 1 Pages 7-33
Keywords (down) A1 Journal article; Engineering sciences. Technology; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0777-5067 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:144111 Serial 5913
Permanent link to this record
 

 
Author Martinez-Villarreal, S.; Breitenstein, A.; Nimmegeers, P.; Perez Saura, P.; Hai, B.; Asomaning, J.; Eslami, A.A.; Billen, P.; Van Passel, S.; Bressler, D.C.; Debecker, D.P.; Remacle, C.; Richel, A.
Title Drop-in biofuels production from microalgae to hydrocarbons : microalgal cultivation and harvesting, conversion pathways, economics and prospects for aviation Type A1 Journal article
Year 2022 Publication Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg
Volume 165 Issue Pages 106555-22
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract In the last few years, governments all around the world have agreed upon migrating towards carbon-neutral economies as a strategy for restraining the effects of climate change. A major obstacle limiting this achievement is greenhouse gases emissions, for which the aviation sector is a key contributor because of its dependence on fossil fuels. As an alternative, biofuels with similar characteristics to current fossil-fuels and fully compatible with the existing petroleum infrastructure (i.e., drop-in biofuels) are being developed. In this regard, microalgae are a promising feedstock thanks to, among other aspects, their potential for lipid accumulation. This review outlines the development status, opportunities, and challenges of different technologies that are capable of or applicable to transform microalgae into aviation fuels. To this effect, a baseline of the existing jet fuels and the requirements for potential aviation biofuels is initially presented. Then, microalgae production and valorization techniques are discussed with an emphasis on the thermochemical pathways. Finally, an assessment of the present techno-economic feasibility of microalgae-derived aviation fuels is discussed, along with the authors’ point of view on the suitability of these techniques. Further developments are needed to reduce the costs of cultivation and harvesting of microalgae, and a biorefinery approach might improve the economics of the overall process. In addition, while each of the conversion routes described has its advantages and drawbacks, they converge upon the need of optimizing the deoxygenation techniques and the proportion of the suitable type of hydrocarbons that match fuel requirements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861095400001 Publication Date 2022-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6
Call Number UA @ admin @ c:irua:189953 Serial 7354
Permanent link to this record
 

 
Author Brienza, F.; Van Aelst, K.; Devred, F.; Magnin, D.; Tschulkow, M.; Nimmegeers, P.; Van Passel, S.; Sels, B.F.; Gerin, P.; Debecker, D.P.; Cybulska, I.
Title Unleashing lignin potential through the dithionite-assisted organosolv fractionation of lignocellulosic biomass Type A1 Journal article
Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 450 Issue 3 Pages 138179-14
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract The development of biomass pretreatment approaches that, next to (hemi)cellulose valorization, aim at the conversion of lignin to chemicals is essential for the long-term success of a biorefinery. Herein, we discuss a dithionite-assisted organosolv fractionation (DAOF) of lignocellulose in n-butanol and water to produce cellulosic pulp and mono-/oligo-aromatics. The study frames the technicalities of this biorefinery process and relates them to the features of the obtained product streams. We comprehensively identify and quantify all products of interest: solid pulp (acid hydrolysis-HPLC, ATR-FTIR, XRD, SEM, enzymatic hydrolysis-HPLC), lignin derivatives (GPC, GC-MS/FID, 1H-13C HSQC NMR, ICP-AES), and carbohydrate derivatives (HPLC). These results were used for inspecting the economic feasibility of DAOF. In the best process configuration, a high yield of monophenolics was reached (~20%, based on acid insoluble lignin in birch sawdust). Various other lignocellulosic feedstocks were also explored, showing that DAOF is particularly effective on hardwood and herbaceous biomass. Overall, this study demonstrates that DAOF is a viable fractionation method for the sustainable upgrading of lignocellulosic biomass.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000888204900005 Publication Date 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15.1
Call Number UA @ admin @ c:irua:189322 Serial 7373
Permanent link to this record
 

 
Author Quintelier, M.; Perkisas, T.; Poppe, R.; Batuk, M.; Hendrickx, M.; Hadermann, J.
Title Determination of spinel content in cycled Li1.2Ni0.13Mn0.54Co0.13O2 using three-dimensional electron diffraction and precession electron diffraction Type A1 Journal article
Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 13 Issue 11 Pages 1989-17
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Among lithium battery cathode materials, Li1.2Ni0.13Mn0.54Co0.13O2 (LR-NMC) has a high theoretical capacity, but suffers from voltage and capacity fade during cycling. This is partially ascribed to transition metal cation migration, which involves the local transformation of the honeycomb layered structure to spinel-like nano-domains. Determination of the honeycomb layered/spinel phase ratio from powder X-ray diffraction data is hindered by the nanoscale of the functional material and the domains, diverse types of twinning, stacking faults, and the possible presence of the rock salt phase. Determining the phase ratio from transmission electron microscopy imaging can only be done for thin regions near the surfaces of the crystals, and the intense beam that is needed for imaging induces the same transformation to spinel as cycling does. In this article, it is demonstrated that the low electron dose sufficient for electron diffraction allows the collection of data without inducing a phase transformation. Using calculated electron diffraction patterns, we demonstrate that it is possible to determine the volume ratio of the different phases in the particles using a pair-wise comparison of the intensities of the reflections. Using this method, the volume ratio of spinel structure to honeycomb layered structure is determined for a submicron sized crystal from experimental three-dimensional electron diffraction (3D ED) and precession electron diffraction (PED) data. Both twinning and the possible presence of the rock salt phase are taken into account. After 150 charge-discharge cycles, 4% of the volume in LR-NMC particles was transformed irreversibly from the honeycomb layered structure to the spinel structure. The proposed method would be applicable to other multi-phase materials as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000815310500001 Publication Date 2021-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.457 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.457
Call Number UA @ admin @ c:irua:189468 Serial 7080
Permanent link to this record
 

 
Author Buyle, M.; Audenaert, A.; Billen, P.; Boonen, K.; Van Passel, S.
Title The future of Ex-Ante LCA? Lessons learned and practical recommendations Type A1 Journal article
Year 2019 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume 11 Issue 19 Pages 5456
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Biochemical Wastewater Valorization & Engineering (BioWaVE); Energy and Materials in Infrastructure and Buildings (EMIB)
Abstract Every decision-oriented life cycle assessment (LCAs) entails, at least to some extent, a future-oriented feature. However, apart from the ex-ante LCAs, the majority of LCA studies are retrospective in nature and do not explicitly account for possible future effects. In this review a generic theoretical framework is proposed as a guideline for ex-ante LCA. This framework includes the entire technology life cycle, from the early design phase up to continuous improvements of mature technologies, including their market penetration. The compatibility with commonly applied system models yields an additional aspect of the framework. Practical methods and procedures are categorised, based on how they incorporate future-oriented features in LCA. The results indicate that most of the ex-ante LCAs focus on emerging technologies that have already gone through some research cycles within narrowly defined system boundaries. There is a lack of attention given to technologies that are at a very early development stage, when all options are still open and can be explored at a low cost. It is also acknowledged that technological learning impacts the financial and environmental performance of mature production systems. Once technologies are entering the market, shifts in market composition can lead to substantial changes in environmental performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000493525500315 Publication Date 2019-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 1.789 Times cited 4 Open Access
Notes ; Thanks to Koen Breemersch for providing insightful and useful comments on draft versions of this manuscript. This work was supported by the University of Antwerp and the Flemish Institute for Technological Research (VITO). The authors also acknowledge anonymous reviewers for the constructive suggestions and the stimulating discussion. ; Approved Most recent IF: 1.789
Call Number UA @ admin @ c:irua:162571 Serial 6205
Permanent link to this record
 

 
Author Thomassen, G.; Van Dael, M.; Van Passel, S.
Title The potential of microalgae biorefineries in Belgium and India : an environmental techno-economic assessment Type A1 Journal article
Year 2018 Publication Bioresource Technology Abbreviated Journal Bioresource Technol
Volume 267 Issue 267 Pages 271-280
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This study performs an environmental techno-economic assessment (ETEA) for multiple microalgae biorefinery concepts at different locations, those being Belgium and India. The ETEA methodology, which integrates aspects of the TEA and LCA methodologies and provides a clear framework for an integrated assessment model, has been proposed and discussed. The scenario in India has a higher profitability with a NPV of (sic)40 million over a period of 10 years, while the environmental impact in Belgium is lower. The inclusion of a medium recycling step provides the best scenario from both perspectives. The crucial parameters for feasibility are the beta-caroteneprice and content, the upstream environmental impact of electricity and the maximum biomass concentration during cultivation. The identification of these parameters by the ETEA guides future technology developments and shortens the time-to-market for microalgal-based biorefineries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441876100034 Publication Date 2018-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 5.651 Times cited 8 Open Access
Notes ; ; Approved Most recent IF: 5.651
Call Number UA @ admin @ c:irua:153599 Serial 6270
Permanent link to this record
 

 
Author Lizin, S.; Van Passel, S.; De Schepper, E.; Vranken, L.
Title The future of organic photovoltaic solar cells as a direct power source for consumer electronics Type A1 Journal article
Year 2012 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C
Volume 103 Issue Pages 1-10
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract As the search for marketable photovoltaic solar cells continues, organic photovoltaic (OPV) solar cells have been identified as a technology with many attractive features for commercialization. Most photovoltaic technologies on the market today were improved in the consumer electronics market segment. A similar evolution has been envisioned for OPV. Hence this paper investigates consumer preferences for solar cells directly powering consumer electronics. Choice experiments were designed and responses were collected using a random sample of 300 individuals from the Flemish region (northern part of Belgium). Results allow for computation of attribute importance, willingness to pay (WTP), and simulation of theoretical market share. These measures point towards OPV being able to reach considerable market share in the long run, bearing in mind that efforts are first needed in elevating OPV's efficiency and lifetime as they most determine consumers' preferences. Price is found to be the least important product characteristic for OPV solar cells to be incorporated in consumer electronics devices. We therefore warn against generalizing attributes' importance across the boundaries of market segments. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000306044300001 Publication Date 2012-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 25 Open Access
Notes ; The authors would kindly want to express their gratitude towards every survey respondent and participant for their preliminary work. Also the authors are much obliged to INTERREG and the ORGANEXT project for their financial support, without which it would have been impossible to conduct this research. Last but not least, we would like to thank the reviewers for their insightful comments which allowed for fine tuning our work. ; Approved Most recent IF: 4.784; 2012 IF: 4.630
Call Number UA @ admin @ c:irua:127556 Serial 6267
Permanent link to this record
 

 
Author Van Passel, S.; Dubois, M.; Eyckmans, J.; de Gheldere, S.; Ang, F.; Jones, P.T.; Van Acker, K.
Title The economics of enhanced landfill mining : private and societal performance drivers Type A1 Journal article
Year 2013 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod
Volume 55 Issue Pages 92-102
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This paper addresses the economics of Enhanced Landfill Mining (ELFM) both from a private point of view as well as from a society perspective. The private potential is assessed using a case study for which an investment model is developed to identify the impact of a broad range of parameters on the profitability of ELFM. We found that especially variations in Waste-to-Energy (WtE efficiency, electricity price, CO2-price, WtE investment and operational costs) and ELFM support explain the variation in economic profitability measured by the Internal Rate of Return. To overcome site-specific parameters we also evaluated the regional ELFM potential for the densely populated and industrial region of Flanders (north of Belgium). The total number of potential ELFM sites was estimated using a 5-step procedure and a simulation tool was developed to trade-off private costs and benefits. The analysis shows that there is a substantial economic potential for ELFM projects on the wider regional level. Furthermore, this paper also reviews the costs and benefits from a broader perspective. The carbon footprint of the case study was mapped in order to assess the project's net impact in terms of greenhouse gas emissions. Also the impacts of nature restoration, soil remediation, resource scarcity and reduced import dependence were valued so that they can be used in future social cost-benefit analysis. Given the complex trade-off between economic, social and environmental issues of ELFM projects, we conclude that further refinement of the methodological framework and the development of the integrated decision tools supporting private and public actors, are necessary. (c) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322802300010 Publication Date 2012-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.715 Times cited 65 Open Access
Notes ; ; Approved Most recent IF: 5.715; 2013 IF: 3.590
Call Number UA @ admin @ c:irua:127550 Serial 6266
Permanent link to this record
 

 
Author Joolaie, R.; Sarvestani, A.A.; Taheri, F.; Van Passel, S.; Azadi, H.
Title Sustainable cropping pattern in North Iran : application of fuzzy goal programming Type A1 Journal article
Year 2017 Publication Environment, development and sustainability Abbreviated Journal
Volume 19 Issue 6 Pages 2199-2216
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Due to the important role that the application of mathematical programming models have in determining optimal cropping patterns, this research presents a sustainable cropping pattern that considers selected economic, environmental, and social goals together. Using a random sampling method, a sample size of 168 farmers was selected in the Sari County, Iran. Our results showed that economic, self-sufficiency, environmental, and social goals have a distinctly different impact on cropping pattern performance. Compared to the current cropping pattern, the gross margins for economic and social goals increased by nearly 11 and 2 %, respectively, and the gross margins for self-sufficiency and environmental goals decreased by nearly 2 and 36 %. Interestingly, it has been found that the performance of the current cropping pattern has an average positive impact of 6 % if economic, self-sufficiency, environmental, and social (employment) goals are realized simultaneously.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414459300004 Publication Date 2016-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-585x ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:147370 Serial 6257
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Van Passel, S.
Title Steering the adoption of battery storage through electricity tariff design Type A1 Journal article
Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 98 Issue 98 Pages 125-139
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract The economic viability of electricity storage using batteries, under different tariff structures and system configurations, is investigated. The economic outcomes of the different combinations of tariff design and system configuration are evaluated. Based on a discussion of the relevant literature, the following tariff designs are used in the study: (i) fixed energy prices, (ii) real-time energy pricing, (iii) fixed rate capacity tariffs, and (iv) capacity dependent capacity tariffs. Next, the different simulated system configurations are outlined: (i) no battery storage, (ii) battery storage only, and (iii) battery storage and decentralized renewable energy production with PV. Our study provides insights for policy makers, showing that capacity block pricing only incentivises storage as part of an (existing) PV installation, while the combination of real time energy pricing and capacity block pricing promotes a wider adoption of battery storage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000450559100010 Publication Date 2018-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:153327 Serial 6252
Permanent link to this record
 

 
Author Afsharzade, N.; Papzan, A.; Ashjaee, M.; Delangizan, S.; Van Passel, S.; Azadi, H.
Title Renewable energy development in rural areas of Iran Type A1 Journal article
Year 2016 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 65 Issue Pages 743-755
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Iran's energy system is extremely dependent on fossil fuels which, in turn, have led to problems such as fossil fuels depletion, social, economic and environmental damage and territorial imbalance. The country should therefore design a sustainable energy system based on clean energy as well as renewable energy. Accordingly, and given that Iran's rural areas suffer from the unsustainable energy system, it is necessary to integrate renewable energy into comprehensive development programs in general, and into rural development programs, specifically. This review paper answers the following questions: Why is renewable energy important for Iran at national and rural levels? How is renewable energy related to sustainable rural development? and What are the challenges in the promotion of renewable energy technologies in Iran? The paper concludes that although renewable energy has potential for development in Iran's rural areas due to environmental, social and economic advantages, it could face some infrastructural, managerial, socio-cultural and economic challenges. Accordingly, aggressive and innovative policy making is required to meet these challenges. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383293800053 Publication Date 2016-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 41 Open Access
Notes ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:137105 Serial 6243
Permanent link to this record
 

 
Author Lizin, S.; Van Passel, S.; De Schepper, E.; Maes, W.; Lutsen, L.; Manca, J.; Vanderzande, D.
Title Life cycle analyses of organic photovoltaics : a review Type A1 Journal article
Year 2013 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci
Volume 6 Issue 11 Pages 3136-3149
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This paper reviews the available life cycle analysis (LCA) literature on organic photovoltaics (OPVs). This branch of OPV research has focused on the environmental impact of single-junction bulk heterojunction polymer solar cells using a P3HT/PC60BM active layer blend processed on semi-industrial pilot lines in ambient surroundings. The environmental impact was found to be strongly decreasing through continuous innovation of the manufacturing procedures. The current top performing cell regarding environmental performance has a cumulative energy demand of 37.58 MJp m(-2) and an energy payback time in the order of months for cells having 2% efficiency, thereby rendering OPV cells one of the best performing PV technologies from an environmental point of view. Nevertheless, we find that LCA literature is lagging behind on the main body of OPV literature due to the lack of readily available input data. Still, LCA research has led us to believe that in the quest for higher efficiencies, environmental sustainability is being disregarded on the materials' side. Hence, we advise the scientific community to take the progress made on environmental sustainability aspects of OPV preparations into account not only because standard procedures put a bigger strain on the environment, but also because these methods may not be transferrable to an industrial process. Consequently, we recommend policy makers to subsidize research that bridges the gaps between fundamental materials research, stability, and scalability given that these constraints have to be fulfilled simultaneously if OPVs are ever to be successful on the market. Additionally, environmental sustainability will have to keep on being monitored to steer future developments in the right direction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000325946400002 Publication Date 2013-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.518 Times cited 124 Open Access
Notes ; The authors are much obliged to both the INTERREG ORGAN-EXT project and FP7 MOLESOL project for their financial support, without which it would have been impossible to conduct this research. ; Approved Most recent IF: 29.518; 2013 IF: 15.490
Call Number UA @ admin @ c:irua:127548 Serial 6223
Permanent link to this record
 

 
Author Maes, D.; Van Passel, S.
Title Interference of regional support policies on the economic and environmental performance of a hybrid cogeneration-solar panel energy system Type A1 Journal article
Year 2012 Publication Energy Policy Abbreviated Journal Energ Policy
Volume 42 Issue Pages 670-680
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This paper assesses unintentional interference between different public policies promoting energy efficiency and renewable energy. The paper develops a methodology to study the interference by analysing the economic and technical behaviour of a hybrid energy system. The hybrid energy system in this case consists of an existing cogeneration unit extended with a new installation of thermal solar panels. This puts two complementary heating technologies in juxtaposition. The two technologies are supported with distinct regional support instruments in each region. The design and operation of the energy system is optimised from the point of view of the investor according to the different support instruments. The optimal configuration is analysed as well as its effect on reduced CO2-emissions during the lifetime of the project. The methodology is applied to a case-study for two neighbouring regions, the Netherlands and Flanders. The policies in the Netherlands show a beneficial synergy. In Flanders, the hybrid energy system is not interesting, indicating unbalanced high support for cogeneration in this case. From the point of view of the authorities, a more balanced regional policy as in the Netherlands provides a larger CO2-emission reduction for a smaller cost. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000301616000066 Publication Date 2012-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4215; 1873-6777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.14 Times cited 4 Open Access
Notes ; The authors would especially like to thank Davy Duelen for the excellent case-study and data collection that enabled the present paper. The help and information provided by Pierre Gijsen also made the detailed assessment possible. We are also indebted to two anonymous reviewers, whose remarks strongly improved the paper. This project has been financed by the Impulse-project of the tUL (transnational University Limburg). ; Approved Most recent IF: 4.14; 2012 IF: 2.743
Call Number UA @ admin @ c:irua:127558 Serial 6220
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Van Passel, S.
Title The impact of policy on microgrid economics : a review Type A1 Journal article
Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 81 Issue 2 Pages 3111-3119
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This paper investigates the impact of government policy on the optimal design of microgrid systems from an economic cost minimisation perspective, and provides both an overview of the current state of the art of the field, as well as highlighting possible avenues of future research. Integer programming, to select microgrid components and to economically dispatch these components, is the optimisation method of choice in the literature. Using this methodology, a broad range of policy topics is investigated: impact of carbon taxation, economic incentives and mandatory emissions reduction or mandatory minimum percentage participation of renewables in local generation. However, the impact of alternative tariff systems, such as capacity tariffs are still unexplored. Additionally, the investigated possible benefits of microgrids are confined to emissions reduction and a possible decrease in total energy procurement costs. Possible benefits such as increased security of supply, increased power quality or energy independence are not investigated yet. Under the expected policy measures the optimal design of a microgrid will be based on a CHP-unit to provide both heat and electricity, owning to the lower capital costs associated with CHP-units when compared to those associated with renewable technologies. This means that current economic analyses indicate that the adoption of renewable energy sources within microgrids is not economically rational.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000417078200117 Publication Date 2017-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 11 Open Access
Notes ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:145397 Serial 6213
Permanent link to this record
 

 
Author Thomassen, G.; Van Dael, M.; Van Passel, S.; You, F.
Title How to assess the potential of emerging green technologies? Towards a prospective environmental and techno-economic assessment framework Type A1 Journal article
Year 2019 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 21 Issue 18 Pages 4868-4886
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract For sustainable production and consumption, emerging green technologies need to be optimized towards a minimal environmental impact and a maximal economic impact. In an early stage of technology development, more flexibility is available to adapt the technology. Therefore, a prospective environmental and techno-economic assessment is required. The prospective assessment differs at the different stages of technology development, as also the data availability and accuracy evolves. This paper reviews the different prospective technological, economic and environmental assessment methods which have been used to assess the potential of new green chemical technologies. Based on the current best practices, an overarching framework is introduced to assess the technological, economic and environmental potential of an emerging green chemical technology at the different stages of technology development.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486309300002 Publication Date 2019-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.125 Times cited 5 Open Access
Notes ; ; Approved Most recent IF: 9.125
Call Number UA @ admin @ c:irua:163782 Serial 6211
Permanent link to this record
 

 
Author Meul, M.; Van Passel, S.; Fremaut, D.; Haesaert, G.
Title Higher sustainability performance of intensive grazing versus zero-grazing dairy systems Type A1 Journal article
Year 2012 Publication Agronomy For Sustainable Development Abbreviated Journal Agron Sustain Dev
Volume 32 Issue 3 Pages 629-638
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Although grazing of dairy cows is an integral part of dairy farming in many European countries, farmers today more often choose for zero-grazing systems, where cows are housed throughout the year. Some studies already compared grazing and zero-grazing systems for specific issues such as labor efficiency, environmental impact, or animal welfare. In our study, we perform a more integrated evaluation, considering relevant ecological, economic, and social aspects. This allows for a balanced and more complete comparison of the sustainability performance of the two production methods. We evaluated ten intensive grazing and ten zero-grazing specialized Flemish dairy farms on the use of nutrients and energy, productivity and profitability, labor input, and animal welfare. In addition, we put special effort in formulating useful management advice for farmers. Therefore, we combined a detailed analysis of the sustainability indicators with an intensive interaction and discussion with farmers and farm advisors. Results show that, on average, the zero-grazing farms performed significantly worse from an ecological and economic point of view. This fact is explained mainly due to a less efficient use of concentrates and byproducts. Social sustainability performance did not differ significantly between the two groups. As a result, the integrated sustainability performance was significantly lower for the zero-grazing group. This finding shows that a further shift from intensive grazing to zero-grazing can move dairy farming in Flanders further away from sustainability. An important advice to improve the ecological and economic performance of zero-grazing farms is to optimize cows' rations to include more forages and optimize forage production and use. More detailed site- and case-specific management advice for farmers of both groups was provided during a discussion meeting. We consider this an essential additional step to any sustainability evaluation, since progress can only be made when monitoring results are translated into practical measures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000306061800003 Publication Date 2012-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1774-0746 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.101 Times cited 26 Open Access
Notes ; ; Approved Most recent IF: 4.101; 2012 IF: 3.573
Call Number UA @ admin @ c:irua:127557 Serial 6209
Permanent link to this record
 

 
Author Lizin, S.; Van Passel, S.; Vranken, L.
Title Heterogeneity in the solar-powered consumer electronics market : a discrete choice experiments study Type A1 Journal article
Year 2016 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C
Volume 156 Issue Pages 140-146
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Solar-powered consumer electronics are a likely starting point for organic photovoltaic (OPV) market development. Therefore, a generic discrete choice experiments study can determine how Flemish consumers value solar-cell characteristics for solar-poweied consumer electronics. Such characteristics include efficiency, lifetime, aesthetics, integratability, and price. We contribute to the literature by investigating preference heterogeneity in a solar-power niche market with an experimental design with a fixed reference alternative. The error components random parameter logit (ECRPL) with interactions provides a better fit than the latent class (LC) model for our choice data. The main effects had the expected signs. Consequently, aesthetics and integratability are OPV's assets. Nevertheless, heterogeneity puts the results that are valid for the average consumer into perspective. Based on our findings, OPV commercialization efforts should target the experienced, impatient user who highly values design and functionality. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383304100015 Publication Date 2016-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 2 Open Access
Notes ; Sebastien Lizin thanks the Research Foundation Flanders (FWO) for funding his postdoctoral mandate with Grant number 12G5415N, without which it would have been impossible to revise this work. ; Approved Most recent IF: 4.784
Call Number UA @ admin @ c:irua:137107 Serial 6207
Permanent link to this record
 

 
Author Moretti, M.; Van Dael, M.; Malina, R.; Van Passel, S.
Title Environmental assessment of waste feedstock mono-dimensional and bio-refinery systems : combining manure co-digestion and municipal waste anaerobic digestion Type A1 Journal article
Year 2018 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod
Volume 171 Issue 171 Pages 954-961
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Organic municipal solid waste (OMSW) as a feedstock for energy recovery and material recycling offers the potential to reduce environmental impacts from energy production while displacing emission intensive waste management strategies such as landfills. This paper quantifies the environmental impact of anaerobic digestion of local, residual biomass. A life-cycle assessment was jointly performed for two scenarios for the biological treatment of local organic municipal solid waste and pig manure in the Netherlands. Scenario 1 was a separate treatment using anaerobic digestion, and Scenario 2 was a bio-refinery system that integrates anaerobic digestion of organic, municipal solid waste, and co digestion of pig manure and other organic co-substrates \. For both scenarios, electricity and heat are generated using a combined heat and power engine. The bio-refinery system (Scenario 2) contribution to climate change resulted in 0.16 Mt CO2 eq./yr, which is lower than the 0.17 Mt CO2 eq./yr of Scenario 1. Both scenarios are found to be beneficial with regard to resource depletion and human toxicity. The integration of organic waste and manure anaerobic digestion has no effect on acidification and terrestrial eutrophication impact categories, resulting in 43.59 AE eq. and 86.33 AE eq. for Scenario 1 and 43.58 AE eq. and 86.30 AE eq. for Scenario 2. Moreover, Scenario 2 yields 18% lower emissions than those from natural gas derived electricity in the Netherlands. The biorefinery system represents an opportunity to improve organic waste-management strategies, at the same time as reducing the environmental impact from energy production and the costs for surplus manure disposal by producing high-quality commodities that can be traded on the market. (C) 2017 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000418978100085 Publication Date 2017-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.715 Times cited 12 Open Access
Notes ; ; Approved Most recent IF: 5.715
Call Number UA @ admin @ c:irua:148444 Serial 6199
Permanent link to this record
 

 
Author Jones, P.T.; Geysen, D.; Tielemans, Y.; Van Passel, S.; Pontikes, Y.; Blanpain, B.; Quaghebeur, M.; Hoekstra, N.
Title Enhanced landfill mining in view of multiple resource recovery : a critical review Type A1 Journal article
Year 2013 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod
Volume 55 Issue Pages 45-55
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract In a circular economy material loops are closed by recycling of pre-consumer manufacturing scrap/residues, urban mining of End-of-Life products and landfill mining of historic (and future) urban waste streams. However, in the past landfill mining was not performed with a focus on resource recovery. This paper addresses this gap by introducing the concept of Enhanced Landfill Mining, defined as the safe conditioning, excavation and integrated valorization of landfilled waste streams as both materials and energy, using innovative transformation technologies and respecting the most stringent social and ecological criteria. The feasibility of ELFM is studied by synthesizing the research on the Closing the Circle project, the first ELFM project targeting the 18 million metric ton landfill in Houthalen-Helchteren in the East of Belgium. It is argued that Environmental Impact Assessments of ELFM projects should be wide in scope and time. Embedded in a broad resource management perspective, the worldwide potential of ELFM is highlighted, in terms of climate gains, materials and energy utilization, job creation and land reclamation. The potential is quantified for the EU-27 with its 150,000-500,000 landfills. However, for ELFM to reach its full potential, strategic policy decisions and tailored support systems, including combined incentives for material recycling, energy utilization and nature restoration, are required. (c) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322802300005 Publication Date 2012-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.715 Times cited 144 Open Access
Notes ; The authors acknowledge the European and Flemish authorities for the funding of, respectively, the EFRO project 'Closing the Circle, a demonstration of Enhanced Landfill Mining (ELFM)' and the IWT O&O Project 100517. The authors acknowledge the ELFM Consortium Members, including Karel Van Acker, Tom Van Gerven, Marc Craps, Alain De Vocht, Johan Eyckmans, Maarten Dubois, Koen Sips, Luk Umans, Maurice Ballard, Lieve Helsen and Anouk Bosmans. The authors acknowledge the members of the EU ELMIRE Consortium, in particular Hans Groot, Raffaello Cossu, William Hogland and Rainer Stegmann. Finally, the authors thank the reviewers for their critical comments and suggested improvements. ; Approved Most recent IF: 5.715; 2013 IF: 3.590
Call Number UA @ admin @ c:irua:127549 Serial 6195
Permanent link to this record
 

 
Author Einhäupl, P.V.; Krook, J.; Svensson, N.; Van Acker, K.; Van Passel, S.
Title Eliciting stakeholder needs : an anticipatory approach assessing enhanced landfill mining Type A1 Journal article
Year 2019 Publication Waste Management Abbreviated Journal Waste Manage
Volume 98 Issue 98 Pages 113-125
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Landfill owners, governmental institutions, technology providers, academia and local communities are important stakeholders involved in Enhanced Landfill Mining (ELFM). This concept of excavating and processing historical waste streams to higher added values can be seen as a continuation of traditional landfill mining (LFM) and seems to be an innovative and promising idea for potential environmental and societal benefits. However, ELFM's profitability is still under debate, and environmental as well as societal impacts have to be further investigated. This study provides a first step towards an anticipatory approach, assessing ELFM through stakeholder integration. In the study, semi-structured interviews were conducted with various stakeholders, involved in a case study in Flanders, Belgium. Participants were selected across a quadruple helix (QH) framework, i.e. industrial, governmental, scientific, and local community actors. The research comprises 13 interviews conducted with an aim to elicit stakeholder needs for ELFM implementation using a general inductive approach. In total 18 different stakeholder needs were identified. The paper explains how the stakeholder needs refer to the different dimensions of sustainability, which groups of stakeholders they primarily affect, and what types of uncertainty could be influenced by their implementation. The stakeholder needs are structured into societal, environmental, regulatory and techno-economic needs. Results show additional economic, environmental, and societal aspects of ELFM to be integrated into ELFM research, as well as a need for the dynamic modeling of impacts. (C) 2019 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000487175500012 Publication Date 2019-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.03 Times cited 3 Open Access
Notes ; This project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 721185. ; Approved Most recent IF: 4.03
Call Number UA @ admin @ c:irua:163760 Serial 6193
Permanent link to this record
 

 
Author Maes, D.; Van Passel, S.
Title Effective bioeconomy policies for the uptake of innovative technologies under resource constraints Type A1 Journal article
Year 2019 Publication Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg
Volume 120 Issue 120 Pages 91-106
Keywords (down) A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract The bioeconomy is a shared vision for a future European industry entirely based on organic matter. Authorities support this technological development with subsidies and policies stimulating R&D. One major limitation for the bioeconomy is that R&D and industrial growth require the continuous availability of biomass as a primary resource. This resource dependence is already present during the formative years of new biobased innovations and influences the pilot and demonstration phase of the development. Traditionally, it is assumed that public support for pilot and demonstration initiatives may overcome this hurdle. In this paper, we investigate how this resource constraint limits the effectiveness of bioeconomy policies. The future development of the biobased sector is simulated including the inherent dependence of industrial activity on biomass. We simulate the future growth and technological diversity of an emerging biotechnological sector: the sector of manure transformation in Belgium. The paper reports the evolutions for three policy scenarios. The model explicitly accounts for endogenous innovation and knowledge transfer mechanisms. The results show that policies may have an important impact on the sector structure in the long run, but the sector growth remains ultimately constrained by the availability of inputs. So bioeconomy policies to promote innovation will be less effective, unless mechanisms are included to alleviate the resource constraint.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454887700011 Publication Date 2018-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.219 Times cited 3 Open Access
Notes ; ; Approved Most recent IF: 3.219
Call Number UA @ admin @ c:irua:156757 Serial 6191
Permanent link to this record