toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Ekimov, E.A.; Kudryavtsev, O.S.; Turner, S.; Korneychuk, S.; Sirotinkin, V.P.; Dolenko, T.A.; Vervald, A.M.; Vlasov, I.I.
  Title The effect of molecular structure of organic compound on the direct high-pressure synthesis of boron-doped nanodiamond: Effect of organic compound on synthesis of boron-doped nanodiamond Type A1 Journal article
  Year 2016 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
  Volume 213 Issue 213 Pages 2582-2589
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Evolution of crystalline phases with temperature has been studied in materials produced by high-pressure high-temperature treatment of 9-borabicyclo[3.3.1]nonane dimer (9BBN), triphenylborane and trimesitylborane. The boron-doped diamond nanoparticles with a size below 10 nm were obtained at 8–9 GPa and temperatures 970–1250 °C from 9BBN only. Bridged structure and the presence of boron atom in the carbon cycle of 9BBN were revealed to be a key point for the direct synthesis of doped diamond nanocrystals. The diffusional transformation of the disordered carbon phase is suggested to be the main mechanism of the nanodiamond formation from 9BBN in the temperature range of 970–1400 °C. Aqueous suspensions of primary boron-doped diamond nanocrystals were prepared upon removal of non-diamond phases that opens wide opportunities for application of this new nanomaterial in electronics and biotechnologies.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000388321500006 Publication Date 2016-07-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.775 Times cited 8 Open Access
  Notes Approved Most recent IF: 1.775
  Call Number EMAT @ emat @ c:irua:135175 Serial 4120
Permanent link to this record
 

 
Author Babynina, A.; Fedoruk, M.; Kuhler, P.; Meledin, A.; Doblinger, M.; Lohmueller, T.
  Title Bending Gold Nanorods with Light Type A1 Journal article
  Year 2016 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 16 Issue 16 Pages 6485-6490
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract V-shaped gold nanoantennas are the functional components of plasmonic metasurfaces, which are capable of manipulating light in unprecedented ways. Designing a metasurface requires the custom arrangement of individual antennas with controlled shape and orientation. Here, we show how highly crystalline gold nanorods in solution can be bend, one-by one, into a V-shaped geometry and printed to the surface of a solid support through a combination of plasmonic heating and optical force. Significantly, we demonstrate that both the bending angle and the orientation of each rod-antenna can be adjusted independent from each other by tuning the laser intensity and polarization. This approach is applicable for the patterning of V-shaped plasmonic antennas on almost any substrate, which holds great potential for the fabrication of ultrathin optical components and devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000385469800072 Publication Date 2016-09-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 24 Open Access
  Notes PMID:27598653 We would also like to thank Prof. Jochen Feldmann and Bernhard Bohn for fruitful discussions. Approved Most recent IF: 12.712
  Call Number c:irua:135172 Serial 4122
Permanent link to this record
 

 
Author Goris, B.; Meledina, M.; Turner, S.; Zhong, Z.; Batenburg, K.J.; Bals, S.
  Title Three dimensional mapping of Fe dopants in ceria nanocrystals using direct spectroscopic electron tomography Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 171 Issue 171 Pages 55-62
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Electron tomography is a powerful technique for the 3D characterization of the morphology of nanostructures. Nevertheless, resolving the chemical composition of complex nanostructures in 3D remains challenging and the number of studies in which electron energy loss spectroscopy (EELS) is combined with tomography is limited. During the last decade, dedicated reconstruction algorithms have been developed for HAADF-STEM tomography using prior knowledge about the investigated sample. Here, we will use the prior knowledge that the experimental spectrum of each reconstructed voxel is a linear combination of a well-known set of references spectra in a so-called direct spectroscopic tomography technique. Based on a simulation experiment, it is shown that this technique provides superior results in comparison to conventional reconstruction methods for spectroscopic data, especially for spectrum images containing a relatively low signal to noise ratio. Next, this technique is used to investigate the spatial distribution of Fe dopants in Fe:Ceria nanoparticles in 3D. It is shown that the presence of the Fe2+ dopants is correlated with a reduction of the Ce atoms from Ce4+ towards Ce3+. In addition, it is demonstrated that most of the Fe dopants are located near the voids inside the nanoparticle.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000389106200007 Publication Date 2016-09-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 13 Open Access OpenAccess
  Notes The work was supported by the Research Foundation Flanders (FWO Vlaanderen) by project funding (G038116N, 3G004613) and by a post-doctoral research grants to B.G. S.B. acknowledges funding from the European Research Council (Starting Grant no. COLOURATOMS 335078). K.J.B. acknowledges funding from The Netherlands Organization for Scientific Research (NWO) (program 639.072.005.). We would like to thank Dr. Hilde Poelman, Dr. Vladimir Galvita and Prof. Dr. Guy B. Marin for the synthesis of the investigated sample.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843
  Call Number c:irua:135185 c:irua:135185 Serial 4123
Permanent link to this record
 

 
Author Spadaro, M.C.; Luches, P.; Bertoni, G.; Grillo, V.; Turner, S.; Van Tendeloo, G.; Valeri, S.; D'Addato, S.
  Title Influence of defect distribution on the reducibility of CeO2-x nanoparticles Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology
  Volume 27 Issue 27 Pages 425705
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Ceria nanoparticles (NPs) are fundamental in heterogeneous catalysis because of their ability to store or release oxygen depending on the ambient conditions. Their oxygen storage capacity is strictly related to the exposed planes, crystallinity, density and distribution of defects. In this work a study of ceria NPs produced with a ligand-free, physical synthesis method is presented. The NP films were grown by a magnetron sputtering based gas aggregation source and studied by high resolution- and scanning-transmission electron microscopy and x-ray photoelectron spectroscopy. In particular, the influence of the oxidation procedure on the NP reducibility has been investigated. The different reducibility has been correlated to the exposed planes, crystallinity and density and distribution of structural defects. The results obtained in this work represent a basis to obtain cerium oxide NP with desired oxygen transport properties.
  Address Dipartimento FIM, Universita di Modena e Reggio Emilia, via G. Campi 213/a, I-41125 Modena, Italy. CNR-NANO, via G. Campi 213/a, I-41125 Modena, Italy
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000385483900004 Publication Date 2016-09-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.44 Times cited 11 Open Access
  Notes The authors gratefully acknowledge financial support by the Italian MIUR under grant FIRB RBAP115AYN (Oxides at the nanoscale: multifunctionality and applications). The activity is performed within the COST Action CM1104 'Reducible oxide chemistry, structure and functions'. The research leading to these results has received funding also from the European Union Seventh Framework Programme under Grant Agreement 312483—ESTEEM2 (Integrated Infrastructure Initiative–I3).; esteem2_ta Approved Most recent IF: 3.44
  Call Number EMAT @ emat @ c:irua:135424 Serial 4130
Permanent link to this record
 

 
Author Semkina, A.; Abakumov, M.; Grinenko, N.; Abakumov, A.; Skorikov, A.; Mironova, E.; Davydova, G.; Majouga, A.G.; Nukolova, N.; Kabanov, A.; Chekhonin, V.;
  Title Core-shell-corona doxorubicin-loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics Type A1 Journal article
  Year 2015 Publication Colloids and surfaces: B : biointerfaces Abbreviated Journal Colloid Surface B
  Volume 136 Issue 136 Pages 1073-1080
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Superparamagnetic iron oxide magnetic nanoparticles (MNPs) are successfully used as contrast agents in magnetic-resonance imaging. They can be easily functionalized for drug delivery functions, demonstrating great potential for both imaging and therapeutic applications. Here we developed new pH-responsive theranostic core-shell-corona nanoparticles consisting of superparamagentic Fe3O4 core that displays high T2 relaxivity, bovine serum albumin (BSA) shell that binds anticancer drug, doxorubicin (Dox) and poly(ethylene glycol) (PEG) corona that increases stability and biocompatibility. The nanoparticles were produced by adsorption of the BSA shell onto the Fe3O4 core followed by crosslinking of the protein layer and subsequent grafting of the PEG corona using monoamino-terminated PEG via carbodiimide chemistry. The hydrodynamic diameter, zeta-potential, composition and T2 relaxivity of the resulting nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis and T2-relaxometry. Nanoparticles were shown to absorb Dox molecules, possibly through a combination of electrostatic and hydrophobic interactions. The loading capacity (LC) of the nanoparticles was 8 wt.%. The Dox loaded nanoparticles release the drug at a higher rate at pH 5.5 compared to pH 7.4 and display similar cytotoxicity against C6 and HEK293 cells as the free Dox. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000367408100131 Publication Date 2015-11-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0927-7765 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.887 Times cited 37 Open Access
  Notes Approved Most recent IF: 3.887; 2015 IF: 4.152
  Call Number UA @ lucian @ c:irua:131075 Serial 4157
Permanent link to this record
 

 
Author Dharanipragada, N.V.R.A.; Meledina, M.; Galvita, V.V.; Poelman, H.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B.
  Title Deactivation study of Fe2O3-CeO2 during redox cycles for CO production from CO2 Type A1 Journal article
  Year 2016 Publication Industrial and engineering chemistry research Abbreviated Journal Ind Eng Chem Res
  Volume 55 Issue 55 Pages 5911-5922
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Deactivation was investigated in Fe2O3-CeO2 oxygen storage materials during repeated H-2-reduction and CO2-reoxidation. In situ XRD, XAS, and TEM were used to identify phases, crystallite sizes, and morphological changes upon cycling operation. The effect of redox cycling was investigated both in Fe-rich (80 wt % Fe2O3-CeO2) and Ce-rich (10 wt %Fe2O3-CeO2) materials. The former consisted of 100 nm Fe2O3 particles decorated with 5-10 nm Ce1-xFexO2-x. The latter presented CeO2 with incorporated Fe, i.e. a solid solution of Ce1-xFexO2-x, as the main oxygen carrier. By modeling the EXAFS Ce-K signal for as-prepared 10 wt %Fe2O3-CeO2, the amount of Fe in CeO2 was determined as 21 mol %, corresponding to 86% of the total iron content. Sintering and solid solid transformations, the latter including both new phase formation and element segregation, were identified as deactivation pathways upon redox cycling. In Ce-rich material, perovskite (CeFeO3) was identified by XRD. This phase remained inert during reduction and reoxidation, resulting in an overall lower oxygen storage capacity. Further, Fe segregated from the solid solution, thereby decreasing its reducibility. In addition, an increase in crystallite size occurred for all phases. In Fe-rich material, sintering is the main deactivation pathway, although Fe segregation from the solid solution and perovskite formation cannot be excluded.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000376825300013 Publication Date 2016-04-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 26 Open Access
  Notes Approved Most recent IF: 2.843
  Call Number UA @ lucian @ c:irua:134214 Serial 4158
Permanent link to this record
 

 
Author Martinez, G.T.; van den Bos, K.H.W.; Alania, M.; Nellist, P.D.; Van Aert, S.
  Title Thickness dependence of scattering cross-sections in quantitative scanning transmission electron microscopy Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 187 Issue Pages 84-92
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In quantitative scanning transmission electron microscopy (STEM), scattering cross-sections have been shown to be very sensitive to the number of atoms in a column and its composition. They correspond to the integrated intensity over the atomic column and they outperform other measures. As compared to atomic column peak intensities, which saturate at a given thickness, scattering cross-sections increase monotonically. A study of the electron wave propagation is presented to explain the sensitivity of the scattering cross-sections. Based on the multislice algorithm, we analyse the wave propagation inside the crystal and its link to the scattered signal for the different probe positions contained in the scattering cross-section for detector collection in the low-, middle- and high-angle regimes. The influence to the signal from scattering of neighbouring columns is also discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000428131200011 Publication Date 2018-01-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 4 Open Access Not_Open_Access: Available from 01.02.2020
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings ( G.0374.13N , G.0369.15N , G.0368.15N and WO.010.16N ) and a PhD grant to K.H.W.v.d.B. The research leading to these results has received funding from the European Union 7th Framework Programme [ FP7 /2007-2013] under Grant agreement no. 312483 (ESTEEM2). The authors are grateful to A. Rosenauer for providing access to the StemSim software. Approved Most recent IF: 2.843
  Call Number EMAT @ emat @c:irua:149384 Serial 4809
Permanent link to this record
 

 
Author Li, M.R.; Retuerto, M.; Deng, Z.; Stephens, P.W.; Croft, M.; Huang, Q.; Wu, H.; Deng, X.; Kotliar, G.; Sánchez-Benítez, J.; Hadermann, J.; Walker, D.; Greenblatt, M.;
  Title Giant magnetoresistance in the half-metallic double-perovskite ferrimagnet Mn2FeReO6 Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
  Volume 54 Issue 54 Pages 12069-12073
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The first transition-metal-only double perovskite compound, Mn2+ Fe-2(3+) Re5+ O-6, with 17 unpaired d electrons displays ferrimagnetic ordering up to 520K and a giant positive magnetoresistance of up to 220% at 5K and 8 T. These properties result from the ferrimagnetically coupled Fe and Re sublattice and are affected by a two-to-one magnetic-structure transition of the Mn sublattice when a magnetic field is applied. Theoretical calculations indicate that the half-metallic state can be mainly attributed to the spin polarization of the Fe and Re sites.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000363396000031 Publication Date 2015-08-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited Open Access
  Notes Approved Most recent IF: 11.994; 2015 IF: 11.261
  Call Number UA @ lucian @ c:irua:129457 Serial 4186
Permanent link to this record
 

 
Author Roesler, C.; Aijaz, A.; Turner, S.; Filippousi, M.; Shahabi, A.; Xia, W.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A.
  Title Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk-Shell Metal@Zn/Co ZIF nanostructures Type A1 Journal article
  Year 2016 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
  Volume 22 Issue 22 Pages 3304-3311
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Metal-organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well-defined hollow Zn/Co-based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn-MOF (ZIF-8) on preformed Co-MOF (ZIF-67) nanocrystals that involve in situ self-sacrifice/excavation of the Co-MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co-ZIF shells to generate yolk-shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co-ZIF with dominance of the Zn-MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000371419200001 Publication Date 2016-01-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.317 Times cited 43 Open Access
  Notes Approved Most recent IF: 5.317
  Call Number UA @ lucian @ c:irua:132347 Serial 4192
Permanent link to this record
 

 
Author O'Sullivan, M.; Hadermann, J.; Dyer, M.S.; Turner, S.; Alaria, J.; Manning, T.D.; Abakumov, A.M.; Claridge, J.B.; Rosseinsky, M.J.
  Title Interface control by chemical and dimensional matching in an oxide heterostructure Type A1 Journal article
  Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem
  Volume 8 Issue 8 Pages 347-353
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Interfaces between different materials underpin both new scientific phenomena, such as the emergent behaviour at oxide interfaces, and key technologies, such as that of the transistor. Control of the interfaces between materials with the same crystal structures but different chemical compositions is possible in many materials classes, but less progress has been made for oxide materials with different crystal structures. We show that dynamical self-organization during growth can create a coherent interface between the perovskite and fluorite oxide structures, which are based on different structural motifs, if an appropriate choice of cations is made to enable this restructuring. The integration of calculation with experimental observation reveals that the interface differs from both the bulk components and identifies the chemical bonding requirements to connect distinct oxide structures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000372505500013 Publication Date 2016-02-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 25.87 Times cited 28 Open Access
  Notes Approved Most recent IF: 25.87
  Call Number UA @ lucian @ c:irua:133189 Serial 4199
Permanent link to this record
 

 
Author Sun, Z.; Madej, E.; Wiktor; Sinev, I.; Fischer, R.A.; Van Tendeloo, G.; Muhler, M.; Schuhmann, W.; Ventosa, E.
  Title One-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene for lithium-ion batteries Type A1 Journal article
  Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
  Volume 21 Issue 21 Pages 16154-16161
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Nanostructure engineering has been demonstrated to improve the electrochemical performance of iron oxide based electrodes in Li-ion batteries (LIBs). However, the synthesis of advanced functional materials often requires multiple steps. Herein, we present a facile one-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene through high-pressure pyrolysis of ferrocene in the presence of pristine graphene. The ferrocene precursor supplies both iron and carbon to form the carbon-coated iron oxide, while the graphene acts as a high-surface-area anchor to achieve small metal oxide nanoparticles. When evaluated as a negative-electrode material for LIBs, our composite showed improved electrochemical performance compared to commercial iron oxide nanopowders, especially at fast charge/discharge rates.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000363890700036 Publication Date 2015-09-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.317 Times cited 8 Open Access
  Notes Approved Most recent IF: 5.317; 2015 IF: 5.731
  Call Number UA @ lucian @ c:irua:129510 Serial 4218
Permanent link to this record
 

 
Author Forsh, E.A.; Abakumov, A.M.; Zaytsev, V.B.; Konstantinova, E.A.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K.
  Title Optical and photoelectrical properties of nanocrystalline indium oxide with small grains Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
  Volume 595 Issue 595 Pages 25-31
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Optical properties, spectral dependence of photoconductivity and photoconductivity decay in nanocrystalline indium oxide In2O3 are studied. A number of nanostructured In2O3 samples with various nanocrystals size are prepared by sol-gel method and characterized using various techniques. The mean nanocrystals size varies from 7 to 8 nm to 39-41 nm depending on the preparation conditions. Structural characterization of the In2O3 samples is performed by means of transmission electron microscopy and X-ray powder diffraction. The combined analysis of ultraviolet-visible absorption spectroscopy and diffuse reflectance spectroscopy shows that nanostructuring leads to the change in optical band gap: optical band gap of the In2O3 samples (with an average nanocrystal size from 7 to 41 nm) is equal to 2.8 eV. We find out the correlation between spectral dependence of photoconductivity and optical properties of nanocrystalline In2O3: sharp increase in photoconductivity was observed to begin at 2.8 eV that is equal to the optical bandgap in the In2O3 samples, and reached its maximum at 3.2-3.3 eV. The combined analysis of the slow photoconductivity decay in air, vacuum and argon, that was accurately fitted by a stretched-exponential function, and electron paramagnetic resonance (EPR) measurements shows that the kinetics of photoconductivity decay is strongly depended on the presence of oxygen molecules in the ambient of In2O3 nanocrystals. There is the quantitative correlation between EPR and photoconductivity data. Based on the obtained data we propose the model clearing up the phenomenon of permanent photoconductivity decay in nanocrystalline In2O3. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000365812400005 Publication Date 2015-10-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.879 Times cited 18 Open Access
  Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
  Call Number UA @ lucian @ c:irua:130254 Serial 4219
Permanent link to this record
 

 
Author Ercolani, G.; Gorle, C.; Garcia Sánchez, C.; Corbari, C.; Mancini, M.
  Title RAMS and WRF sensitivity to grid spacing in large-eddy simulations of the dry convective boundary layer Type A1 Journal article
  Year 2015 Publication Computers and fluids Abbreviated Journal Comput Fluids
  Volume 123 Issue 123 Pages 54-71
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Large-eddy simulations (LESS) are frequently used to model the planetary boundary layer, and the choice of the grid cell size, numerical schemes and sub grid model can significantly influence the simulation results. In the present paper the impact of grid spacing on LES of an idealized atmospheric convective boundary layer (CBL), for which the statistics and flow structures are well understood, is assessed for two mesoscale models: the Regional Atmospheric Modeling System (RAMS) and the Weather Research and Forecasting model (WRF). Nine simulations are performed on a fixed computational domain (6 x 6 x 2 km), combining three different horizontal (120, 60, 30 m) and vertical (20, 10, 5 m) spacings. The impact of the cell size on the CBL is investigated by comparing turbulence statistics and velocity spectra. The results demonstrate that both WRF and RAMS can perform LES of the CBL under consideration without requiring extremely high computational loads, but they also indicate the importance of adopting a computational grid that is adequate for the numerical schemes and subgrid models used. In both RAMS and WRF a horizontal cell size of 30 m is required to obtain a suitable turbulence reproduction throughout the CBL height. Considering the vertical grid spacing, WRF produced similar results for all the three tested values, while in RAMS it should be ensured that the aspect ratio of the cells does not exceed a value of 3. The two models were found to behave differently in function of the grid resolution, and they have different shortcomings in their prediction of CBL turbulence. WRF exhibits enhanced damping at the smallest scales, while RAMS is prone to the appearance of spurious fluctuations in the flow when the grid aspect ratio is too high. (C) 2015 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000365367500006 Publication Date 2015-10-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0045-7930 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.313 Times cited 3 Open Access
  Notes Approved Most recent IF: 2.313; 2015 IF: 1.619
  Call Number UA @ lucian @ c:irua:130200 Serial 4236
Permanent link to this record
 

 
Author Ryabova, A.S.; Napolskiy, F.S.; Poux, T.; Istomin, S.Y.; Bonnefont, A.; Antipin, D.M.; Baranchikov, A.Y.; Levin, E.E.; Abakumov, A.M.; Kéranguéven, G.; Antipov, E.V.; Tsirlina, G.A.; Savinova, E.R.;
  Title Rationalizing the influence of the Mn(IV)/Mn(III) red-Ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta
  Volume 187 Issue 187 Pages 161-172
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Knowledge on the mechanisms of oxygen reduction reaction (ORR) and descriptors linking the catalytic activity to the structural and electronic properties of transition metal oxides enable rational design of more efficient catalysts. In this work ORR electrocatalysis was studied on a set of single and complex Mn (III) oxides with a rotating disc electrode method and cyclic voltammetry. We discovered an exponential increase of the specific electrocatalytic activity with the potential of the surface Mn(IV)/Mn(III) red-ox couple, suggesting the latter as a new descriptor for the ORR electrocatalysis. The observed dependence is rationalized using a simple mean-field kinetic model considering availability of the Mn( III) centers and adsorbate-adsorbate interactions. We demonstrate an unprecedented activity of Mn2O3, ca. 40 times exceeding that of MnOOH and correlate the catalytic activity of Mn oxides to their crystal structure. (C) 2015 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000367235600019 Publication Date 2015-11-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.798 Times cited 51 Open Access
  Notes Approved Most recent IF: 4.798
  Call Number UA @ lucian @ c:irua:131096 Serial 4237
Permanent link to this record
 

 
Author Bretos, I.; Schneller, T.; Falter, M.; Baecker, M.; Hollmann, E.; Woerdenweber, R.; Molina-Luna, L.; Van Tendeloo, G.; Eibl, O.
  Title Solution-derived YBa2Cu3O7-\delta (YBCO) superconducting films with BaZrO3 (BZO) nanodots based on reverse micelle stabilized nanoparticles Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
  Volume 3 Issue 3 Pages 3971-3979
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Superconducting YBa2Cu3O7-delta (YBCO) films with artificial BaZrO3 (BZO) nanodots were prepared using a chemical solution deposition method involving hybrid solutions composed of trifluoroacetate-based YBCO precursors and reverse micelle stabilized BZO nanoparticle dispersions. Microemulsion-mediated synthesis was used to obtain nano-sized (similar to 12 nm) and mono-dispersed BZO nanoparticles that preserve their features once introduced into the YBCO solution, as revealed by dynamic light scattering. Phase pure, epitaxial YBCO films with randomly oriented BZO nanodots distributed over their whole microstructure were grown from the hybrid solutions on (100) LaAlO3 substrates. The morphology of the YBCO-BZO nanocomposite films was strongly influenced by the amount of nanoparticles incorporated into the system, with contents ranging from 5 to 40 mol%. Scanning electron microscopy showed a high density of isolated second-phase defects consisting of BZO nanodots in the nanocomposite film with 10 mol% of BZO. Furthermore, a direct observation and quantitative analysis of lattice defects in the form of interfacial edge dislocations directly induced by the BZO nanodots was evidenced by transmission electron microscopy. The superconducting properties (77 K) of the YBCO films improved considerably by the presence of such nanodots, which seem to enhance the morphology of the sample and therefore the intergranular critical properties. The incorporation of preformed second-phase defects (here, BZO) during the growth of the superconducting phase is the main innovation of this novel approach for the all-solution based low-cost fabrication of long-length coated conductors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000352870400018 Publication Date 2015-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.256 Times cited 19 Open Access
  Notes This work was supported by the German Federal Ministry of Economics and Technology (BMWi) contract no. 0327433A (project ELSA). L. Molina-Luna and G. Van Tendeloo acknowledge funding from the European Research Council (ERC grant no. 24691-COUNTATOMS). The authors gratefully acknowledge J. Dornseiffer for the support with preparation of the microemulsions for the BZO nanoparticles; G. Wasse for the SEM images; and T. Po¨ssinger for the preparation of the artwork. Eurotape Approved Most recent IF: 5.256; 2015 IF: 4.696
  Call Number UA @ lucian @ c:irua:132575 Serial 4245
Permanent link to this record
 

 
Author Voss, A.; Wei, H.Y.; Zhang, Y.; Turner, S.; Ceccone, G.; Reithmaier, J.P.; Stengl, M.; Popov, C.
  Title Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces Type A1 Journal article
  Year 2016 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater
  Volume 64 Issue 64 Pages 278-285
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O-3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of neurons was attributed to a favorable combination of topography, surface chemistry and wettability. (C) 2016 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000376547700033 Publication Date 2016-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0928-4931 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.164 Times cited 7 Open Access
  Notes Approved Most recent IF: 4.164
  Call Number UA @ lucian @ c:irua:134164 Serial 4251
Permanent link to this record
 

 
Author Charkin, D.O.; Akinfiev, V.S.; Alekseeva, A.M.; Batuk, M.; Abakumov, A.M.; Kazakov, S.M.
  Title Synthesis and cation distribution in the new bismuth oxyhalides with the Sillen-Aurivillius intergrowth structures Type A1 Journal article
  Year 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
  Volume 44 Issue 44 Pages 20568-20576
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract About 20 new compounds with the Sillen-Aurivillius intergrowth structure, (MeMeBi3Nb2O11X)-Me-1-Bi-2 (Me-1 = Pb, Sr, Ba; Me-2 = Ca, Sr, Ba; X = Cl, Br, I), have been prepared. They are composed of stacking of [ANb(2)O(7)] perovskite blocks, fluorite-type [M2O2] blocks and halogen sheets. The cation distribution between the fluorite and perovskite layers has been studied for Ba2Bi3Nb2O11I, Ca1.25Sr0.75Bi3Nb2O11Cl, BaCaBi3Nb2O11Br and Sr2Bi3Nb2O11Cl. The smaller Me cations tend to reside in the perovskite block while the larger ones are situated in the fluorite-type block. The distribution of the elements was confirmed for BaCaBi3Nb2O11Br using energy dispersive X-ray analysis combined with scanning transmission electron microscopy (STEM-EDX). An electron diffraction study of this compound reveals a local symmetry lowering caused by weakly correlated rotation of NbO6 octahedra. Based on our findings, we suggest a new stability criterion for mixed-layer structures, which is that net charges of any two consecutive layers do not compensate for each other and only the whole layer sequence is electroneutral.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000365411500036 Publication Date 2015-10-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.029 Times cited 5 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:130330 Serial 4256
Permanent link to this record
 

 
Author Rozova, M.G.; Grigoriev, V.V.; Bobrikov, I.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Antipov, E.V.; Tsirlin, A.A.; Abakumov, A.M.
  Title Synthesis, structure and magnetic ordering of the mullite-type Bi2Fe4-xCrxO9 solid solutions with a frustrated pentagonal Cairo lattice Type A1 Journal article
  Year 2016 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
  Volume 45 Issue 45 Pages 1192-1200
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Highly homogeneous mullite-type solid solutions Bi2Fe4-xCrxO9 (x = 0.5, 1, 1.2) were synthesized using a soft chemistry technique followed by a solid-state reaction in Ar. The crystal structure of Bi2Fe3CrO9 was investigated using X-ray and neutron powder diffraction, transmission electron microscopy and Fe-57 Mossbauer spectroscopy (S.G. Pbam, a = 7.95579(9) angstrom , b = 8.39145(9) angstrom, c = 5.98242(7) angstrom, R-F(X-ray) = 0.022, R-F(neutron) = 0.057). The ab planes in the structure are tessellated with distorted pentagonal loops built up by three tetrahedrally coordinated Fe sites and two octahedrally coordinated Fe/Cr sites, linked together in the ab plane by corner-sharing forming a pentagonal Cairo lattice. Magnetic susceptibility measurements and powder neutron diffraction show that the compounds order antiferromagnetically (AFM) with the Neel temperatures decreasing upon increasing the Cr content from T-N similar to 250 K for x = 0 to T-N similar to 155 K for x = 1.2. The magnetic structure of Bi2Fe3CrO9 at T = 30 K is characterized by a propagation vector k = (1/2,1/2,1/2). The tetrahedrally coordinated Fe cations form singlet pairs within dimers of corner-sharing tetrahedra, but spins on the neighboring dimers are nearly orthogonal. The octahedrally coordinated (Fe, Cr) cations form antiferromagnetic up-up-down-down chains along c, while the spin arrangement in the ab plane is nearly orthogonal between nearest neighbors and collinear between second neighbors. The resulting magnetic structure is remarkably different from the one in pure Bi2Fe4O9 and features several types of spin correlations even on crystallographically equivalent exchange that may be caused by the simultaneous presence of Fe and Cr on the octahedral site.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000367614700041 Publication Date 2015-11-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.029 Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:131095 Serial 4257
Permanent link to this record
 

 
Author Retuerto, M.; Skiadopoulou, S.; Li, M.R.; Abakumov, A.M.; Croft, M.; Ignatov, A.; Sarkar, T.; Abbett, B.M.; Pokorný, J.; Savinov, M.; Nuzhnyy, D.; Prokleška, J.; Abeykoon, M.; Stephens, P.W.; Hodges, J.P.; Vaněk, P.; Fennie, C.J.; Rabe, K.M.; Kamba, S.; Greenblatt, M.;
  Title Pb2MnTeO6 double perovskite : an antipolar anti-ferromagnet Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
  Volume 55 Issue 55 Pages 4320-4329
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Pb2MnTeO6, a new double perovskite, was synthesized. Its crystal structure was determined by synchrotron X-ray and powder neutron diffraction. Pb2MnTeO6 is monoclinic (I2/m) at room temperature with a regular arrangement of all the cations in their polyhedra. However, when the temperature is lowered to similar to 120 K it undergoes a phase transition from I2/m to C2/c structure. This transition is accompanied by a displacement of the Pb atoms from the center of their polyhedra due to the 6s2 lone-pair electrons, together with a surprising off-centering of Mn2+ (d5) magnetic cations. This strong first-order phase transition is also evidenced by specific heat, dielectric, Raman, and infrared spectroscopy measurements. The magnetic characterizations indicate an anti-ferromagnetic (AFM) order below TN approximate to 20 K; analysis of powder neutron diffraction data confirms the magnetic structure with propagation vector k = (0 1 0) and collinear AFM spins. The observed jump in dielectric permittivity near similar to 150 K implies possible anti-ferroelectric behavior; however, the absence of switching suggests that Pb2MnTeO6 can only be antipolar. First-principle calculations confirmed that the crystal and magnetic structures determined are locally stable and that anti-ferroelectric switching is unlikely to be observed in Pb2MnTeO6.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Easton, Pa Editor
  Language Wos 000375519700027 Publication Date 2016-04-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.857 Times cited 9 Open Access
  Notes Approved Most recent IF: 4.857
  Call Number UA @ lucian @ c:irua:134219 Serial 4258
Permanent link to this record
 

 
Author Mikita, R.; Aharen, T.; Yamamoto, T.; Takeiri, F.; Ya, T.; Yoshimune, W.; Fujita, K.; Yoshida, S.; Tanaka, K.; Batuk, D.; Abakumov, A.M.; Brown, C.M.; Kobayashi, Y.; Kageyama, H.;
  Title Topochemical nitridation with anion vacancy -assisted N3-/O2- exchange Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
  Volume 138 Issue 138 Pages 3211-3217
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We present how the introduction of anion vacancies in oxyhydrides enables a route to access new oxynitrides, by conducting ammonolysis of perovskite oxyhydride EuTiO3-xHx (x similar to 0.18). At 400 degrees C, similar to our studies on BaTiO3-xHx, hydride lability enables a low temperature direct ammonolysis of EUTi3.82+O-2.82/H-0.18, leading to the N3-/H--exchanged product EuTi4+O2.82No0.12 square 0.06 center dot When the ammonolysis temperature was increased up to 800 degrees C, we observed a further nitridation involving N3-/O2- exchange, yielding a fully oxidized Eu3+Ti4+O2N with the GdFeO3-type distortion (Pnma) as a metastable phase, instead of pyrochlore structure. Interestingly, the same reactions using the oxide EuTiO3 proceeded through a 1:1 exchange of N3- with O-2 only above 600 degrees C and resulted in incomplete nitridation to EuTi02.25N0.75, indicating that anion vacancies created during the initial nitridation process of EuTiO2.82H0.18 play a crucial role in promoting anion (N3-/O2-) exchange at high temperatures. Hence, by using (hydride-induced) anion-deficient precursors, we should be able to expand the accessible anion composition of perovskite oxynitrides.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000371945800055 Publication Date 2016-02-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.858 Times cited 28 Open Access
  Notes Approved Most recent IF: 13.858
  Call Number UA @ lucian @ c:irua:133156 Serial 4266
Permanent link to this record
 

 
Author Ilin, A.; Martyshov, M.; Forsh, E.; Forsh, P.; Rumyantseva, M.; Abakumov, A.; Gaskov, A.; Kashkarov, P.
  Title UV effect on NO2 sensing properties of nanocrystalline In2O3 Type A1 Journal article
  Year 2016 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
  Volume 231 Issue 231 Pages 491-496
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Nanocrystalline indium oxide films with extremely small grains in range of 7-40 nm are prepared by sol-gel method. The influence of grain size on the sensitivity of indium oxide to nitrogen dioxide in low concentration at room temperature is investigated under the UV illumination and without illumination. The sensitivity increases with the decrease of grain sizes when In2O3 is illuminated while in the dark In2O3 with intermediate grain size exhibits the highest response. An explanation of the different behavior of the In2O3 with different grain size sensitivity to NO2 under illumination and in the dark is proposed. We demonstrate that pulsed illumination may be used for NO2 detection at room temperature that significantly reduces the power consumption of sensor. (C) 2016 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000374330900055 Publication Date 2016-03-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.401 Times cited 27 Open Access
  Notes Approved Most recent IF: 5.401
  Call Number UA @ lucian @ c:irua:133630 Serial 4273
Permanent link to this record
 

 
Author van der Stam, W.; Gradmann, S.; Altantzis, T.; Ke, X.; Baldus, M.; Bals, S.; de Mello Donega, C.
  Title Shape Control of Colloidal Cu2-x S Polyhedral Nanocrystals by Tuning the Nucleation Rates Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 28 Issue 28 Pages 6705-6715
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Synthesis protocols for colloidal nanocrystals (NCs) with narrow size and shape distributions are of particular interest for the successful implementation of these nanocrystals into devices. Moreover, the preparation of NCs with well-defined crystal phases is of key importance. In this work, we show that Sn(IV)-thiolate complexes formed in situ strongly influence the nucleation and growth rates of colloidal Cu2-x S polyhedral NCs, thereby dictating their final size, shape, and crystal structure. This allowed us to successfully synthesize hexagonal bifrustums and hexagonal bipyramid NCs with low-chalcocite crystal structure, and hexagonal nanoplatelets with various thicknesses and aspect ratios with the djurleite crystal structure, by solely varying the concentration of Sn(IV)-additives (namely, SnBr4) in the reaction medium. Solution and solid-state 119Sn NMR measurements show that SnBr4 is converted in situ to Sn(IV)-thiolate complexes, which increase the Cu2-x S nucleation barrier without affecting the precursor conversion rates. This influences both the nucleation and growth rates in a concentration-dependent fashion and leads to a better separation between nucleation and growth. Our approach of tuning the nucleation and growth rates with in situ-generated Sn-thiolate complexes might have a more general impact due to the availability of various metal-thiolate complexes, possibly resulting in polyhedral NCs of a wide variety of metal-sulfide compositions.
  Address Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University , P.O. Box 80000, 3508 TA Utrecht, The Netherlands
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000384399000037 Publication Date 2016-09-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 27 Open Access OpenAccess
  Notes W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. M.B. also gratefully acknowledges NWO for funding the NMR infrastructure (Middle Groot program, grant number 700.58.102). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466
  Call Number EMAT @ emat @ c:irua:135928 Serial 4285
Permanent link to this record
 

 
Author Perez, A.J.; Batuk, D.; Saubanère, M.; Rousse, G.; Foix, D.; Mc Calla, E.; J. Berg, E.; Dugas, R.; van den Bos, K. H. W.; Doublet, M.-L.; Gonbeau, D.; Abakumov, A.M.; Van Tendeloo, G.; Tarascon, J.-M.
  Title Strong oxygen participation in the redox governing the structural and electrochemical properties of Na-rich layered oxide Na2IrO3 Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 28 Issue 28 Pages 8278-8288
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The recent revival of the Na-ion battery concept has prompted intense activities in the search for new Na-based layered oxide positive electrodes. The largest capacity to date was obtained for a Na-deficient layered oxide that relies on cationic redox processes only. To go beyond this limit, we decided to chemically manipulate these Na-based layered compounds in a way to trigger the participation of the anionic network. We herein report the electrochemical properties of a Na-rich phase Na2IrO3, which can reversibly cycle 1.5 Na+ per formula unit while not suffering from oxygen release nor cationic migrations. Such large capacities, as deduced by complementary XPS, X-ray/neutron diffraction and transmission electron microscopy measurements, arise from cumulative cationic and anionic redox processes occurring simultaneously at potentials as low as 3.0 V. The inability to remove more than 1.5 Na+ is rooted in the formation of an O1-type phase having highly stabilized Na sites as confirmed by DFT calculations, which could rationalize as well the competing metal/oxygen redox processes in Na2IrO3. This work will help to define the most fertile directions in the search for novel high energy Na-rich materials based on more sustainable elements than Ir.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000388914500021 Publication Date 2016-10-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 45 Open Access
  Notes The authors thank Montse Casas-Cabanas and Marine Reynaud for discussions about the FAULTS program, Sandra Van Aert for her great help in guiding us towards the use of the statistical parameter estimation method for establishing the O-O histogram, and Thomas Hansen and Vladimir Pomjakushin for their precious help in neutron diffraction experiments. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland, and at Institut Laue Langevin, Grenoble, France. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the U.S. department of Energy under contract No. DE-AC02-06CH11357 and is greatly acknowledged. Approved Most recent IF: 9.466
  Call Number EMAT @ emat @ c:irua:135994 Serial 4287
Permanent link to this record
 

 
Author Geuchies, J.J.; van Overbeek, C.; Evers, W.H.; Goris, B.; de Backer, A.; Gantapara, A.P.; Rabouw, F.T.; Hilhorst, J.; Peters, J.L.; Konovalov, O.; Petukhov, A.V.; Dijkstra, M.; Siebbeles, L.D.A.; van Aert, S.; Bals, S.; Vanmaekelbergh, D.
  Title In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals Type A1 Journal article
  Year 2016 Publication Nature materials Abbreviated Journal Nat Mater
  Volume 15 Issue 15 Pages 1248-1254
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Oriented attachment of PbSe nanocubes can result in the formation of two-dimensional (2D) superstructures with long-range nanoscale and atomic order. This questions the applicability of classic models in which the superlattice grows by first forming a nucleus, followed by sequential irreversible attachment of nanocrystals, as one misaligned attachment would disrupt the 2D order beyond repair. Here, we demonstrate the formation mechanism of 2D PbSe superstructures with square geometry by using in situ grazing-incidence X-ray scattering (small angle and wide angle), ex situ electron microscopy, and Monte Carlo simulations. We observed nanocrystal adsorption at the liquid/gas interface, followed by the formation of a hexagonal nanocrystal monolayer. The hexagonal geometry transforms gradually through a pseudo-hexagonal phase into a phase with square order, driven by attractive interactions between the {100} planes perpendicular to the liquid substrate, which maximize facet-to-facet overlap. The nanocrystals then attach atomically via a necking process, resulting in 2D square superlattices.
  Address Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000389104400011 Publication Date 2016-09-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 39.737 Times cited 182 Open Access OpenAccess
  Notes This research is part of the programme ‘Designing Dirac Carriers in semiconductor honeycomb superlattices (DDC13),’ which is supported by the Foundation for Fundamental Research on Matter (FOM), which is part of the Dutch Research Council (NWO). J.J.G. acknowledges funding from the Debye and ESRF Graduate Programs. The authors gratefully acknowledge funding from the Research Foundation Flanders (G.036915 G.037413 and funding of postdoctoral grants to B.G. and A.d.B). S.B. acknowledges the European Research Council, ERC grant No 335078—Colouratom. The authors gratefully acknowledge I. Swart and M. van Huis for fruitful discussions. We acknowledge funding from NWO-CW TOPPUNT ‘Superficial Superstructures’. The X-ray scattering measurements were performed at the ID10 beamline at ESRF under proposal numbers SC-4125 and SC-3786. The authors thank G. L. Destri and F. Zontone for their support during the experiments.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 39.737
  Call Number EMAT @ emat @ c:irua:136165 Serial 4289
Permanent link to this record
 

 
Author Kolchina, L. M.; Lyskov, N.V.; Kuznetsov, A.N.; Kazakov, S.M.; Galin, M.Z.; Meledin, A.; Abakumov, A.M.; Bredikhin, S.I.; Mazo, G.N.; Antipov, E.V.
  Title Evaluation of Ce-doped Pr2CuO4for potential application as a cathode material for solid oxide fuel cells Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv
  Volume 6 Issue 6 Pages 101029-101037
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Pr2−xCexCuO4 (x = 0.05; 0.1; 0.15) samples were synthesized and systematically characterized towards application as a cathode material for solid oxide fuel cells (SOFCs). High-temperature electrical conductivity, thermal expansion, and electrocatalytic activity in the oxygen reduction reaction (ORR) were examined. The electrical conductivity of Pr2−xCexCuO4 oxides demonstrates semiconducting behavior up to 900 °C. Small Ce-doping (2.5 at%) allows an increase in electrical conductivity from 100 to 130 S cm−1 in air at 500–800 °C. DFT calculations revealed that the density of states directly below the Fermi level, comprised mainly of Cu 3d and O 2p states, is significantly affected by atoms in rare earth positions, which might give an indication of a correlation between calculated electronic structures and measured conducting properties. Ce-doping in Pr2−xCexCuO4 slightly increases TEC from 11.9 × 10−6 K−1 for x = 0 to 14.2 × 10−6 K−1 for x = 0.15. Substitution of 2.5% of Pr atoms in Pr2CuO4 by Ce is effective to enhance the electrochemical performance of the material as a SOFC cathode in the ORR (ASR of Pr1.95Ce0.05CuO4 electrode applied on Ce0.9Gd0.1O1.95 electrolyte is 0.39 Ω cm2 at 750 °C in air). The peak power density achieved for the electrolyte-supported fuel cell with the Pr1.95Ce0.05CuO4 cathode is 150 mW cm−2 at 800 °C
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000387427700044 Publication Date 2016-10-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.108 Times cited 7 Open Access
  Notes his work was partially supported by Russian Foundation for Basic Research (grant no. 153820247), Skolkovo Institute of Science and Technology (Center of electrochemical energy), and MSUdevelopment Program up to 2020. K.L.M. is grateful to Haldor Topsøe A/S for the financial support. Approved Most recent IF: 3.108
  Call Number EMAT @ emat @ c:irua:136441 Serial 4296
Permanent link to this record
 

 
Author Mikhailova, D.; Karakulina, O.M.; Batuk, D.; Hadermann, J.; Abakumov, A.M.; Herklotz, M.; Tsirlin, A.A.; Oswald, S.; Giebeler, L.; Schmidt, M.; Eckert, J.; Knapp, M.; Ehrenberg, H.
  Title Layered-to-Tunnel Structure Transformation and Oxygen Redox Chemistry in LiRhO2upon Li Extraction and Insertion Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
  Volume 55 Issue 55 Pages 7079-7089
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Layered Li(M,Li)O2 (where M is a transition metal) ordered rock-salt-type structures are used in advanced metal-ion batteries as one of the best hosts for the reversible intercalation of Li ions. Besides the conventional redox reaction involving oxidation/reduction of the M cation upon Li extraction/insertion, creating oxygen-located holes because of the partial oxygen oxidation increases capacity while maintaining the oxidized oxygen species in the lattice through high covalency of the M–O bonding. Typical degradation mechanism of the Li(M,Li)O2 electrodes involves partially irreversible M cation migration toward the Li positions, resulting in gradual capacity/voltage fade. Here, using LiRhO2 as a model system (isostructural and isoelectronic to LiCoO2), for the first time, we demonstrate an intimate coupling between the oxygen redox and M cation migration. A formation of the oxidized oxygen species upon electrochemical Li extraction coincides with transformation of the layered Li1–xRhO2 structure into the γ-MnO2-type rutile–ramsdellite intergrowth LiyRh3O6 structure with rutile-like [1 × 1] channels along with bigger ramsdellite-like [2 × 1] tunnels through massive and concerted Rh migration toward the empty positions in the Li layers. The oxidized oxygen dimers with the O–O distances as short as 2.26 Å are stabilized in this structure via the local Rh–O configuration reminiscent to that in the μ-peroxo-μ-hydroxo Rh complexes. The LiyRh3O6 structure is remarkably stable upon electrochemical cycling illustrating that proper structural implementation of the oxidized oxygen species can open a pathway toward deliberate employment of the anion redox chemistry in high-capacity/high-voltage positive electrodes for metal-ion batteries. Upon chemical or electrochemical oxidation, layered LiRhO2 shows a unique structural transformation that involves both cation migration and oxidation of oxygen resulting in a stable tunnel-like rutile−ramsdellite intergrowth LiyRh3O6 structure. This structure demonstrates excellent performance with the steady and reversible capacity of ∼200 mAh/g. The stability of LiyRh3O6 is rooted in the accommodation of partially oxidized oxygen species through the formation of short O−O distances that are compatible with the connectivity of RhO6 octahedra.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000380181400035 Publication Date 2016-07-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.857 Times cited 12 Open Access
  Notes Bundesministerium fur Bildung und Forschung, 03SF0477B ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 4.857
  Call Number EMAT @ emat @ c:irua:140848 Serial 4424
Permanent link to this record
 

 
Author Jany, B.R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K.H.W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; Krok, F.
  Title Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
  Volume 7 Issue 7 Pages 42420
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000393940700001 Publication Date 2017-02-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.259 Times cited 25 Open Access OpenAccess
  Notes The authors gratefully acknowledge the financial support from the Polish National Science Center, grant no. DEC-2012/07/B/ST5/00906. N.G., G.V.T. and J.V. acknowledge the European Union (EU) Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX for support. The Research Foundation Flanders is acknowledged through project fundings (G.0374.13N, G.0368.15N, G.0369.15N) and for a Ph.D. research grant to K.H.W.v.d.B. The microscope was partly funded by the Hercules Fund from the Flemish Government. T.W. acknowledges the Swedish Research Council for an international postdoc grant. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483–ESTEEM2 (Integrated Infrastructure Initiative–I3). Part of the research was carried out with equipment purchased with financial support from the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08). Approved Most recent IF: 4.259
  Call Number EMAT @ emat @ c:irua:140846UA @ admin @ c:irua:140846 Serial 4423
Permanent link to this record
 

 
Author Tang, Y.; Hunter, E.C.; Battle, P.D.; Sena, R.P.; Hadermann, J.; Avdeev, M.; Cadogan, J.M.
  Title Structural chemistry and magnetic properties of the perovskite Sr3Fe2TeO9 Type A1 Journal article
  Year 2016 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 242 Issue 242 Pages 86-95
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A polycrystalline sample of perovskite-like Sr3Fe2TeO9 has been prepared in a solid-state reaction and studied by a combination of electron microscopy, Mossbauer spectroscopy, magnetometry, X-ray diffraction and neutron diffraction. The majority of the reaction product is shown to be a trigonal phase with a 2:1 ordered arrangement of Fe3+ and Te6+ cations. However, the sample is prone to nano twinning and tetragonal domains with a different pattern of cation ordering exist within many crystallites. Antiferromagnetic ordering exists in the trigonal phase at 300 K and Sr3Fe2TeO9 is thus the first example of a perovskite with 2:1 trigonal cation ordering to show long-range magnetic order. At 300 K the antiferromagnetic phase coexists with two paramagnetic phases which show spin -glass behaviour below similar to 80 K. (C) 2016 The Authors. Published by Elsevier Inc.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000382429600012 Publication Date 2016-06-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 12 Open Access
  Notes Approved Most recent IF: 2.299
  Call Number UA @ lucian @ c:irua:135682 Serial 4310
Permanent link to this record
 

 
Author Cassidy, S.J.; Batuk, M.; Batuk, D.; Hadermann, J.; Woodruff, D.N.; Thompson, A.L.; Clarke, S.J.
  Title Complex Microstructure and Magnetism in Polymorphic CaFeSeO Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
  Volume 55 Issue 55 Pages 10714-10726
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The structural complexity of the antiferromagnetic oxide selenide CaFeSeO is described. The compound contains puckered FeSeO layers composed of FeSe2O2 tetrahedra sharing all their vertexes. Two polymorphs coexist that can be derived from an archetype BaZnSO structure by cooperative tilting of the FeSe2O2 tetrahedra. The polymorphs differ in the relative arrangement of the puckered layers of vertex-linked FeSe2O2 tetrahedra. In a noncentrosymmetric Cmc21 polymorph (a = 3.89684(2) A, b = 13.22054(8) A, c = 5.93625(2) A) the layers are related by the C-centering translation, while in a centrosymmetric Pmcn polymorph, with a similar cell metric (a = 3.89557(6) A, b = 13.2237(6) A, c = 5.9363(3) A), the layers are related by inversion. The compound shows long-range antiferromagnetic order below a Neel temperature of 159(1) K with both polymorphs showing antiferromagnetic coupling via Fe-O-Fe linkages and ferromagnetic coupling via Fe-Se-Fe linkages within the FeSeO layers. The magnetic susceptibility also shows evidence for weak ferromagnetism which is modeled in the refinements of the magnetic structure as arising from an uncompensated spin canting in the noncentrosymmetric polymorph. There is also a spin glass component to the magnetism which likely arises from the disordered regions of the structure evident in the transmission electron microscopy.
  Address Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QR, United Kingdom
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000385785700085 Publication Date 2016-10-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.857 Times cited 6 Open Access
  Notes We acknowledge the financial support of the EPSRC (Grants EP/I017844/1 and EP/M020517/1), the Leverhulme Trust (RPG-2014-221), and the Diamond Light Source (studentship support for S. J. Cassidy). We thank the ESTEEM2 network for enabling the electron microscopy investigations and the ISIS facility and the Diamond Light Source Ltd. for the award of beam time. We thank Dr. P. Manuel for assistance on WISH, Dr. R. I. Smith for assistance on GEM and POLARIS, and Dr. C. Murray and Dr. A. Baker for assistance on I11. Approved Most recent IF: 4.857
  Call Number EMAT @ emat @ c:irua:136823 Serial 4312
Permanent link to this record
 

 
Author Alania, M.; Altantzis, T.; De Backer, A.; Lobato, I.; Bals, S.; Van Aert, S.
  Title Depth sectioning combined with atom-counting in HAADF STEM to retrieve the 3D atomic structure Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 177 Issue 177 Pages 36-42
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Aberration correction in scanning transmission electron microscopy (STEM) has greatly improved the lateral and depth resolution. When using depth sectioning, a technique during which a series of images is recorded at different defocus values, single impurity atoms can be visualised in three dimensions. In this paper, we investigate new possibilities emerging when combining depth sectioning and precise atom-counting in order to reconstruct nanosized particles in three dimensions. Although the depth resolution does not allow one to precisely locate each atom within an atomic column, it will be shown that the depth location of an atomic column as a whole can be measured precisely. In this manner, the morphology of a nanoparticle can be reconstructed in three dimensions. This will be demonstrated using simulations and experimental data of a gold nanorod.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000401219800006 Publication Date 2016-11-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 13 Open Access OpenAccess
  Notes The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483-ESTEEM2. S. Bals acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N and G.0368.15N) and a post-doctoral grant to A. De Backer and T. Altantzis. The authors are grateful to Professor Luis M. Liz-Marzán for providing the sample.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843
  Call Number EMAT @ emat @ c:irua:138015UA @ admin @ c:irua:138015 Serial 4316
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: