|   | 
Details
   web
Records
Author Goemans, M.; Clarysse, P.; Joannès, J.; de Clercq, P.; Lenaerts, S.; Matthys, K.; Boels, K.
Title Catalytic Nox reduction with simultaneous dioxin and furan oxidation Type A1 Journal article
Year 2004 Publication Chemosphere Abbreviated Journal Chemosphere
Volume 54 Issue 9 Pages 1357-1365
Keywords (up) A1 Journal article
Abstract The engineering, construction, performance and running costs of a catalytic flue gas cleaning component in the low dust area of a municipal waste incinerator is discussed. For this purpose, the case study of a Flemish incineration plant is presented, covering the history, the design procedure of the catalyst, relevant process data and the financial aspects. A reliable PCDD/F-destruction by means of oxidation by the catalyst to typical values of 0.001 ng TEQ/Nm3 has been demonstrated. At the same time, NOx− and CO-emissions are reduced by 90% and 20% to about 50 mg/Nm3 and below 10 mg/Nm3, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000188293500011 Publication Date 2003-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 4.208 Times cited Open Access
Notes Approved Most recent IF: 4.208; 2004 IF: 2.359
Call Number UA @ admin @ c:irua:82011 Serial 5931
Permanent link to this record
 

 
Author Goemans, M.; Clarysse, P.; Joannès, J.; de Clercq, P.; Lenaerts, S.; Matthys, K.; Boels, K.
Title Catalytic Nox reduction with simultaneous dioxin and furan oxidation Type A1 Journal article
Year 2003 Publication Chemosphere Abbreviated Journal Chemosphere
Volume 50 Issue 4 Pages 489-497
Keywords (up) A1 Journal article
Abstract The engineering, construction, performance and running costs of a catalytic flue gas cleaning component in the low dust area of a municipal waste incinerator is discussed. For this purpose, the case study of a Flemish incineration plant is presented, covering the history, the design procedure of the catalyst, relevant process data and the financial aspects. A reliable PCDD/F-destruction by means of oxidation by the catalyst to typical values of 0.001 ng TEQ/N m3 has been demonstrated. At the same time, NOx- and CO-emissions are reduced by 90% and 20% to about 50 mg/N m3 and below 10 mg/N m3, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000180078200004 Publication Date 2002-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 4.208 Times cited Open Access
Notes Approved Most recent IF: 4.208; 2003 IF: 1.904
Call Number UA @ admin @ c:irua:82010 Serial 5932
Permanent link to this record
 

 
Author Delabie, L.; Honoré, M.; Lenaerts, S.; Huyberechts, G.; Roggen, J.; Maes, G.
Title The effect of sintering and Pd-doping on the conversion of CO to CO2 on SnO2 gas sensor materials Type A1 Journal article
Year 1997 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 44 Issue Pages 446-451
Keywords (up) A1 Journal article
Abstract The principal aim of this work is to study the effect of the processes of sintering and Pd doping of SnO2 gas sensor materials on the conversion of CO to CO2. For this purpose, the gas phase above screen printed sensor material is investigated using FTIR spectroscopy, while surface area, porosity and particle size measurements are performed on the SnO2 powders. During sintering, larger agglomerates of primary particles are formed, which results in a larger conversion degree of CO. The effect of Pd doping of the tin dioxide film on the CO conversion is more pronounced. The transformation of CO starts at a lower temperature and the conversion degree increases remarkably.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000071717900035 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited Open Access
Notes Approved Most recent IF: 5.401; 1997 IF: 0.858
Call Number UA @ admin @ c:irua:82017 Serial 5947
Permanent link to this record
 

 
Author Lenaerts, S.; Honoré, M.; Huyberechts, G.; Roggen, J.; Maes, G.
Title In situ infrared and electrical characterization of tin dioxide gas sensors in nitrogen/oxygen mixtures at temperatures up to 720 K Type A1 Journal article
Year 1994 Publication Sensors and actuators : B : chemical Abbreviated Journal
Volume 19 Issue Pages 478-482
Keywords (up) A1 Journal article
Abstract FT-IR spectroscopy and impedance measurements of tin dioxide sensor materials at working temperatures up to 450 °C in atmospheres with varying O2/N2 ratio are used as an in situ probe to study the interactions at the surface of the semiconducting oxide. Every diminution in the oxygen content above the sample induces a broad IR absorption band (X-band) between 2300700 cm−1 with a few small peaks in the 1400850 cm−1 region of the spectrum superimposed on it. The X-band results from the enchanced electron concentration in the bulk of the tin dioxide domain. The fine structure is due to the absorption of several kinds of surface oxygen species associated vibration modes. The porous tin dioxide consists of domains were the outward shell is depleted of electrons by the formation of adsorbed O− species on oxygen surface sites, SO(O− species. In our proposed model for the impedance data this gives rise to a parallel RpCp circuit for the domain boundary characteristics and to an Rs parameter for the intradomain resistance. The evolution of these IR and impedance spectroscopic effects with temperature and oxygen content is used to set up, to confirm and refine a physicochemical operation model of tin dioxide gas sensor. This model consists of a sensitizing reaction sequence in the presence of oxygen and a gas-detection reaction sequence when a reducing gas is present. Based on this model, the principal disadvantages of this type of gas sensor become clear. Every factor that influences the concentration of SO(O−) species, causes a conductance modification. If we can control and direct the nature, the number and the arrangement of the tin dioxide domains, a directed development and improvement of the sensor characteristics is possible.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1994NN90000040 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:82014 Serial 5962
Permanent link to this record
 

 
Author Honoré, M.; Lenaerts, S.; Desmet, J.; Huyberechts, G.; Roggen, J.
Title Synthesis and characterization of tin dioxide powders for the realization of thick-film gas sensors Type A1 Journal article
Year 1994 Publication Sensors and actuators : B : chemical Abbreviated Journal
Volume 19 Issue Pages 621-624
Keywords (up) A1 Journal article
Abstract Semiconductor gas sensors produced with screen-printing techniques and based on home-made tin dioxide inks are presented. The ink consists of home-made tin dioxide powder added to a polymer solution to make it screen printable on 96% alumina substrates. The major work is performed on the preparation and the characterization of pure undoped tin dioxide powder produced by two different synthetic pathways. Inks prepared with powders from each method are consecutively handled in an identical way to obtain gas sensors. The sensor response towards different gases is measured and compared for both types of starting materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1994NN90000073 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:82013 Serial 5996
Permanent link to this record
 

 
Author Pankratov, D.; Hidalgo Martinez, S.; Karman, C.; Gerzhik, A.; Gomila, G.; Trashin, S.; Boschker, H.T.S.; Geelhoed, J.S.; Mayer, D.; De Wael, K.; Meysman, F.J.R.
Title The organo-metal-like nature of long-range conduction in cable bacteria Type A1 Journal article
Year 2024 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal
Volume 157 Issue Pages 108675-10
Keywords (up) A1 Journal article
Abstract Cable bacteria are filamentous, multicellular microorganisms that display an exceptional form of biological electron transport across centimeter-scale distances. Currents are guided through a network of nickel-containing protein fibers within the cell envelope. Still, the mechanism of long-range conduction remains unresolved. Here, we characterize the conductance of the fiber network under dry and wet, physiologically relevant, conditions. Our data reveal that the fiber conductivity is high (median value: 27 S cm−1; range: 2 to 564 S cm−1), does not show any redox signature, has a low thermal activation energy (Ea = 69 ± 23 meV), and is not affected by humidity or the presence of ions. These features set the nickel-based conduction mechanism in cable bacteria apart from other known forms of biological electron transport. As such, conduction resembles that of an organic semi-metal with a high charge carrier density. Our observation that biochemistry can synthesize an organo-metal-like structure opens the way for novel bio-based electronic technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-5394 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205117 Serial 9215
Permanent link to this record
 

 
Author Li, L.; Nijs, I.; De Boeck, H.; Vinduskova, O.; Reynaert, S.; Donnelly, C.; Zi, L.; Verbruggen, E.
Title Longer dry and wet spells alter the stochasticity of microbial community assembly in grassland soils Type A1 Journal article
Year 2023 Publication Soil biology and biochemistry Abbreviated Journal
Volume 178 Issue Pages 108969-9
Keywords (up) A1 Journal article; ADReM Data Lab (ADReM); Integrated Molecular Plant Physiology Research (IMPRES); Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Climate change is increasing the duration of alternating wet and dry spells. These fluctuations affect soil water availability and other soil properties which are crucial drivers of soil microbial communities. While soil microbial communities have a moderate capacity to recover once a drought ceases, the expected alternation of strongly opposing regimes can challenge their capacity to adapt. Here, we set up experimental grassland mesocosms where precipitation frequency was adjusted along a gradient while holding total precipitation constant. The gradient varied the duration of wet and dry spells from 1 to 60 days during a total of 120 days, where we hy-pothesized that especially intermediate durations would increase the importance of stochastic community as-sembly due to frequent alternation of opposing environmental regimes. We examined bacterial and fungal community composition, diversity, co-occurrence patterns and assembly mechanisms across these different precipitation treatments. Our results show that 1) intermediate regimes of wet and dry spells increased the stochasticity of microbial community assembly whereas microbial communities at low and high regimes were subjected to more deterministic assembly, and 2) more persistent precipitation regimes (>6 days duration) reduced the fungal diversity and network connectivity but had little effect on bacterial communities. Collec-tively, these findings indicate that longer alternating wet and dry events lead to a less predictable and connected soil microbial community. This study provides new insight into the likely mechanisms through which precipi-tation persistence alters soil microbial communities and their predictability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000930582500001 Publication Date 2023-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-0717 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:195257 Serial 9211
Permanent link to this record
 

 
Author Moro, G.; Campos, R.; Daems, E.; Moretto, L.M.; De Wael, K.
Title Haem-mediated albumin biosensing : towards voltammetric detection of PFOA Type A1 Journal article
Year 2023 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal
Volume 152 Issue Pages 108428-7
Keywords (up) A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The haem group is a promising redox probe for the design of albumin-based voltammetric sensors. Among the endogenous ligands carried by human serum albumin (hSA), haem is characterised by a reversible redox behaviour and its binding kinetics strongly depend on hSA’s conformation, which, in turn, depends on the presence of other ligands. In this work, the potential applicability of haem, especially hemin, as a redox probe was first tested in a proof-of-concept study using perfluorooctanoic acid (PFOA) as model analyte. PFOA is known to bind hSA by occupying Sudlow’s I site (FA7) which is spatially related to the haem-binding site (FA1). The latter undergoes a conformational change, which is expected to affect hemin’s binding kinetics. To verify this hypothesis, hemin:albumin complexes in the presence/absence of PFOA were first screened by UV–Vis spectroscopy. Once the complex formation was verified, haem was further characterised via electrochemical methods to estimate its electron transfer kinetics. The hemin:albumin:PFOA system was studied in solution, with the aim of describing the multiple equilibria at stake and designing an electrochemical assay for PFOA monitoring. This latter could be integrated with protein-based bioremediation approaches for the treatment of per- and polyfluoroalkyl substances polluted waters. Overall, our preliminary results show how hemin can be applied as a redox probe in albumin-based voltammetric sensing strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000971630400001 Publication Date 2023-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-5394 ISBN Additional Links UA library record; WoS full record
Impact Factor 5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5; 2023 IF: 3.346
Call Number UA @ admin @ c:irua:195069 Serial 8876
Permanent link to this record
 

 
Author Ma, X.; Pavlidis, G.; Dillon, E.; Beltran, V.; Schwartz, J.J.; Thoury, M.; Borondics, F.; Sandt, C.; Kjoller, K.; Berrie, B.H.; Centrone, A.
Title Micro to nano : multiscale IR analyses reveal zinc soap heterogeneity in a 19th-century painting by Corot Type A1 Journal article
Year 2022 Publication Analytical chemistry Abbreviated Journal
Volume 94 Issue 7 Pages 3103-3110
Keywords (up) A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Formation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (mu-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with approximate to 500 and approximate to 10 nm spatial resolutions, respectively. The distribution of chemical phases in thin sections from the top layer of a 19th-century painting is investigated at multiple scales (mu-FTIR approximate to 10(2) mu m(3), O-PTIR approximate to 10(-1) mu m(3), PTIR approximate to 10(-5) mu m(3)). The paint samples analyzed here are found to be mixtures of pigments (cobalt green, lead white), cured oil, and a rich array of intermixed, small (often << 0.1 mu m(3)) zinc soap domains. We identify Zn stearate and Zn oleate crystalline soaps with characteristic narrow IR peaks (approximate to 1530-1558 cm(-1)) and a heterogeneous, disordered, water-permeable, tetrahedral zinc soap phase, with a characteristic broad peak centered at approximate to 1596 cm(-1). We show that the high signal-to-noise ratio and spatial resolution afforded by O-PTIR are ideal for identifying phase-separated (or locally concentrated) species with low average concentration, while PTIR provides an unprecedented nanoscale view of distributions and associations of species in paint. This newly accessible nanocompositional information will advance our knowledge of chemical processes in oil paint and will stimulate new art conservation practices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000766206700011 Publication Date 2022-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:187380 Serial 8897
Permanent link to this record
 

 
Author Truta, F.; Cruz, A.G.; Tertis, M.; Zaleski, C.; Adamu, G.; Allcock, N.S.; Suciu, M.; Stefan, M.-G.; Kiss, B.; Piletska, E.; De Wael, K.; Piletsky, S.A.; Cristea, C.
Title NanoMIPs-based electrochemical sensors for selective detection of amphetamine Type A1 Journal article
Year 2023 Publication Microchemical journal Abbreviated Journal
Volume 191 Issue Pages 108821-10
Keywords (up) A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract A highly sensitive and portable electrochemical sensor based on molecularly imprinted nanoparticles (nanoMIPs) was developed. NanoMIPs were computationally designed for specific recognition of amphetamine, and then synthetized using solid phase synthesis. NanoMIPs were immobilized onto screen-printed carbon electrodes using a composite film comprising chitosan, nanoMIPs, and graphene oxide.Ferrocenylmethyl methacrylate was incorporated in nanoMIPs allowing electrochemical detection. The signal recorded for the electrochemical oxidation of ferrocene has proven to be dependent on the presence of amphetamine interacting with nanMIPs. The sensor was tested successfully with street samples, with high sensitivity and satisfactory recoveries (from 100.9% to 107.6%). These results were validated with UPL-MS/MS. The present technology is suitable for forensic applications in selective determination of amphetamine in street samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001008428600001 Publication Date 2023-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.8; 2023 IF: 3.034
Call Number UA @ admin @ c:irua:197397 Serial 8903
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Slosse, A.; Van Durme, F.; Åberg, J.; Björk, K.; Bijvoets, S.M.; Sap, S.; Heerschop, M.W.J.; De Wael, K.
Title Paraformaldehyde-coated electrochemical sensor for improved on-site detection of amphetamine in street samples Type A1 Journal article
Year 2022 Publication Microchemical journal Abbreviated Journal
Volume 179 Issue Pages 107518-107519
Keywords (up) A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The increasing illicit production, distribution and abuse of amphetamine (AMP) poses a challenge for law enforcement worldwide. To effectively combat this issue, fast and portable tools for the on-site screening of suspicious samples are required. Electrochemical profile (EP)-based sensing of illicit drugs has proven to be a viable option for this purpose as it allows rapid voltammetric measurements via the use of disposable and low-cost graphite screen-printed electrodes (SPEs). In this work, a highly practical paraformaldehyde (PFA)-coated sensor, which unlocks the detectability of primary amines through derivatization, is developed for the on-site detection of AMP in seized drug samples. A potential interval was defined at the sole AMP peak (which is used for identification of the target analyte) to account for potential shifts due to fluctuations in concentration and temperature, which are relevant factors for on-site use. Importantly, it was found that AMP detection was not hindered by the presence of common diluents and adulterants such as caffeine, even when present in high amounts. When inter-drug differentiation is desired, a simultaneous second test with the same solution on an unmodified electrode is introduced to provide the required additional electrochemical information. Finally, the concept was validated by analyzing 30 seized AMP samples (reaching a sensitivity of 96.7 %) and comparing its performance to that of commercially available Raman and Fourier Transform Infrared (FTIR) devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000809675500010 Publication Date 2022-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:188454 Serial 8910
Permanent link to this record
 

 
Author Parrilla, M.; Slosse, A.; Van Echelpoel, R.; Montiel, F.N.; Langley, A.R.; Van Durme, F.; De Wael, K.
Title Rapid on-site detection of illicit drugs in smuggled samples with a portable electrochemical device Type A1 Journal article
Year 2022 Publication Chemosensors Abbreviated Journal
Volume 10 Issue 3 Pages 108-116
Keywords (up) A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The smuggling of illicit drugs urges the development of new tools for rapid on-site identification in cargos. Current methods rely on presumptive color tests and portable spectroscopic techniques. However, these methods sometimes exhibit inaccurate results due to commonly used cutting agents, the colorful nature of the sample or because the drugs are smuggled in common goods. Interestingly, electrochemical sensors can deal with these specific problems. Herein, an electrochemical device is presented that uses affordable screen-printed electrodes for the electrochemical profiling of several illicit drugs by square-wave voltammetry (SWV). The identification of the illicit compound is based on the oxidation potential of the analyte. Hence, a library of electrochemical profiles is built upon the analysis of illicit drugs and common cutting agents. This library allows the design of a tailor-made script that enables the identification of each drug through a user-friendly interface (laptop or mobile phone). Importantly, the electrochemical test is compared by analyzing 48 confiscated samples with other portable devices based on Raman and FTIR spectroscopy as well as a laboratory standard method (i.e., gas chromatography-mass spectrometry). Overall, the electrochemical results, obtained through the analysis of different samples from confiscated cargos at an end-user site, present a promising alternative to current methods, offering low-cost and rapid testing in the field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000775813500001 Publication Date 2022-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2227-9040 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:187766 Serial 8920
Permanent link to this record
 

 
Author Ortiz-Aguayo, D.; Ceto, X.; De Wael, K.; del Valle, M.
Title Resolution of opiate illicit drugs signals in the presence of some cutting agents with use of a voltammetric sensor array and machine learning strategies Type A1 Journal article
Year 2022 Publication Sensors and actuators : B : chemical Abbreviated Journal
Volume 357 Issue Pages 131345
Keywords (up) A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract In the present work, the resolution and quantification of mixtures of different opiate compounds in the presence of common cutting agents using an electronic tongue (ET) is evaluated. More specifically, ternary mixtures of heroin, morphine and codeine were resolved in the presence of caffeine and paracetamol. To this aim, an array of three carbon screen-printed electrodes were modified with different ink-like solutions of graphite, cobalt (II) phthalocyanine and palladium, and their responses towards the different drugs were characterized by means of square wave voltammetry (SWV). Developed sensors showed a good performance with good linearity at the mu M level, LODs between 1.8 and 5.3 mu M for the 3 actual drugs, and relative standard deviation (RSD) ca. 2% for over 50 consecutive measurements. Next, a quantitative model that allowed the identification and quantification of the individual substances from the overlapped voltammograms was built using partial least squares regression (PLS) as the modeling tool. With this approach, quantification of the different drugs was achieved at the mu M level, with a total normalized root mean square error (NRMSE) of 0.084 for the test subset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000745113900003 Publication Date 2021-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:185446 Serial 8922
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Pelmuş, M.; Gorun, S.M.; De Wael, K.
Title The role of singlet oxygen, superoxide, hydroxide, and hydrogen peroxide in the photoelectrochemical response of phenols at a supported highly fluorinated zinc phthalocyanine Type A1 Journal article
Year 2022 Publication ChemElectroChem Abbreviated Journal
Volume 9 Issue 6 Pages e202200108-10
Keywords (up) A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Photoelectrochemical (PEC) sensing of phenolic compounds using singlet oxygen (1O2)-generating photocatalysts has emerged as a powerful detection tool. However, it is currently not known how experimental parameters, such as pH and applied potential, influence the generation of reactive oxygen species (ROS) and their photocurrents. In this article, the PEC response was studied over the 6 to 10 pH range using a rotating (ring) disk (R(R)DE) set-up in combination with quenchers, to identify the ROS formed upon illumination of a supported photosensitizer, F64PcZn. The photocurrents magnitude depended on the applied potential and the pH of the buffer solution. The anodic responses were caused by the oxidation of O2.−, generated due to the quenching of 1O2 with −OH and the reaction of 3O2 with [F64Pc(3-)Zn]. The cathodic responses were assigned to the reduction of 1O2 and O2.−, yielding H2O2. These insights may benefit 1O2 – based PEC sensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000773947300003 Publication Date 2022-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:187524 Serial 8926
Permanent link to this record
 

 
Author Parrilla, M.; Detamornrat, U.; Domínguez-Robles, J.; Donnelly, R.F.; De Wael, K.
Title Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose Type A1 Journal article
Year 2022 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal
Volume 249 Issue Pages 123695-123699
Keywords (up) A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract According to the World Health Organization, about 422 million people worldwide have diabetes, with 1.5 million deaths directly attributed each year. Therefore, there is still a need to effectively monitor glucose in diabetic patients for proper management. Recently, wearable patches based on microneedle (MN) sensors provide minimally invasive analysis of glucose through the interstitial fluid (ISF) while exhibiting excellent correlation with blood glucose. Despite many advances in wearable electrochemical sensors, long-term stability and continuous monitoring remain unsolved challenges. Herein, we present a highly stable electrochemical biosensor based on a redox mediator bilayer consisting of Prussian blue and iron-nickel hexacyanoferrate to increase the long-term stability of the readout coupled with a hollow MN array as a sampling unit for ISF uptake. First, the enzymatic biosensor is developed by using affordable screen-printed electrodes (SPE) and optimized for long-term stability fitting the physiological range of glucose in ISF (i.e., 2.5–22.5 mM). In parallel, the MN array is assessed for minimally invasive piercing of the skin. Subsequently, the biosensor is integrated with the MN array leaving a microfluidic spacer that works as the electrochemical cell. Interestingly, a microfluidic channel connects the cell with an external syringe to actively and rapidly withdraw ISF toward the cell. Finally, the robust MN sensing patch is characterized during in vitro and ex vivo tests. Overall, affordable wearable MN-based patches for the continuous monitoring of glucose in ISF are providing an advent in wearable devices for rapid and life-threatening decision-making processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000826441800002 Publication Date 2022-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:188955 Serial 8955
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Campos, R.; Trashin, S.; Daems, E.; Carneiro, D.; Fraga, A.; Ribeiro, R.; De Wael, K.
Title Singlet oxygen-based photoelectrochemical detection of miRNAs in prostate cancer patients’ plasma : a novel diagnostic tool for liquid biopsy Type A1 Journal article
Year 2024 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal
Volume 158 Issue Pages 108698-108699
Keywords (up) A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Dysregulation of miRNA expression occurs in many cancers, making miRNAs useful in cancer diagnosis and therapeutic guidance. In a clinical context using methods such as polymerase chain reaction (PCR), the limited amount of miRNAs in circulation often limits their quantification. Here, we present a PCR-free and sensitive singlet oxygen (1O2)-based strategy for the detection and quantification of miRNAs in untreated human plasma from patients diagnosed with prostate cancer. A target miRNA is specifically captured by functionalised magnetic beads and a detection oligonucleotide probe in a sandwich-like format. The formed complex is concentrated at the sensor surface via magnetic beads, providing an interface for the photoinduced redox signal amplification. The detection oligonucleotide probe bears a molecular photosensitiser, which produces 1O2 upon illumination, oxidising a redox reporter and creating a redox cycling loop, allowing quantification of pM level miRNA in diluted human plasma within minutes after hybridisation and without target amplification.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-5394 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205281 Serial 9229
Permanent link to this record
 

 
Author Khan, S.U.; Matshitse, R.; Borah, R.; Nemakal, M.; Moiseeva, E.O.; Dubinina, T.V.; Nyokong, T.; Verbruggen, S.W.; De Wael, K.
Title Coupling of phthalocyanines with plasmonic gold nanoparticles by click chemistry for an enhanced singlet oxygen based photoelectrochemical sensing Type A1 Journal article
Year 2024 Publication ChemElectroChem Abbreviated Journal
Volume Issue Pages 1-11
Keywords (up) A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)
Abstract Coupling photosensitizers (PSs) with plasmonic nanoparticles increases the photocatalytic activity of PSs as the localized surface plasmon resonance (LSPR) of plasmonic nanoparticles leads to extreme concentration of light in their vicinity known as the near-field enhancement effect. To realize this in a colloidal phase, efficient conjugation of the PS molecules with the plasmonic nanoparticle surface is critical. In this work, we demonstrate the coupling of phthalocyanine (Pc) molecules with gold nanoparticles (AuNPs) in the colloidal phase via click chemistry. This conjugated Pc-AuNPs colloidal system is shown to enhance the photocatalytic singlet oxygen (1O2) production over non-conjugated Pcs and hence improve the photoelectrochemical detection of phenols. The plasmonic enhancement of the 1O2 generation by Pcs was clearly elucidated by complementary experimental and computational classical electromagnetic models. The dependence of plasmonic enhancement on the spectral position of the excitation laser wavelength and the absorbance of the Pc molecules with respect to the wavelength specific near-field enhancement is clearly demonstrated. A high similar to 8 times enhancement is obtained with green laser (532 nm) at the LSPR due to the maximum near-field enhancement at the resonance wavelength. Zinc phthalocyanine is covalently linked to plasmonic AuNPs via click chemistry to investigate the synergistic effect that boosts the overall activity toward the detection of HQ under visible light illumination. The 1O2 quantum yield of ZnPc improved significantly after conjugating with AuNPs, resulting in enhanced photoelectrochemical activity. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001214481000001 Publication Date 2024-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205962 Serial 9142
Permanent link to this record
 

 
Author Cotte, M.; Gonzalez, V.; Vanmeert, F.; Monico, L.; Dejoie, C.; Burghammer, M.; Huder, L.; de Nolf, W.; Fisher, S.; Fazlic, I.; Chauffeton, C.; Wallez, G.; Jimenez, N.; Albert-Tortosa, F.; Salvado, N.; Possenti, E.; Colombo, C.; Ghirardello, M.; Comelli, D.; Avranovich Clerici, E.; Vivani, R.; Romani, A.; Costantino, C.; Janssens, K.; Taniguchi, Y.; McCarthy, J.; Reichert, H.; Susini, J.
Title The “Historical Materials BAG” : a new facilitated access to synchrotron X-ray diffraction analyses for cultural heritage materials at the European Synchrotron Radiation Facility Type A1 Journal article
Year 2022 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal Molecules
Volume 27 Issue 6 Pages 1997-21
Keywords (up) A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract The European Synchrotron Radiation Facility (ESRF) has recently commissioned the new Extremely Brilliant Source (EBS). The gain in brightness as well as the continuous development of beamline instruments boosts the beamline performances, in particular in terms of accelerated data acquisition. This has motivated the development of new access modes as an alternative to standard proposals for access to beamtime, in particular via the “block allocation group” (BAG) mode. Here, we present the recently implemented “historical materials BAG”: a community proposal giving to 10 European institutes the opportunity for guaranteed beamtime at two X-ray powder diffraction (XRPD) beamlines-ID13, for 2D high lateral resolution XRPD mapping, and ID22 for high angular resolution XRPD bulk analyses-with a particular focus on applications to cultural heritage. The capabilities offered by these instruments, the specific hardware and software developments to facilitate and speed-up data acquisition and data processing are detailed, and the first results from this new access are illustrated with recent applications to pigments, paintings, ceramics and wood.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000776369800001 Publication Date 2022-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1420-3049 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.6
Call Number UA @ admin @ c:irua:188053 Serial 7218
Permanent link to this record
 

 
Author Avranovich Clerici, E.; De Meyer, S.; Vanmeert, F.; Legrand, S.; Monico, L.; Miliani, C.; Janssens, K.
Title Multi-scale X-ray imaging of the pigment discoloration processes triggered by chlorine compounds in the Upper Basilica of Saint Francis of Assisi Type A1 Journal article
Year 2023 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal
Volume 28 Issue 16 Pages 6106-6123
Keywords (up) A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract In this paper, the chromatic alteration of various types of paints, present on mural painting fragments derived from the vaults of The Upper Basilica of Saint Francis of Assisi in Italy (12th-13th century), is studied using synchrotron radiation. Six painted mural fragments, several square centimeters in size, were available for analysis, originating from the ceiling paintings attributed to Cimabue and Giotto; they correspond to originally white, blue/green, and brown/yellow/orange areas showing discoloration. As well as collecting macroscopic X-ray fluorescence and diffraction maps from the entire fragments in the laboratory and at the SOLEIL synchrotron, corresponding paint cross-sections were also analyzed using microscopic X-ray fluorescence and powder diffraction mapping at the PETRA-III synchrotron. Numerous secondary products were observed on the painted surfaces, such as (a) copper tri-hydroxychloride in green/blue areas; (b) corderoite and calomel in vermillion red/cinnabar-rich paints; (c) plattnerite and/or scrutinyite assumed to be oxidation products of (hydro)cerussite (2PbCO(3)center dot Pb(OH)(2)) in the white areas, and (d) the calcium oxalates whewellite and weddellite. An extensive presence of chlorinated metal salts points to the central role of chlorine-containing compounds during the degradation of the 800-year-old paint, leading to, among other things, the formation of the rare mineral cumengeite (21PbCl(2)center dot 20Cu(OH) (2) center dot 6H(2)O).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001056388600001 Publication Date 2023-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1420-3049 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.6; 2023 IF: 2.861
Call Number UA @ admin @ c:irua:199265 Serial 8902
Permanent link to this record
 

 
Author Broers, F.T.H.; Janssens, K.; Weker, J.N.; Webb, S.M.; Mehta, A.; Meirer, F.; Keune, K.
Title Two pathways for the degradation of orpiment pigment (As₂S₃) found in paintings Type A1 Journal article
Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal
Volume 145 Issue 16 Pages 8847-8859
Keywords (up) A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Paintings are complex objects containing many different chemical compounds that can react over time. The degradation of arsenic sulfide pigments causes optical changes in paintings. The main degradation product was thought to be white arsenolite (As2O3), but previous research also showed the abundant presence of As(V) species. In this study, we investigate the influence of the presence of a medium on the degradation mechanism of orpiment (As2S3) using synchrotron radiation (SR)-based tomographic transmission X-ray microscopy, SR-based micro-X-ray fluorescence, and Xray absorption near edge structure spectroscopy. Upon direct illumination of dry orpiment powder using UV-visible light, only the formation of As2O3 was observed. When As2S3 was surrounded by a medium and illuminated, As2O3 was only observed in the area directly exposed to light, while As(V) degradation species were found elsewhere in the medium. Without accelerated artificial light aging, As(V)(aq) species are formed and migrate throughout the medium within weeks after preparation. In both scenarios, the As(V) species form via intermediate As(III)(aq) species and the presence of a medium is necessary. As(V)(aq) species can react with available cations to form insoluble metal arsenates, which induces stress within the paint layers (leading to, e.g., cracks and delamination) or can lead to a visual change of the image of the painting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000974346900001 Publication Date 2023-04-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15; 2023 IF: 13.858
Call Number UA @ admin @ c:irua:196762 Serial 8948
Permanent link to this record
 

 
Author Pastorelli, G.; Miranda, A.S.O.; Avranovich Clerici, E.; d'Imporzano, P.; Hansen, B.V.; Janssens, K.; Davies, G.R.; Borring, N.
Title Darkening of lead white in old master drawings and historic prints : a multi-analytical investigation Type A1 Journal article
Year 2024 Publication Microchemical journal Abbreviated Journal
Volume 199 Issue Pages 109912-10
Keywords (up) A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Old master drawings and historic prints often feature white highlights, which are typically painted using lead white, one of the most widely used historical white pigments. However, it has been observed that many of these highlights discolour over time, becoming dark brown or black due to unclear degradation processes. This phenomenon not only misrepresents the original artefacts, threatening their suitability for public display, but also diminishes their longevity. To ensure their preservation, it is essential to determine why some lead white highlights in these museum objects retain their light tones while others are prone to darkening. The objective of this study was to identify the relationships between the composition, provenance, and production methods of lead white pigments, and their role in the discolouration observed on drawings, lithographs and early photographs. Selected samples and artefacts were examined using a range of analytical techniques, namely X-ray fluorescence spectroscopy (XRF), X-ray powder diffraction (XRPD), and lead isotope analysis. While XRF analyses confirmed the presence of lead as the primary element in the majority of the highlights, XRPD measurements identified a variety of lead compounds such as the carbonates cerussite and hydrocerussite alongside galena-a black crystalline sulfide-and lead sulfates. Additionally, isotope analyses classified the lead raw materials into five main groups. Through these measurements, the examined lead white pigments were categorised based on their compositional properties in relation to the raw materials used, as well as their geographical and temporal origin. A significant finding is that lead white pigments from different production periods, spanning from older to more modern, may be characterised by varying proneness to discolouration irrespective of their provenance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001166502200001 Publication Date 2024-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205450 Serial 9197
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Quanico, J.; Scovacricchi, T.; Avranovich Clerici, E.; Baggerman, G.; Janssens, K.
Title Chemical mapping of the degradation of geranium lake in paint cross sections by MALDI-MSI Type A1 Journal article
Year 2023 Publication Analytical chemistry Abbreviated Journal
Volume 95 Issue 49 Pages 18215-18223
Keywords (up) A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS); Ecosphere
Abstract Matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has become a powerful method to extract spatially resolved chemical information in complex materials. This study provides the first use of MALDI-MSI to define spatial–temporal changes in oil paints. Due to the highly heterogeneous nature of oil paints, the sample preparation had to be optimized to prevent molecules from delocalizing. Here, we present a new protocol for the layer-specific analysis of oil paint cross sections achieving a lateral resolution of 10 μm and without losing ionization efficiency due to topographic effects. The efficacy of this method was investigated in oil paint samples containing a mixture of two historic organic pigments, geranium lake and lead white, a mixture often employed in the work of painter Vincent Van Gogh. This methodology not only allows for spatial visualization of the molecules responsible for the pink hue of the paint but also helps to elucidate the chemical changes behind the discoloration of paintings with this composition. The results demonstrate that this approach provides valuable molecular compositional information about the degradation pathways of pigments in specific paint layers and their interaction with the binding medium and other paint components and with light over time. Since a spatial correlation between molecular species and the visual pattern of the discoloration pattern can be made, we expect that mass spectrometry imaging will become highly relevant in future degradation studies of many more historical pigments and paints.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001142876000001 Publication Date 2023-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access
Notes Approved Most recent IF: 7.4; 2023 IF: 6.32
Call Number UA @ admin @ c:irua:201644 Serial 9007
Permanent link to this record
 

 
Author Deleu, N.; Hillen, M.; Steenackers, G.; Borms, G.; Janssens, K.; Van der Stighelen, K.; Van der Snickt, G.
Title Combined macro X-ray fluorescence (MA-XRF) and pulse phase thermography (PPT) imaging for the technical study of panel paintings Type A1 Journal article
Year 2024 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal
Volume 270 Issue Pages 125533-11
Keywords (up) A1 Journal article; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Museum staff usually relies on a proven combination of X-ray radiography (XRR) and infrared reflectography (IRR) to study paintings in a non-destructive manner. In the last decades, however, the research toolbox of heritage scientists has expanded considerably, with a prime example being macro X-ray fluorescence (MA-XRF), producing element-specific images. The goal of this article is to illustrate the added value of augmenting MA-XRF with pulse phase thermography (PPT), a variant of active infrared thermographic imaging (IRT), which is an innovative diagnostic method that is able to reveal variations between or in materials, based on a different response to minor fluctuations in temperature when irradiated with optical radiation. By examining three 16thand 17th-century panel paintings we assess the extent in which combined MA-XRF and PPT contributes to a better understanding of two commonly encountered interventions to panel paintings: (a) Anstuckungen (enlargement of the panel) or (b) substitutions (replacement of part of the panel). Yielding information from different depths of the painting, these two techniques proved highly complementary with IRR and XRR, expanding the understanding of the build-up, genesis, and material history of the paintings. While MA-XRF documented the interventions to the wooden substrate indirectly by revealing variations in painting materials, paint handling and/ or layer sequence between the original part and the extended or replaced planks, PPT proved beneficial for the study of the wooden support itself, by providing a clear image of the wood structure quasi-free of distortion by the superimposed paint or cradling. XRR, on the other hand, revealed other features from the wood structure, not visible with PPT, and allowed looking through the wooden panels, revealing e.g. the dowels used for joining the planks. Additionally, IRR visualised dissimilarities in the underdrawings. In this way, the results indicate that PPT has the potential to become an acknowledged add-on to the expanding set of imaging methods for paintings, especially when used in combination with MA-XRF, IRR and XRR.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001144098200001 Publication Date 2023-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:203764 Serial 9193
Permanent link to this record
 

 
Author Gonzalez, V.; Fazlic, I.; Cotte, M.; Vanmeert, F.; Gestels, A.; De Meyer, S.; Broers, F.; Hermans, J.; van Loon, A.; Janssens, K.; Noble, P.; Keune, K.
Title Lead(II) formate in Rembrandt's Night Watch : detection and distribution from the macro- to the micro-scale Type A1 Journal article
Year 2023 Publication Angewandte Chemie: international edition in English Abbreviated Journal
Volume Issue Pages 1-9
Keywords (up) A1 Journal article; Art; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract The Night Watch, painted in 1642 and on view in the Rijksmuseum in Amsterdam, is considered Rembrandt's most famous work. X-ray powder diffraction (XRPD) mapping at multiple length scales revealed the unusual presence of lead(II) formate, Pb(HCOO)(2), in several areas of the painting. Until now, this compound was never reported in historical oil paints. In order to get insights into this phenomenon, one possible chemical pathway was explored thanks to the preparation and micro-analysis of model oil paint media prepared by heating linseed oil and lead(II) oxide (PbO) drier as described in 17(th) century recipes. Synchrotron radiation based micro-XRPD (SR-mu-XRPD) and infrared microscopy were combined to identify and map at the micro-scale various neo-formed lead-based compounds in these model samples. Both lead(II) formate and lead(II) formate hydroxide Pb(HCOO)(OH) were detected and mapped, providing new clues regarding the reactivity of lead driers in oil matrices in historical paintings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000920584500001 Publication Date 2023-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 16.6; 2023 IF: 11.994
Call Number UA @ admin @ c:irua:194279 Serial 7318
Permanent link to this record
 

 
Author Beltran, V.; Marchetti, A.; Nuyts, G.; Leeuwestein, M.; Sandt, C.; Borondics, F.; De Wael, K.
Title Nanoscale analysis of historical paintings by means of O‐PTIR spectroscopy : the identification of the organic particles in L’Arlésienne (portrait of Madame Ginoux) by Van Gogh Type A1 Journal article
Year 2021 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume 60 Issue 42 Pages 22753-22760
Keywords (up) A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Optical-photothermal infrared (O-PTIR) spectroscopy is a recently developed technique that provides spectra comparable to traditional transmission FTIR spectroscopy with nanometric spatial resolution. Hence, O-PTIR is a promising candidate for the analysis of historical paintings, as well as other cultural heritage objects, but its potential has not yet been evaluated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000694015700001 Publication Date 2021-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11.994
Call Number UA @ admin @ c:irua:179989 Serial 8291
Permanent link to this record
 

 
Author Jaroszewicz, J.; de Nolf, W.; Janssens, K.; Michalski, A.; Falkenberg, G.
Title Advantages of combined mu-XRF and mu-XRD for phase characterization of Ti-B-C ceramics compared with conventional X-ray diffraction Type A1 Journal article
Year 2008 Publication Analytical and bioanalytical chemistry Abbreviated Journal Anal Bioanal Chem
Volume 391 Issue 4 Pages 1129-1133
Keywords (up) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000256088700005 Publication Date 2008-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.431 Times cited 7 Open Access
Notes Approved Most recent IF: 3.431; 2008 IF: 3.328
Call Number UA @ admin @ c:irua:69317 Serial 5459
Permanent link to this record
 

 
Author Krupińska, B.; Van Grieken, R.; De Wael, K.
Title Air quality monitoring in a museum for preventive conservation : results of a three-year study in the Plantin-Moretus Museum in Antwerp, Belgium Type A1 Journal article
Year 2013 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 110 Issue Pages 350-360
Keywords (up) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Through different research projects on air quality in museums, researcher and conservators try identifying various risks of air pollution on materials. The conclusions may be later translated into specific actions for a maximum preservation of the museum collections, a process known as preventive conservation. Air pollution is a particular problem in historical buildings such as museums, because they were not originally built to exhibit and protect art objects in a sustainable way. This article reports on the data and results that were obtained during 10 sampling campaigns, in the period between November 2008 and February 2012 in a museum in Antwerp (Belgium), i.e. Plantin-Moretus Museum/Print Room. Different pollutants were measured inside and outside the museum such as inorganic gases, particulate matter and black carbon. The report specifically addresses environmental factors that may be responsible for damage to the collections present in museums. Thanks to the knowledge about the current situation in the museum, accurate solutions regarding preventive conservation, in general, are suggested.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326851200051 Publication Date 2013-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 46 Open Access
Notes ; The presented work was realised in the frame of the project Preventive conservation/preservation in the museum Plantin-Moretus/Prentenkabinet, Antwerp, financed by the Flemish Government. Special thanks are due to Mrs Hanne Moris and Mrs Elke van Herck and all the staff of the Museum Plantin-Moretus/Print Room in Antwerp for their sincere interest in this work and their eager assistance during all the sampling campaigns. VMM and Dr. Edward Roekens is acknowledged for sharing the black carbon measurements. Barbara Krupinska is supported as PhD student by the Flemish Fund for Scientific Research (FWO, Belgium). ; Approved Most recent IF: 3.034; 2013 IF: 3.583
Call Number UA @ admin @ c:irua:108402 Serial 5460
Permanent link to this record
 

 
Author Cuypers, B.; Vermeylen, S.; Hammerschmid, D.; Trashin, S.; Rahemi, V.; Konijnenberg, A.; De Schutter, A.; Cheng, C.-H.C.; Giordano, D.; Verde, C.; De Wael, K.; Sobott, F.; Dewilde, S.; Van Doorslaer, S.
Title Antarctic fish versus human cytoglobins : the same but yet so different Type A1 Journal article
Year 2017 Publication Journal of inorganic biochemistry Abbreviated Journal J Inorg Biochem
Volume 173 Issue Pages 66-78
Keywords (up) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The cytoglobins of the Antarctic fish Chaenocephalus aceratus and Dissostichus mawsoni have many features in common with human cytoglobin. These cytoglobins are heme proteins in which the ferric and ferrous forms have a characteristic hexacoordination of the heme iron, i.e. axial ligation of two endogenous histidine residues, as confirmed by electron paramagnetic resonance, resonance Raman and optical absorption spectroscopy. The combined spectroscopic analysis revealed only small variations in the heme-pocket structure, in line with the small variations observed for the redox potential. Nevertheless, some striking differences were also discovered. Resonance Raman spectroscopy showed that the stabilization of an exogenous heme ligand, such as CO, occurs differently in human cytoglobin in comparison with Antarctic fish cytoglobins. Furthermore, while it has been extensively reported that human cytoglobin is essentially monomeric and can form an intramolecular disulfide bridge that can influence the ligand binding kinetics, 3D modeling of the Antarctic fish cytoglobins indicates that the cysteine residues are too far apart to form such an intramolecular bridge. Moreover, gel filtration and mass spectrometry reveal the occurrence of non-covalent multimers (up to pentamers) in the Antarctic fish cytoglobins that are formed at low concentrations. Stabilization of these oligomers by disulfide-bridge formation is possible, but not essential. If intermolecular disulfide bridges are formed, they influence the heme-pocket structure, as is shown by EPR measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405159600007 Publication Date 2017-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-0134 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.348 Times cited 7 Open Access
Notes ; The authors acknowledge the support of the University of Antwerp GOA-BOF funding (28312), FWO funding (G.0687.13) and the Hercules foundation for funding of the Synapt G2 instrument. This study was carried out in the framework of the SCAR program “Antarctic Thresholds – Ecosystem Resilience and Adaptation” (AnT-ERA). It was financially supported by the Italian National Program for Antarctic Research (PNRA). Research of A. De Schutter is funded by a PhD grant of the Agency for Innovation by Science and Technology (121339) (IWT, Belgium). C-H C. Cheng acknowledges funding support from US National Science Foundation Polar Programs (ANT-1142158). ; Approved Most recent IF: 3.348
Call Number UA @ admin @ c:irua:144826 Serial 5474
Permanent link to this record
 

 
Author Pilehvar, S.; Mehta, J.; Dardenne, F.; Robbens, J.; Blust, R.; De Wael, K.
Title Aptasensing of chloramphenicol in the presence of its analogues : reaching the maximum residue limit Type A1 Journal article
Year 2012 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 84 Issue 15 Pages 6753-6758
Keywords (up) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A novel label-free folding induced aptamer-based electrochemical biosensor for the detection of chloramphenicol (CAP) in the presence of its analogues has been developed. CAP is a broad-spectrum antibiotic which has lost its favor due to its serious adverse toxic effects on human health. Aptamers are artificial nucleic acid ligands (ssDNA or RNA) able to specifically recognize a target such as CAP. In this article, the aptamers are fixed onto a gold electrode surface by a self-assembly approach. In the presence of CAP, the unfolded ssDNA on the electrode surface changes to a hairpin structure bringing the target molecules close to the surface and trigger electron transfer. Detection limits were determined to be 1.6×10-9 mol L-1. In addition, thiamphenicol (TAP) and florfenicol (FF), antibiotics with a similar structure to CAP, did not influence the performance of the aptasensor, suggesting a good selectivity of the CAP-aptasensor. Simplicity and lower detection limit (because of the home-selected aptamers) make that the electrochemical aptasensor is suitable for practical use in the detection of CAP in milk samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000307159200069 Publication Date 2012-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 68 Open Access
Notes ; ; Approved Most recent IF: 6.32; 2012 IF: 5.695
Call Number UA @ admin @ c:irua:98816 Serial 5477
Permanent link to this record
 

 
Author Vermeulen, M.; Janssens, K.; Sanyova, J.; Rahemi, V.; McGlinchey, C.; De Wael, K.
Title Assessing the stability of arsenic sulfide pigments and influence of the binding media on their degradation by means of spectroscopic and electrochemical techniques Type A1 Journal article
Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 138 Issue 138 Pages 82-91
Keywords (up) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In this paper, we used the semiconducting and lightfastness properties of synthetic and mineral arsenic sulfide pigments to study their stability by means of electrochemical and microfadometric techniques. A combination of these techniques shows that in the early stage of the degradation process, amorphous arsenic sulfides are more stable than both crystalline forms, while upon longer exposure time, amorphous pigments will fade more than both mineral pigments, making it less suitable. While the stability study was carried out on unbound pigments, the influence of the organic binder on the relative degradation of the arsenic sulfide pigments was investigated through a multi-analytical approach on pigment/binder mock-up paint samples. For this purpose, the formation of arsenic trioxide was assessed by micro Fourier transform infrared (μ-FTIR) spectroscopy while the influence of the binder on the formation of sulfates was studied by means of synchrotron radiation X-ray near edge structure (μ-XANES). Both techniques elucidate a higher stability of all pigments in gum arabic while the use of egg yolk as binder leads to the most degradation, most likely due to its sulfur-rich composition. In the context of the degradation of arsenic sulfide pigments, other binders such as animal glue, egg white or linseed oil show an intermediate impact.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000428103000010 Publication Date 2018-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 4 Open Access
Notes ; This research is made possible with the support of the Belgian Science Policy Office (BELSPO, Brussels) through the research program Science for a Sustainable Development – SDD, “Long-term role and fate of metal-sulfides in painted works of art – S2ART” (grant number SD/RI/04A). We gratefully acknowledge Megane Willems (Institut Paul-Lambin) for her help with mu-FFIR analyses and realization of the mock-up paint samples. We acknowledge the Paul Scherrer Institut, Villigen, Switzerland for provision of synchrotron radiation beamtime at beamline Phoenix of the SLS. ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:150149 Serial 5482
Permanent link to this record