toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Poppe, R. url  openurl
  Title Refining short-range order parameters from diffuse electron scattering Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue (down) Pages iv, 150 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Electrons, X-rays and neutrons that pass through a thin crystalline sample will be diffracted. Diffraction patterns of crystalline materials contain Bragg reflections (sharp discrete intensity maxima) and diffuse scattering (a weak continuous background). The Bragg reflections contain information about the average crystal structure (the type of atoms and the average atomic positions), whereas the diffuse scattering contains information about the short-range order (deviations from the average crystal structure that are ordered on a local scale). Because the properties of many materials depend on the short-range order, refining short-range order parameters is essential for understanding and optimizing material properties. The refinement of short-range order parameters has previously been applied to the diffuse scattering in single-crystal X-ray and single-crystal neutron diffraction data but not yet to the diffuse scattering in single-crystal electron diffraction data. In this work, we will verify the possibility to refine short-range order parameters from the diffuse scattering in single-crystal electron diffraction data. Electron diffraction allows to acquire data on submicron-sized crystals, which are too small to be investigated with single-crystal X-ray and single-crystal neutron diffraction. In the first part of this work, we will refine short-range order parameters from the one-dimensional diffuse scattering in electron diffraction data acquired on the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2. The number of stacking faults and the twin percentages will be refined from the diffuse scattering using a Monte Carlo refinement. We will also describe a method to determine the spinel/layered phase ratio from the intensities of the Bragg reflections in electron diffraction data. In the second part of this work, we will refine short-range order parameters from the three-dimensional diffuse scattering in both single-crystal electron and single-crystal X-ray diffraction data acquired on Nb0.84CoSb. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms will be refined from the diffuse scattering using a Monte Carlo refinement and a three-dimensional difference pair distribution function refinement. The effect of different experimental parameters on the spatial resolution of the observed diffuse scattering will also be investigated. Finally, the model of the short-range Nb-vacancy order in Nb0.84CoSb will also be applied to LiNi0.5Sn0.3Co0.2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200610 Serial 9084  
Permanent link to this record
 

 
Author De Bock, A.; Belmans, B.; Vanlanduit, S.; Blom, J.; Alvarado Alvarado, A.A.; Audenaert, A. pdf  url
doi  openurl
  Title A review on the leaf area index (LAI) in vertical greening systems Type A1 Journal article
  Year 2023 Publication Building and environment Abbreviated Journal  
  Volume 229 Issue (down) Pages 109926-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Sustainable Pavements and Asphalt Research (SuPAR); Energy and Materials in Infrastructure and Buildings  
  Abstract The leaf area index (LAI) is a key dynamic parameter in Vertical Greening Systems (VGS). It quantifies the total amount of leaf area in the canopy and largely determines the extent of co-benefits of VGS. Whereas many studies on VGS discuss the importance of the LAI, only few elaborate on the parameter itself, how it is determined and what the current limitations are in VGS. Moreover, although there is scientific consensus on the importance of LAI in VGS, specific non-destructive monitoring techniques for continuous LAI monitoring appear to be absent, which results in limited overall data on the LAI of VGS under different spatial and temporal conditions and problems in quantifying the benefits of VGS in practice. To fill these gaps, this paper specifically focuses on the LAI of VGS and its monitoring techniques. An overview of existing LAI monitoring techniques in the field of VGS is presented. To arrive at dedicated techniques, this is complemented by a thorough analysis of LAI monitoring techniques used in other research fields, e.g. agriculture and forestry. It is established that two indirect techniques for LAI monitoring are currently available in the VGS sector, but a proper standardized sampling methodology currently lacks. Monitoring techniques used in other sectors offer opportunities for developing dedicated monitoring methods for VGS, but require further research due to the specific features of VGS systems. Furthermore, guidelines are proposed for a more standardized LAI determination of reporting of LAI values in VGS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000950866100001 Publication Date 2022-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access  
  Notes Approved Most recent IF: 7.4; 2023 IF: 4.053  
  Call Number UA @ admin @ c:irua:194575 Serial 9085  
Permanent link to this record
 

 
Author Ysebaert, T.; Samson, R.; Denys, S. pdf  doi
openurl 
  Title Revisiting dry deposition modelling of particulate matter on vegetation at the microscale Type A1 Journal article
  Year 2023 Publication Air quality, atmosphere & health Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Dry deposition is an important process determining pollutant concentrations, especially when studying the influence of urban green infrastructure on particulate matter (PM) levels in cities. Computational fluid dynamics (CFD) models of PM capture by vegetation are useful tools to increase their applicability. The meso-scale models of Zhang et al. (Atmos Environ 35:549-560, 2001) and Petroff and Zhang (Geosci Model Dev 3(2):753-769, 2010) have often been adopted in CFD models, however a comparison of these models with measurements including all PM particle sizes detrimental to health has been rarely reported and certainly not for green wall species. This study presents dry deposition experiments on real grown Hedera helix in a wind tunnel setup with wind speeds from 1 to 4 m s(-1) and PM consisting of a mixture of soot (0.02 – 0.2 mu mu m) and dust particles (0.3 – 10 mu mu m). Significant factors determining the collection efficiency (%) were particle diameter and wind speed, but relative air humidity and the type of PM (soot or dust) did not have a significant influence. Zhang's model outperformed Petroff's model for particles < 0.3 mu mu m, however the inclusion of turbulent impaction in Petroff's model resulted in better agreement with the measurements for particles > 2 – 3 mu mu m. The optimised model had an overall root-mean-square-error of similar to 4% for collection efficiency (CE) and 0.4 cm s-1 for deposition velocity (nu d), which was shown to be highly competitive against previously described models. It can thus be used to model PM deposition on other plant species, provided the correct parameterisation of the drag by this species. A detailed description of the spatial distribution of the vegetation could solve the underestimation for particle sizes of 0.3 – 2 mu mu m.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001125841300001 Publication Date 2023-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1873-9318; 1873-9326 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.1 Times cited Open Access  
  Notes Approved Most recent IF: 5.1; 2023 IF: 3.184  
  Call Number UA @ admin @ c:irua:201986 Serial 9086  
Permanent link to this record
 

 
Author Broos, W.; Wittner, N.; Dries, J.; Vlaeminck, S.E.; Gunde-Cimerman, N.; Cornet, I. pdf  doi
openurl 
  Title Rhodotorula kratochvilovae outperforms Cutaneotrichosporon oleaginosum in the valorisation of lignocellulosic wastewater to microbial oil Type A1 Journal article
  Year 2024 Publication Process biochemistry (1991) Abbreviated Journal  
  Volume 137 Issue (down) Pages 229-238  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Rhodotorula kratochvilovae has shown to be a promising species for microbial oil production from lignin-derived compounds. Yet, information on R. kratochvilovae’s detoxification and microbial oil production is scarce. This study investigated the growth and microbial oil production on the phenolic-containing effluent from poplar steam explosion and its detoxification with five R. kratochvilovae strains (EXF11626, EXF9590, EXF7516, EXF3697, EXF3471) and compared them with Cutaneotrichosporon oleaginosum. The R. kratochvilovae strains reached a maximum growth rate up to four times higher than C. oleaginosum. Furthermore, all R. kratochvilovae strains generally degraded phenolics more rapidly and to a larger extent than C. oleaginosum. However, the diluted substrate limited the lipid production by all strains as the maximum lipid content and titre were 10.5% CDW and 0.40 g/L, respectively. Therefore, future work should focus on increasing lipid production by using advanced fermentation strategies and stimulating the enzyme excretion by the yeasts for complex substrate breakdown.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-5113 ISBN Additional Links UA library record  
  Impact Factor 4.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.4; 2024 IF: 2.497  
  Call Number UA @ admin @ c:irua:202365 Serial 9087  
Permanent link to this record
 

 
Author Vervloessem, E. url  openurl
  Title The role of pulsing and humidity in plasma-based nitrogen fixation : a combined experimental and modeling study Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue (down) Pages 358 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nitrogen (N) is an indispensable building block for all living organisms as well as for pharmaceutical and chemical industry. In a nutshell, N is needed for plants to grow and beings to live and nitrogen fixation (NF) is the process that makes N available for plants as food by converting N2 into a reactive form, such as ammonia (NH3) or nitrogen oxides (NOx), upon reacting with O2 and H2. The aim of this thesis is to elucidate (wet) plasma-based nitrogen fixation with a focus on (1) the role of pulsing in achieving low energy consumption, (2) the role of H2O as a hydrogen source in nitrogen fixation and (3) elucidation of nitrogen fixation pathways in humid air and humid N2 plasma in a combined experimental and computational study. Furthermore, this thesis aims to take into account the knowledge-gaps and challenges identified in the discussion of the state of the art. Specifically, (1) we put our focus on branching out to another way of introducing water into the plasma system, i.e. H2O vapor, (2) we de-couple the problem for pathway elucidation by starting with characterization of the chosen plasma, next a simpler gas mixture and building up from there, (3) we include modelling, though not under wet conditions and (4) we focus on also analyzing species and performance outside liquid H2O. Firstly, based on the reaction analysis of a validated quasi-1D model, we can conclude that pulsing is indeed the key factor for energy-efficient NOx- formation, due to the strong temperature drop it causes. Secondly, the thesis shows that added H2O vapor, and not liquid H2O, is the main source of H for NH3 generation. Related to this, we discuss how the selectivity of plasma-based NF in humid air and humid N2 can be controlled by changing the humidity in the feed gas. Interestingly, NH3 production can be achieved in both N2 and air plasmas using H2O as a H source. Lastly, we identified a significant loss mechanism for NH3 and HNO2 that occurs in systems where these species are synthesized simultaneously, i.e. downstream from the plasma, HNO2 reacts with NH3 to form NH4NO2, which decomposes into N2 and H2O. This reduces the effective NF when not properly addressed, and should therefore be considered in future works aimed at optimizing plasma-based NF. In conclusion, this thesis adds further to the current state of the art of plasma-based NF both in the presence of H2O and in dry systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:197038 Serial 9088  
Permanent link to this record
 

 
Author Daems, E.; Bassini, S.; Mariën, L.; Op de Beeck, H.; Stratulat, A.; Zwaenepoel, K.; Vandamme, T.; op de Beeck, K.; Koljenovic, S.; Peeters, M.; Van Camp, G.; De Wael, K. pdf  doi
openurl 
  Title Singlet oxygen-based photoelectrochemical detection of single-point mutations in the KRAS oncogene Type University Hospital Antwerp
  Year 2023 Publication Biosensors and bioelectronics Abbreviated Journal  
  Volume 249 Issue (down) Pages 115957-7  
  Keywords University Hospital Antwerp; A1 Journal article; Center for Oncological Research (CORE); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Medical Genetics (MEDGEN)  
  Abstract Single nucleotide point mutations in the KRAS oncogene occur frequently in human cancers, rendering them intriguing targets for diagnosis, early detection and personalized treatment. Current detection methods are based on polymerase chain reaction, sometimes combined with next-generation sequencing, which can be expensive, complex and have limited availability. Here, we propose a novel singlet oxygen (1O2)-based photoelectrochemical detection methodology for single-point mutations, using KRAS mutations as a case study. This detection method combines the use of a sandwich assay, magnetic beads and robust chemical photosensitizers, that need only air and light to produce 1O2, to ensure high specificity and sensitivity. We demonstrate that hybridization of the sandwich hybrid at high temperatures enables discrimination between mutated and wild-type sequences with a detection rate of up to 93.9%. Additionally, the presence of background DNA sequences derived from human cell-line DNA, not containing the mutation of interest, did not result in a signal, highlighting the specificity of the methodology. A limit of detection as low as 112 pM (1.25 ng/mL) was achieved without employing any amplification techniques. The developed 1O2-based photoelectrochemical methodology exhibits unique features, including rapidity, ease of use, and affordability, highlighting its immense potential in the field of nucleic acid-based diagnostics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001155075300001 Publication Date 2023-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 12.6 Times cited Open Access  
  Notes Approved Most recent IF: 12.6; 2023 IF: 7.78  
  Call Number UA @ admin @ c:irua:201875 Serial 9092  
Permanent link to this record
 

 
Author Peeters, H. openurl 
  Title Solar active photocatalytic self-cleaning coatings based on plasmon-embedded titania Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue (down) Pages XX, 125 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:201390 Serial 9093  
Permanent link to this record
 

 
Author Dingenen, F. file  openurl
  Title Solar-driven H2 production from seawater using stabilized plasmon-enhanced photocatalysts Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue (down) Pages XXXVIII, 210 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology  
  Abstract As natural gas prices proved to be very volatile, sustainable alternatives are highly needed. Water-derived H2 was revealed as a promising substitute, allowing to produce a green energy carrier with a minimum of harmful emissions. Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues due to the presence of salts.Photocatalytic seawater splitting is particularly promising for this purpose, as it seems less affected by adversary seawater effects and might rely on free and renewable solar power. Unfortunately, the benchmark photocatalyst, TiO2, still suffers from its low solar light activity. It is only actived upon illumination with energetic ultraviolet light (<5% of the sunlight). In order to broaden the activity window to the visible light, the concept of the 'plasmonic rainbow' was explored. Here, TiO2 is modified with various gold-silver composites that possess the unique optical phenomenon of Surface Plasmon Resonance (SPR). This phenomenon enables the absorption of light at very specific wavelengths, depending on the metal type, size, shape and dielectric environment. The light energy might then be converted into hot carriers, strong local electromagnetic fields and/or heat. By combining multiple composites with various sizes and compositions, a broadband absorption could be obtained, resulting in significantly enhanced activity in photocatalytic model reactions under simulated sunlight. The major disadvantage of these plasmonic nanoparticles is their tendency to oxidize and deactivate. To overcome this, polymer shell stabilization strategies were found to be effective to protect the metal cores. Both conductive and non-conductive polymers were studied. For the former, a mix-and-wait strategy generating polyaniline shells of 2-5 nm was used, whille the latter was based on a Layer-by-Layer approach, allowing (sub) nanometer thickness control. For the actual H2 production experiments, the plasmonic loading was optimized in a pure water:methanol scavenger (7:1) mixture and initially the stabilization strategies proofed to be effective for simulated seawater (0.5M NaCl), even after 2 years. However, in real seawater, the activity decreased drastically due to aggregation of the photocatalyst in the presence of multivalent cations. Finally, facile immobilization strategies using 3D printing showed to be able to yield stable, solar active photocatalyst for real seawater splitting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:203196 Serial 9094  
Permanent link to this record
 

 
Author Souza, J.C.B.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A. pdf  doi
openurl 
  Title Soliton motion induced along ferromagnetic skyrmion chains in chiral thin nanotracks Type A1 Journal article
  Year 2023 Publication Journal of magnetism and magnetic materials Abbreviated Journal  
  Volume 587 Issue (down) Pages 171280-171289  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using atomistic magnetic simulations we investigate the soliton motion along a pinned skyrmion chain containing an interstitial skyrmion. We find that the soliton can exhibit stable motion along the chain without a skyrmion Hall effect for an extended range of drives. Under a constant drive the solitons have a constant velocity. We also measure the skyrmion velocity-current curves and identify the signatures of different phases including a pinned phase, stable soliton motion, and quasi-free motion at higher drives where all of the skyrmions depin from the pinning centers and move along the rigid wall. In the quasi-free motion regime, the velocity is oscillatory due to the motion of the skyrmions over the pinning sites. For increasing pinning strength, the onset of soliton motion shifts to higher values of current density. We also find that for stronger pinning, the characteristic velocity-current shape is affected by the annihilation of single or multiple skyrmions in the drive interval over which the soliton motion occurs. Our results indicate that stable skyrmion soliton motion is possible and that the solitons could be used as information carriers instead of the skyrmions themselves for technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001086712600001 Publication Date 2023-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access  
  Notes Approved Most recent IF: 2.7; 2023 IF: 2.63  
  Call Number UA @ admin @ c:irua:201139 Serial 9095  
Permanent link to this record
 

 
Author Menegaldo, B.; Aleccia, D.; Nuyts, G.; Amato, A.; Orsega, E.F.; Moro, G.; Balliana, E.; De Wael, K.; Moretto, L.M.; Beltran, V. pdf  doi
openurl 
  Title Stories of the life of Saint George : materials and techniques from a Barbelli mural painting Type A1 Journal article
  Year 2023 Publication Studies in conservation Abbreviated Journal  
  Volume Issue (down) Pages 1-14  
  Keywords A1 Journal article; Art; History; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Gian Giacomo Inchiocchio (1604-1656), better known as Barbelli, was one of the main exponents of Lombard painting of the seventeenth century. A large body of work is attributed to him, encompassing a wide range of drawings, murals, and oil paintings. However, despite his broad production, there are still many open questions regarding his painting techniques and materials. In this paper, a multi-analytical study of the cycle Stories of the life of Saint George that originally decorated the presbytery of the parish church of Casaletto Vaprio (Cremona, Italy) was performed, combining non-invasive techniques with the characterisation of selected micro samples. Results show that Barbelli used a very limited number of inorganic pigments, often mixing them together to create different colours and shades. Remains of caseinate and degradation products (i.e. weddellite and whewellite) related to the strappo intervention were also highlighted. The study helped to decipher the materials and technique of this painting, providing data that can be used as a reference to study his extensive production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001080139100001 Publication Date 2023-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-3630; 2047-0584 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.8 Times cited Open Access  
  Notes Approved Most recent IF: 0.8; 2023 IF: 0.578  
  Call Number UA @ admin @ c:irua:200302 Serial 9098  
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J. doi  openurl
  Title Supplementary Information for “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” Type Dataset
  Year 2023 Publication Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Supplementary information for the article “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” containing the videos of in-situ SEM imaging (mp4 files), raw data/images, and Jupyter notebooks (ipynb files) for data treatment and plots. Link to the preprint: https://doi.org/10.48550/arXiv.2308.15123 Explanation of the data files can be found in the Information.pdf file. The Videos folder contains the in-situ SEM image series mentioned in the paper. If there are any questions/bugs, feel free to contact me at lukas.grunewaldatuantwerpen.be  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:203389 Serial 9100  
Permanent link to this record
 

 
Author Xiao, H.; Zhang, Z.; Xu, W.; Wang, Q.; Xiao, Y.; Ding, L.; Huang, J.; Li, H.; He, B.; Peeters, F.M. pdf  url
doi  openurl
  Title Terahertz optoelectronic properties of synthetic single crystal diamond Type A1 Journal article
  Year 2023 Publication Diamond and related materials Abbreviated Journal  
  Volume 139 Issue (down) Pages 110266-110268  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A systematic investigation is undertaken for studying the optoelectronic properties of single crystal diamond (SCD) grown by microwave plasma chemical vapor deposition (MPCVD). It is indicated that, without intentional doping and surface treatment during the sample growth, the terahertz (THz) optical conduction in SCD is mainly affected by surface H-terminations, -OH-, O- and N-based functional groups. By using THz time-domain spectroscopy (TDS), we measure the transmittance, the complex dielectric constant and optical conductivity σ(ω) of SCD. We find that SCD does not show typical semiconductor characteristics in THz regime, where σ(ω) cannot be described rightly by the conventional Drude formula. Via fitting the real and imaginary parts of σ(ω) to the Drude-Smith formula, the ratio of the average carrier density to the effective electron mass γ = ne/m*, the electronic relaxation time τ and the electronic backscattering or localization factor can be determined optically. The temperature dependence of these parameters is examined. From the temperature dependence of γ, a metallic to semiconductor transition is observed at about T = 10 K. The temperature dependence of τ is mainly induced by electron coupling with acoustic-phonons and there is a significant effect of photon-induced electron backscattering or localization in SCD. This work demonstrates that THz TDS is a powerful technique in studying SCD which contains H-, N- and O-based bonds and has low electron density and high dc resistivity. The results obtained from this study can benefit us to gain an in-depth understanding of SCD and may provide new guidance for the application of SCD as electronic, optical and optoelectronic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record  
  Impact Factor 4.1 Times cited Open Access  
  Notes Approved Most recent IF: 4.1; 2023 IF: 2.561  
  Call Number UA @ admin @ c:irua:200920 Serial 9103  
Permanent link to this record
 

 
Author Parchomenko, A.; De Smet, S.; Pals, E.; Vanderreydt, I.; Van Opstal, W. url  doi
openurl 
  Title The circular economy potential of reversible bonding in smartphones Type A1 Journal article
  Year 2023 Publication Sustainable Production and Consumption Abbreviated Journal  
  Volume 41 Issue (down) Pages 362-378  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increased use of adhesive bonding in manufacturing is an important barrier to implement circular economy strategies, including repair, refurbishment, and high-quality recycling. The circular economy potential of reversible adhesives that are debondable on demand, however, remains largely unexplored. In this paper we apply an integrated technology-agnostic framework to smartphones to identify and quantify the circular econ-omy potential of reversible bonding. In this framework we combine insights from Life Cycle Assessment, Life Cycle Costing, and Statistical Entropy Analysis. We find that reversible bonding of smartphones can be an enabler for circular strategies and have a considerable positive impact on preserving higher functionality on a product, component, and material level. The major added value of reversible bonding is its potential to replace and update parts, retaining the main environmental hotspot of a smartphone. Firms, however, will not likely switch to this technology, even though bonding and debonding make up only a small fraction of total lifecycle costs. Therefore, policy recommendations include mandatory policies on repairability and public procurement favouring the use of reversible bonding techniques. This would alter incentives in contexts where consumer preferences for lease markets cannot be taken for granted. The evaluation of different debonding scenarios from three distinct per-spectives provides a comprehensive, more reliable, and robust understanding of the trade-offs related to debonding and its potential contribution to the circular economy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001078407500001 Publication Date 2023-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-5509 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 12.1 Times cited Open Access  
  Notes Approved Most recent IF: 12.1; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:200307 Serial 9104  
Permanent link to this record
 

 
Author Biondo, O. openurl 
  Title Towards a fundamental understanding of energy-efficient, plasma-based CO<sub>2</sub> conversion Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue (down) Pages 221 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-based CO2 conversion is worldwide gaining increasing interest. The aim of this work is to find potential pathways to improve the energy efficiency of plasma-based CO2 conversion beyond what is feasible for thermal chemistry. To do so, we use a combination of modeling and experiments to better understand the underlying mechanisms of CO2 conversion, ranging from non-thermal to thermal equilibrium conditions. Zero-dimensional (0D) chemical kinetics modelling, describing the detailed plasma chemistry, is developed to explore the vibrational kinetics of CO2, as the latter is known to play a crucial role in the energy efficient CO2 conversion. The 0D model is successfully validated against pulsed CO2 glow discharge experiments, enabling the reconstruction of the complex dynamics underlying gas heating in a pure CO2 discharge, paving the way towards the study of gas heating in more complex gas mixtures, such as CO2 plasmas with high dissociation degrees. Energy-efficient, plasma-based CO2 conversion can also be obtained upon the addition of a reactive carbon bed in the post-discharge region. The reaction between solid carbon and O2 to form CO allows to both reduce the separation costs and increase the selectivity towards CO, thus, increasing the energy efficiency of the overall conversion process. In this regard, a novel 0D model to infer the mechanism underlying the performance of the carbon bed over time is developed. The model outcome indicates that gas temperature and oxygen complexes formed at the surface of solid carbon play a fundamental and interdependent role. These findings open the way towards further optimization of the coupling between plasma and carbon bed. Experimentally, it has been demonstrated that “warm” plasmas (e.g. microwave or gliding arc plasmas) can yield very high energy efficiency for CO2 conversion, but typically only at reduced pressure. For industrial application, it will be important to realize such good energy efficiency at atmospheric pressure as well. However, recent experiments illustrate that the microwave plasma at atmospheric pressure is too close to thermal conditions to achieve a high energy efficiency. Hence, we use a comprehensive set of advanced diagnostics to characterize the plasma and the reactor performance, focusing on CO2 and CO2/CH4 microwave discharges. The results lead to a deeper understanding of the mechanism of power concentration with increasing pressure, typical of plasmas in most gases, which is of great importance for model validation and understanding of reactor performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:197213 Serial 9108  
Permanent link to this record
 

 
Author Van Echelpoel, R.; De Wael, K. doi  openurl
  Title Voltammetric drug testing makes sense at the border Type A1 Journal article
  Year 2024 Publication Nature Reviews Chemistry Abbreviated Journal  
  Volume Issue (down) Pages 1-2  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The European BorderSens project leverages voltammetric sensors, developed with end-users' input, to rapidly and accurately detect illicit drugs. By embracing practicalities and validation, this technology has the potential to combat the illicit drug problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142000900001 Publication Date 2024-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-3358 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202646 Serial 9112  
Permanent link to this record
 

 
Author Gao, Y.-J.; Jin, H.; Esteban, D.A.; Weng, B.; Saha, R.A.; Yang, M.-Q.; Bals, S.; Steele, J.A.; Huang, H.; Roeffaers, M.B.J. url  doi
openurl 
  Title 3D-cavity-confined CsPbBr₃ quantum dots for visible-light-driven photocatalytic C(sp³)-H bond activation Type A1 Journal article
  Year 2024 Publication Carbon Energy Abbreviated Journal  
  Volume Issue (down) Pages e559  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Metal halide perovskite (MHP) quantum dots (QDs) offer immense potential for several areas of photonics research due to their easy and low-cost fabrication and excellent optoelectronic properties. However, practical applications of MHP QDs are limited by their poor stability and, in particular, their tendency to aggregate. Here, we develop a two-step double-solvent strategy to grow and confine CsPbBr3 QDs within the three-dimensional (3D) cavities of a mesoporous SBA-16 silica scaffold (CsPbBr3@SBA-16). Strong confinement and separation of the MHP QDs lead to a relatively uniform size distribution, narrow luminescence, and good ambient stability over 2 months. In addition, the CsPbBr3@SBA-16 presents a high activity and stability for visible-light-driven photocatalytic toluene C(sp(3))-H bond activation to produce benzaldehyde with similar to 730 mu mol g(-1) h(-1) yield rate and near-unity selectivity. Similarly, the structural stability of CsPbBr3@SBA-16 QDs is superior to that of both pure CsPbBr3 QDs and those confined in MCM-41 with 1D channels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001223583600001 Publication Date 2024-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-9368 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:206000 Serial 9133  
Permanent link to this record
 

 
Author Yang, C.-Q.; Yin, Z.-W.; Li, W.; Cui, W.-J.; Zhou, X.-G.; Wang, L.-D.; Zhi, R.; Xu, Y.-Y.; Tao, Z.-W.; Sang, X.; Cheng, Y.-B.; Van Tendeloo, G.; Hu, Z.-Y.; Su, B.-L. pdf  doi
openurl 
  Title Atomically deciphering the phase segregation in mixed halide perovskite Type A1 Journal article
  Year 2024 Publication Advanced functional materials Abbreviated Journal  
  Volume Issue (down) Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Mixed-halide perovskites show promising applications in tandem solar cells owing to their adjustable bandgap. One major obstacle to their commercialization is halide phase segregation, which results in large open-circuit voltage deficiency and J-V hysteresis. However, the ambiguous interplay between structural origin and phase segregation often results in aimless and unspecific optimization strategies for the device's performance and stability. An atomic scale is directly figured out the abundant Ruddlesden-Popper anti-phase boundaries (RP-APBs) within a CsPbIBr2 polycrystalline film and revealed that phase segregation predominantly occurs at RP-APB-enriched interfaces due to the defect-mediated lattice strain. By compensating their structural lead halide, such RP-APBs are eliminated, and the decreasing of strain can be observed, resulting in the suppression of halide phase segregation. The present work provides the deciphering to precisely regulate the perovskite atomic structure for achieving photo-stable mixed halide wide-bandgap perovskites of high-efficiency tandem solar cell commercial applications. The phase segregation in mixed halide perovskite film predominantly occurs at Ruddlesden-Popper anti-phase boundaries (RP-APBs)-enriched interfaces due to the defect-mediated lattice strain. The RP-APBs defects can be eliminated by compensating for their structural lead halide deficiency, resulting in the suppression of halide phase segregation. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001200673300001 Publication Date 2024-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes Approved Most recent IF: 19; 2024 IF: 12.124  
  Call Number UA @ admin @ c:irua:205509 Serial 9134  
Permanent link to this record
 

 
Author Lelouche, S.N.K.; Lemir, I.; Biglione, C.; Craig, T.; Bals, S.; Horcajada, P. url  doi
openurl 
  Title AuNP/MIL-88B-NH₂ nanocomposite for the valorization of nitroarene by green catalytic hydrogenation Type A1 Journal article
  Year 2024 Publication Chemistry: a European journal Abbreviated Journal  
  Volume Issue (down) Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The efficiency of a catalytic process is assessed based on conversion, yield, and time effectiveness. However, these parameters are insufficient for evaluating environmentally sustainable research. As the world is urged to shift towards green catalysis, additional factors such as reaction media, raw material availability, sustainability, waste minimization and catalyst biosafety, need to be considered to accurately determine the efficacy and sustainability of the process. By combining the high porosity and versatility of metal organic frameworks (MOFs) and the activity of gold nanoparticles (AuNPs), efficient, cyclable and biosafe composite catalysts can be achieved. Thus, a composite based on AuNPs and the nanometric flexible porous iron(III) aminoterephthalate MIL-88B-NH2 was successfully synthesized and fully characterized. This nanocomposite was tested as catalyst in the reduction of nitroarenes, which were identified as anthropogenic water pollutants, reaching cyclable high conversion rates at short times for different nitroarenes. Both synthesis and catalytic reactions were performed using green conditions, and even further tested in a time-optimizing one-pot synthesis and catalysis experiment. The sustainability and environmental impact of the catalytic conditions were assessed by green metrics. Thus, this study provides an easily implementable synthesis, and efficient catalysis, while minimizing the environmental and health impact of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001204094600001 Publication Date 2024-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.3 Times cited Open Access  
  Notes Approved Most recent IF: 4.3; 2024 IF: 5.317  
  Call Number UA @ admin @ c:irua:205426 Serial 9135  
Permanent link to this record
 

 
Author Osorio-Tejada, J.; Escriba-Gelonch, M.; Vertongen, R.; Bogaerts, A.; Hessel, V. url  doi
openurl 
  Title CO₂ conversion to CO via plasma and electrolysis : a techno-economic and energy cost analysis Type A1 Journal article
  Year 2024 Publication Energy & environmental science Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Electrification and carbon capture technologies are essential for achieving net-zero emissions in the chemical sector. A crucial strategy involves converting captured CO2 into CO, a valuable chemical feedstock. This study evaluates the feasibility of two innovative methods: plasma activation and electrolysis, using clean electricity and captured CO2. Specifically, it compares a gliding arc plasma reactor with an embedded novel carbon bed system to a modern zero-gap type low-temperature electrolyser. The plasma method stood out with an energy cost of 19.5 GJ per tonne CO, marking a 43% reduction compared to electrolysis and conventional methods. CO production costs for plasma- and electrolysis-based plants were $671 and $962 per tonne, respectively. However, due to high uncertainty regarding electrolyser costs, the CO production costs in electrolysis-based plants may actually range from $570 to $1392 per tonne. The carbon bed system in the plasma method was a key factor in facilitating additional CO generation from O-2 and enhancing CO2 conversion, contributing to its cost-effectiveness. Challenges for electrolysis included high costs of equipment and low current densities. Addressing these limitations could significantly decrease production costs, but challenges arise from the mutual relationship between intrinsic parameters, such as CO2 conversion, CO2 input flow, or energy cost. In a future scenario with affordable feedstocks and equipment, costs could drop below $500 per tonne for both methods. While this may be more challenging for electrolysis due to complexity and expensive catalysts, plasma-based CO production appears more viable and competitive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001218045900001 Publication Date 2024-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 32.5 Times cited Open Access  
  Notes Approved Most recent IF: 32.5; 2024 IF: 29.518  
  Call Number UA @ admin @ c:irua:205986 Serial 9138  
Permanent link to this record
 

 
Author Ahmadi Eshtehardi, H. url  doi
openurl 
  Title Combined computational-experimental study on plasma and plasma catalysis for N2 fixation Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue (down) Pages 160 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Humanity feels the urge of shifting to a sustainable society more than at any other time in its history. Electrification of chemical industry plays a key role in this transition. The possibility of producing fertilizers from air using renewable electricity, and simultaneously, no greenhouse gas emission, resulted in an increasing interest toward plasma technology as a solution for electrification of a part of the chemical industry in the past few years. Additionally, the activation of nitrogen molecules by vibrational and electronic excitation reactions in plasma can lead to an energy-efficient process. Last but not least, the modularity (fast on/off characteristic) of plasma technology makes it capable of using intermittent renewable electricity on site for the production of fertilizers using air. All these advantages offered by plasma technology make it a potential solution for the on-site production of fertilizers in small and decentralized plants using air and renewable electricity, which leads to a considerable reduction in fertilizer production and transportation costs. However, industrialization of plasma-based NF suffers from several challenges, including challenges of plasma catalysis for the selective production of desired species, the high energy cost of plasma-based NF compared to current industrial processes, and the design and development of scaled up and energy-efficient plasma reactors for industrial purposes. In the framework of this thesis we have tried to add to the state-of-the-art (SOTA) in plasma-based NOx production and deal with its limitations using a combination of experimental and modelling work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205246 Serial 9139  
Permanent link to this record
 

 
Author Yao, W.; Hui, C.; Wang, L.; Wang, J.; Gielis, J.; Shi, P. doi  openurl
  Title Comparison of the performance of two polar equations in describing the geometries of elliptical fruits Type A1 Journal article
  Year 2024 Publication Botany letters Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords A1 Journal article; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract In nature, the two-dimensional (2D) profiles of fruits from many plants often resemble ellipses. However, it remains unclear whether these profiles strictly adhere to the ellipse equation, as many natural shapes resembling ellipses are actually better described as superellipses. The superellipse equation, which includes an additional parameter n compared to the ellipse equation, can generate a broader range of shapes, with the ellipse being just a special case of the superellipse. To investigate whether the 2D profiles of fruits are better described by ellipses or superellipses, we collected a total of 751 mature and undamaged fruits from 31 naturally growing plants of Cucumis melo L. var. agrestis Naud. Our analysis revealed that most adjusted root-mean-square errors (> 92% of the 751 fruits) for fitting the superellipse equation to the fruit profiles were consistently less than 0.0165. Furthermore, there were 638 of the 751 fruits (ca. 85%) with the 95% confidence intervals of the estimated parameter n in the superellipse equation not including 2. These findings suggest that the profiles of C. melo var. agrestis fruits align more closely with the superellipse equation than with the ellipse equation. This study provides evidence for the existence of the superellipse in fruit profiles, which has significant implications for studying fruit geometries and estimating fruit volumes using the solid of revolution formula. Furthermore, this discovery may contribute to a deeper understanding of the mechanisms driving the evolution of fruit shapes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001219634500001 Publication Date 2024-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2381-8107; 2381-8115 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.5 Times cited Open Access  
  Notes Approved Most recent IF: 1.5; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:205955 Serial 9140  
Permanent link to this record
 

 
Author Khan, S.U.; Matshitse, R.; Borah, R.; Nemakal, M.; Moiseeva, E.O.; Dubinina, T.V.; Nyokong, T.; Verbruggen, S.W.; De Wael, K. url  doi
openurl 
  Title Coupling of phthalocyanines with plasmonic gold nanoparticles by click chemistry for an enhanced singlet oxygen based photoelectrochemical sensing Type A1 Journal article
  Year 2024 Publication ChemElectroChem Abbreviated Journal  
  Volume Issue (down) Pages 1-11  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract Coupling photosensitizers (PSs) with plasmonic nanoparticles increases the photocatalytic activity of PSs as the localized surface plasmon resonance (LSPR) of plasmonic nanoparticles leads to extreme concentration of light in their vicinity known as the near-field enhancement effect. To realize this in a colloidal phase, efficient conjugation of the PS molecules with the plasmonic nanoparticle surface is critical. In this work, we demonstrate the coupling of phthalocyanine (Pc) molecules with gold nanoparticles (AuNPs) in the colloidal phase via click chemistry. This conjugated Pc-AuNPs colloidal system is shown to enhance the photocatalytic singlet oxygen (1O2) production over non-conjugated Pcs and hence improve the photoelectrochemical detection of phenols. The plasmonic enhancement of the 1O2 generation by Pcs was clearly elucidated by complementary experimental and computational classical electromagnetic models. The dependence of plasmonic enhancement on the spectral position of the excitation laser wavelength and the absorbance of the Pc molecules with respect to the wavelength specific near-field enhancement is clearly demonstrated. A high similar to 8 times enhancement is obtained with green laser (532 nm) at the LSPR due to the maximum near-field enhancement at the resonance wavelength. Zinc phthalocyanine is covalently linked to plasmonic AuNPs via click chemistry to investigate the synergistic effect that boosts the overall activity toward the detection of HQ under visible light illumination. The 1O2 quantum yield of ZnPc improved significantly after conjugating with AuNPs, resulting in enhanced photoelectrochemical activity. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001214481000001 Publication Date 2024-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access  
  Notes Approved Most recent IF: 4; 2024 IF: 4.136  
  Call Number UA @ admin @ c:irua:205962 Serial 9142  
Permanent link to this record
 

 
Author Cioni, M.; Delle Piane, M.; Polino, D.; Rapetti, D.; Crippa, M.; Arslan Irmak, E.; Pavan, G.M.; Van Aert, S.; Bals, S. doi  openurl
  Title Data for Sampling Real‐Time Atomic Dynamics in Metal Nanoparticles by Combining Experiments, Simulations, and Machine Learning Type Dataset
  Year 2024 Publication Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Even at low temperatures, metal nanoparticles (NPs) possess atomic dynamics that are key for their properties but challenging to elucidate. Recent experimental advances allow obtaining atomic‐resolution snapshots of the NPs in realistic regimes, but data acquisition limitations hinder the experimental reconstruction of the atomic dynamics present within them. Molecular simulations have the advantage that these allow directly tracking the motion of atoms over time. However, these typically start from ideal/perfect NP structures and, suffering from sampling limits, provide results that are often dependent on the initial/putative structure and remain purely indicative. Here, by combining state‐of‐the‐art experimental and computational approaches, how it is possible to tackle the limitations of both approaches and resolve the atomistic dynamics present in metal NPs in realistic conditions is demonstrated. Annular dark‐field scanning transmission electron microscopy enables the acquisition of ten high‐resolution images of an Au NP at intervals of 0.6 s. These are used to reconstruct atomistic 3D models of the real NP used to run ten independent molecular dynamics simulations. Machine learning analyses of the simulation trajectories allows resolving the real‐time atomic dynamics present within the NP. This provides a robust combined experimental/computational approach to characterize the structural dynamics of metal NPs in realistic conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205843 Serial 9143  
Permanent link to this record
 

 
Author Morad, V.; Stelmakh, A.; Svyrydenko, M.; Feld, L.G.; Boehme, S.C.; Aebli, M.; Affolter, J.; Kaul, C.J.; Schrenker, N.J.; Bals, S.; Sahin, Y.; Dirin, D.N.; Cherniukh, I.; Raino, G.; Baumketner, A.; Kovalenko, M.V. url  doi
openurl 
  Title Designer phospholipid capping ligands for soft metal halide nanocrystals Type A1 Journal article
  Year 2024 Publication Nature Abbreviated Journal  
  Volume 626 Issue (down) Pages 542-548  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission. Phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites and lead-free metal halide nanocrystals, which then exhibit enhanced robustness and optical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001176943100001 Publication Date 2023-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 64.8 Times cited Open Access  
  Notes Approved Most recent IF: 64.8; 2024 IF: 40.137  
  Call Number UA @ admin @ c:irua:204796 Serial 9144  
Permanent link to this record
 

 
Author De Luca, F.; Abate, S.; Bogaerts, A.; Centi, G. url  openurl
  Title Electrified CO2 conversion : integrating experimental, computational, and process simulation methods for sustainable chemical synthesis Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue (down) Pages xv, 152 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nowadays, the burning of fossil fuels, particularly petroleum, natural gas, and coal, meets the rising need for power and fuels for automobiles and industries. This has given rise to ecological and climate challenges. This thesis explores these issues from three distinct perspectives: (i) experimental, (ii) computational, and (iii) process simulation, with a focus on studying CO2 as an alternative and economically viable raw material. Firstly, the experimental study is focused on the synthesis, characterization, and testing of novel catalysts for electroreduction of CO2 and oxalic acid, an intermediate product of CO2. Electrocatalysts based on Cu supported by citrus (orange and lemon) peel biomass are prepared. These catalysts exhibit activity in the electrochemical reduction of CO2, emphasizing the effectiveness of biomasses, particularly orange peels, as environmentally friendly precursors for sustainable and efficient electrocatalysts. In addition, graphitic carbon nitrides/TiO2 nanotubes (g-C3N4/TiNT) composites are prepared for the electrocatalytic reduction of oxalic acid to glycolic acid, revealing superior electrocatalytic properties compared to pristine TiNT. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electronic microscopy were performed for all the prepared electrocatalysts. Delving into the reduction of CO2 on Cu catalysts, a computational study about the synthesis of methanol on Cu(111) surface is performed by using the Vienna Ab initio Simulation Package. A systematic study is carried out to define the activation energies of the elementary reactions by using mGGA DF. Consequently, it is shown that the rate-controlling step is CH3O* hydrogenation and the formate pathway on Cu(111) proceeds through the HCOOH* intermediate. Finally, the process simulation, performed by using the software Aspen Plus 11 from AspenTech Inc., is based on the comparison of a catalytic (oxidation of ethylene glycol) and an electrocatalytic process (CO2 electroreduction chain) to synthesize glycolic acid. An economic analysis of the operational and investment costs reveals that the catalytic process is more cost-effective due to the current instability of electrocatalysts and proton exchange membranes, resulting in increased maintenance costs and, consequently, higher prices for the product.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205262 Serial 9147  
Permanent link to this record
 

 
Author Wu, X.; Ding, J.; Cui, W.; Lin, W.; Xue, Z.; Yang, Z.; Liu, J.; Nie, X.; Zhu, W.; Van Tendeloo, G.; Sang, X. url  doi
openurl 
  Title Enhanced electrical properties of Bi2-xSbxTe3 nanoflake thin films through interface engineering Type A1 Journal article
  Year 2024 Publication Energy & environment materials Abbreviated Journal  
  Volume Issue (down) Pages e12755-8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure-property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi2-xSbxTe3 (x = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi2-xSbxTe3 thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi1.8Sb0.2Te3 nanoflake films reaches 1.72 mW m(-1) K-2, which is 43% higher than that of a pure Bi2Te3 thin film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001204495900001 Publication Date 2024-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205438 Serial 9148  
Permanent link to this record
 

 
Author Vlasov, E. url  doi
openurl 
  Title Exploiting secondary electrons in transmission electron microscopy for 3D characterization of nanoparticle morphologies Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue (down) Pages x, 118 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography (ET) is an indispensable tool for determining the three-dimensional (3D) structure of nanomaterials in (scanning) transmission electron microscopy ((S)TEM). ET enables 3D characterization of a variety of nanomaterials across different fields, including life sciences, chemistry, solid-state physics, and materials science down to atomic resolution. However, the acquisition of a conventional tilt series for ET is a time-consuming process and thus cannot capture fast transformations of materials in realistic conditions. Moreover, only a limited number of nanoparticles (NPs) can be investigated, hampering a general understanding of the average properties of the material. Therefore, alternative characterization techniques that allow for high-resolution characterization of the surface structure without the need to acquire a full tilt series in ET are required which would enable a more time-efficient investigation with better statistical value. In the first part of this work, an alternative technique for the characterization of the morphology of NPs to improve the throughput and temporal resolution of ET is presented. The proposed technique exploits surface-sensitive secondary electron (SE) imaging in STEM employed using a modification of electron beam-induced current (EBIC) setup. The time- and dose efficiency of SEEBIC are tested in comparison with ET and superior spatial resolution is shown compared to conventional scanning electron microscopy. Finally, contrast artefacts arising in SEEBIC images are described, and their origin is discussed. The second part of my thesis focuses on real applications of the proposed technique and introduces a high-throughput methodology that combines images acquired by SEEBIC with quantitative image analysis to retrieve information about the helicity of gold nanorods. It shows that SEEBIC imaging overcomes the limitation of ET providing a general understanding of the connection between structure and chiroptical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:204905 Serial 9149  
Permanent link to this record
 

 
Author Ozdemir, I.; Arkin, H.; Milošević, M.V.; V. Barth, J.; Aktuerk, E. pdf  doi
openurl 
  Title Exploring the adsorption mechanisms of neurotransmitter and amino acid on Ti3C2-MXene monolayer : insights from DFT calculations Type A1 Journal article
  Year 2024 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 46 Issue (down) Pages 104169-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, we conducted a systematic density functional theory (DFT) investigation of the interaction between Ti3C2-MXene monolayer and biological molecules dopamine (DA) and serine (Ser) as neurotransmitter and amino acid, respectively. Our calculations show good agreement with previous literature findings for the optimized Ti3C2 monolayer. We found that DA and Ser molecules bind to the Ti3C2 surface with adsorption energies of -2.244 eV and -3.960 eV, respectively. The adsorption of Ser resulted in the dissociation of one H atom. Electronic density of states analyses revealed little changes in the electronic properties of the Ti3C2-MXene monolayer upon adsorption of the biomolecules. We further investigated the interaction of DA and Ser with Ti3C2 monolayers featuring surface -termination with OH functional group, and Ti -vacancy. Our calculations indicate that the adsorption energies significantly decrease in the presence of surface termination, with adsorption energies of -0.097 eV and -0.330 eV for DA and Ser, respectively. Adsorption energies on the Ti -vacancy surface, on the other hand, are calculated to be -3.584 eV and -3.856 eV for DA and Ser, respectively. Our results provide insights into the adsorption behavior of biological molecules on Ti3C2-MXene, demonstrating the potential of this material for biosensing and other biomedical applications. These findings highlight the importance of surface modifications in the development of functional materials and devices based on Ti3C2-MXene, and pave the way for future investigations into the use of 2D materials for biomedical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001206950300001 Publication Date 2024-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.2 Times cited Open Access  
  Notes Approved Most recent IF: 6.2; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:205977 Serial 9150  
Permanent link to this record
 

 
Author Xu, H.; Li, H.; Gauquelin, N.; Chen, X.; Wu, W.-F.; Zhao, Y.; Si, L.; Tian, D.; Li, L.; Gan, Y.; Qi, S.; Li, M.; Hu, F.; Sun, J.; Jannis, D.; Yu, P.; Chen, G.; Zhong, Z.; Radovic, M.; Verbeeck, J.; Chen, Y.; Shen, B. pdf  doi
openurl 
  Title Giant tunability of Rashba splitting at cation-exchanged polar oxide interfaces by selective orbital hybridization Type A1 Journal article
  Year 2024 Publication Advanced materials Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The 2D electron gas (2DEG) at oxide interfaces exhibits extraordinary properties, such as 2D superconductivity and ferromagnetism, coupled to strongly correlated electrons in narrow d-bands. In particular, 2DEGs in KTaO3 (KTO) with 5d t2g orbitals exhibit larger atomic spin-orbit coupling and crystal-facet-dependent superconductivity absent for 3d 2DEGs in SrTiO3 (STO). Herein, by tracing the interfacial chemistry, weak anti-localization magneto-transport behavior, and electronic structures of (001), (110), and (111) KTO 2DEGs, unambiguously cation exchange across KTO interfaces is discovered. Therefore, the origin of the 2DEGs at KTO-based interfaces is dramatically different from the electronic reconstruction observed at STO interfaces. More importantly, as the interface polarization grows with the higher order planes in the KTO case, the Rashba spin splitting becomes maximal for the superconducting (111) interfaces approximately twice that of the (001) interface. The larger Rashba spin splitting couples strongly to the asymmetric chiral texture of the orbital angular moment, and results mainly from the enhanced inter-orbital hopping of the t2g bands and more localized wave functions. This finding has profound implications for the search for topological superconductors, as well as the realization of efficient spin-charge interconversion for low-power spin-orbitronics based on (110) and (111) KTO interfaces. An unambiguous cation exchange is discovered across the interfaces of (001), (110), and (111) KTaO3 2D electron gases fabricated at room temperature. Remarkably, the (111) interfaces with the highest superconducting transition temperature also turn out to show the strongest electron-phonon interaction and the largest Rashba spin splitting. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001219658400001 Publication Date 2024-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 29.4 Times cited Open Access  
  Notes Approved Most recent IF: 29.4; 2024 IF: 19.791  
  Call Number UA @ admin @ c:irua:206037 Serial 9152  
Permanent link to this record
 

 
Author Bampouli, A.; Goris, Q.; Hussain, M.N.; Louisnard, O.; Stefanidis, G.D.; Van Gerven, T. pdf  doi
openurl 
  Title Importance of design and operating parameters in a sonication system for viscous solutions : effects of input power, horn tip diameter and reactor capacity Type A1 Journal article
  Year 2024 Publication Chemical engineering and processing Abbreviated Journal  
  Volume 198 Issue (down) Pages 109715-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This study investigates the distribution of ultrasound (US) energy in a batch system for solutions with viscosity ranging from 1 to approximately 3000 mPas. Sonication was performed using horn type configurations operating at 20-30 kHz and rated power capacity of 50 or 200 W. Two different tip diameters (3 or 7 mm) and two insertion depths (35 or 25 mm) within vessels of different sizes ( approximate to 60 or 130 ml) were utilized. Additionally, a special conical tip design was employed. For each experimental setup, the calorimetric efficiency was estimated, the cavitationally active regions were visualized using the sonochemiluminescence (SCL) method and bubble cluster formation inside the vessel was macroscopically observed using a high speed camera (HSC). In the viscosity range tested, the calorimetry results showed that the efficiency and continuous operation of the device depend on both the rated power and the horn tip diameter. The ratio between electrical and calorimetric power input remained consistently around 40 to 50% across the different configurations for water, but for the 123.2 mPas solution exhibited significant variation ranging from 40 to 85%. Moreover, the power density in the smaller reactor was found to be nearly double compared to the larger one. The SCL analysis showed multiple cavitationally active zones in all setups, and the zones intensity decreased considerably with increase of the solutions viscosity. The results for the cone tip were not conclusive, but can be used as the basis for further investigation. The current research highlights the importance of thoroughly understanding the impact of each design parameter, and of establishing characterization methodologies to assist in the future development of scaled-up, commercial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001218630800001 Publication Date 2024-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0255-2701 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.3 Times cited Open Access  
  Notes Approved Most recent IF: 4.3; 2024 IF: 2.234  
  Call Number UA @ admin @ c:irua:206003 Serial 9154  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: