toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Ranjbari, E.; Hadjmohammadi, M.R.; Kiekens, F.; De Wael, K.
  Title Mixed hemi/ad-micelle sodium dodecyl sulfate-coated magnetic iron oxide nanoparticles for the efficient removal and trace determination of rhodamine-B and rhodamine-6G Type A1 Journal article
  Year 2015 Publication Analytical chemistry Abbreviated Journal Anal Chem
  Volume 87 Issue (down) 15 Pages 7894-7901
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Mixed hemi/ad-micelle sodium dodecyl sulfate (SDS)-coated magnetic iron oxide nanoparticles (MHAMS-MIONPs) were used as an efficient adsorbent for both removal and preconcentration of two important carcinogenic xanthine dyes named rhodamine-B (RB) and rhodamine-6G (RG). To gain insight in the configuration of SDS molecules on the surface of MIONPs, zeta potential measurements were performed in different [SDS]/[MIONP] ratios. Zeta potential data indicated that mixed hemi/ad-micelle MHAM was formed in [SDS]/[MIONP] ratios over the range of 1.1 to 7.3. Parameters affecting the adsorption of dyes were optimized as removal efficiency by one variable at-a-time and response surface methodology; the obtained removal efficiencies were ∼100%. Adsorption kinetic and equilibrium studies, under the optimum condition (pH = 2; amount of MIONPs = 87.15 mg; [SDS]/[MIONP] ratio = 2.9), showed that adsorption of both dyes are based on the pseudo-second-order and the Langmuir isotherm models, respectively. The maximum adsorption capacities for RB and RG were 385 and 323 mg g1, respectively. MHAMS-MIONPs were also applied for extraction of RB and RG. Under optimum conditions (pH = 2; amount of damped MHAMS-MIONPs = 90 mg; eluent solvent volume = 2.6 mL of 3% acetic acid in acetonitrile), extraction recoveries for 0.5 mg L1 of RB and RG were 98% and 99%, with preconcentration factors of 327 and 330, respectively. Limit of detection obtained for rhodamine dyes were <0.7 ng mL1. Finally, MHAMS-MIONPs were successfully applied for both removal and trace determination of RB and RG in environmental and wastewater samples.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000359277900056 Publication Date 2015-07-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.32 Times cited 36 Open Access
  Notes ; ; Approved Most recent IF: 6.32; 2015 IF: 5.636
  Call Number UA @ admin @ c:irua:126583 Serial 5730
Permanent link to this record
 

 
Author Van Eyndhoven, G.; Kurttepeli, M.; van Oers, C.J.; Cool, P.; Bals, S.; Batenburg, K.J.; Sijbers, J.
  Title Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 148 Issue (down) 148 Pages 10-19
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab; Laboratory of adsorption and catalysis (LADCA)
  Abstract Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm POre REconstruction and Segmentation is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000345973000002 Publication Date 2014-08-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 7 Open Access OpenAccess
  Notes Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436
  Call Number c:irua:119083 Serial 2672
Permanent link to this record
 

 
Author Gorle, C.; Garcia Sánchez, C.; Iaccarino, G.
  Title Quantifying inflow and RANS turbulence model form uncertainties for wind engineering flows Type A1 Journal article
  Year 2015 Publication Journal of wind engineering and industrial aerodynamics T2 – 6th International Symposium on Computational Wind Engineering (CWE), JUN 08-12, 2014, Hamburg, GERMANY Abbreviated Journal J Wind Eng Ind Aerod
  Volume 144 Issue (down) 144 Pages 202-212
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Reynolds-averaged Navier-Stokes (RANS) simulations are often used in the wind engineering practice for the analysis of turbulent bluff body flows. An approach that allows identifying the uncertainty related to the use of reduced-order turbulence models in RANS simulations would significantly increase the confidence in the use of simulation results as a basis for design decisions. In the present study we apply a strategy that enables quantifying these uncertainties by introducing perturbations in the Reynolds stress tensor to simulations of the flow in downtown Oklahoma City. The method is combined with a framework to quantify uncertainties in the inflow wind direction and intensity, and the final result of the UQ approach is compared to field measurement data for the velocity at 13 locations in the downtown area. (C) 2015 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Elsevier science bv Place of Publication Amsterdam Editor
  Language Wos 000360874900023 Publication Date 2015-08-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0167-6105 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.049 Times cited 22 Open Access
  Notes Approved Most recent IF: 2.049; 2015 IF: 1.414
  Call Number UA @ lucian @ c:irua:127843 Serial 4230
Permanent link to this record
 

 
Author Euan-Diaz, E.; Herrera-Velarde, S.; Misko, V.R.; Peeters, F.M.; Castaneda-Priego, R.
  Title Structural transitions and long-time self-diffusion of interacting colloids confined by a parabolic potential Type A1 Journal article
  Year 2015 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
  Volume 142 Issue (down) 142 Pages 024902
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We report on the ordering and dynamics of interacting colloidal particles confined by a parabolic potential. By means of Brownian dynamics simulations, we find that by varying the magnitude of the trap stiffness, it is possible to control the dimension of the system and, thus, explore both the structural transitions and the long-time self-diffusion coefficient as a function of the degree of confinement. We particularly study the structural ordering in the directions perpendicular and parallel to the confinement. Further analysis of the local distribution of the first-neighbors layer allows us to identify the different structural phases induced by the parabolic potential. These results are summarized in a structural state diagram that describes the way in which the colloidal suspension undergoes a structural re-ordering while increasing the confinement. To fully understand the particle dynamics, we take into account hydrodynamic interactions between colloids; the parabolic potential constricts the available space for the colloids, but it does not act on the solvent. Our findings show a non-linear behavior of the long-time self-diffusion coefficient that is associated to the structural transitions induced by the external field. (C) 2015 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000348129700053 Publication Date 2015-01-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.965 Times cited 7 Open Access
  Notes ; This work was partially supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-Vl), PIFI 3.4 – PROMEP, and CONACyT (Grant Nos. 61418/2007, 102339/2008, Ph.D. scholarship 230171/2010). R.C.-P. also acknowledges financial support provided by the Marcos Moshinsky fellowship 2013-2014. The authors also thank to the General Coordination of Information and Communications Technologies (CGSTIC) at Cinvestav for providing HPC resources on the Hybrid Cluster Super-computer Xiuhcoatl, which have contributed partially to the research results reported in this paper. ; Approved Most recent IF: 2.965; 2015 IF: 2.952
  Call Number c:irua:123832 Serial 3267
Permanent link to this record
 

 
Author Chen, Y.Z.; Trier, F.; Wijnands, T.; Green, R.J.; Gauquelin, N.; Egoavil, R.; Christensen, D.V.; Koster, G.; Huijben, M.; Bovet, N.; Macke, S.; He, F.; Sutarto, R.; Andersen, N.H.; Sulpizio, J.A.; Honig, M.; Prawiroatmodjo, G.E.D.K.; Jespersen, T.S.; Linderoth, S.; Ilani, S.; Verbeeck, J.; Van Tendeloo, G.; Rijnders, G.; Sawatzky, G.A.; Pryds, N.
  Title Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping Type A1 Journal article
  Year 2015 Publication Nature materials Abbreviated Journal Nat Mater
  Volume 14 Issue (down) 14 Pages 801-806
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metalinsulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La1−xSrxMnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikovde Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000358530100022 Publication Date 2015-06-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 39.737 Times cited 170 Open Access
  Notes 246102 IFOX; 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; FWO G004413N; esteem2jra3 ECASJO; Approved Most recent IF: 39.737; 2015 IF: 36.503
  Call Number c:irua:127184 c:irua:127184UA @ admin @ c:irua:127184 Serial 1163
Permanent link to this record
 

 
Author Sathiya, M.; Abakumov, A.M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M. .; Vezin, H.; Laisa, C.P.; Prakash, A.S.; Gonbeau, D.; Van Tendeloo, G.; Tarascon, J.M.
  Title Origin of voltage decay in high-capacity layered oxide electrodes Type A1 Journal article
  Year 2015 Publication Nature materials Abbreviated Journal Nat Mater
  Volume 14 Issue (down) 14 Pages 230-238
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Although Li-rich layered oxides (Li1+xNiyCozMn1−x−y−zO2 > 250 mAh g−1) are attractive electrode materials providing energy densities more than 15% higher than todays commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1−yTiyO3 phases with capacities of ~240 mAh g−1 exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the chargedischarge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1−ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000348600200024 Publication Date 2014-12-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 39.737 Times cited 395 Open Access
  Notes 246791 Countatoms; 312483 Esteem2; esteem2_ta Approved Most recent IF: 39.737; 2015 IF: 36.503
  Call Number c:irua:132555 c:irua:132555 Serial 2528
Permanent link to this record
 

 
Author Bia, P.; Caratelli, D.; Mescia, L.; Gielis, J.
  Title Analysis and synthesis of supershaped dielectric lens antennas Type A1 Journal article
  Year 2015 Publication IET microwaves, antennas and propagation Abbreviated Journal
  Volume 9 Issue (down) 14 Pages 1497-1504
  Keywords A1 Journal article; Engineering sciences. Technology; Mass communications; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract A novel class of supershaped dielectric lens antennas, whose geometry is described by the three-dimensional (3D) Gielis formula, is introduced and analysed. To this end, a hybrid modelling approach based on geometrical and physical optics is adopted in order to efficiently analyse the multiple wave reflections occurring within the lens and to evaluate the relevant impact on the radiation properties of the antenna under analysis. The developed modelling procedure has been validated by comparison with numerical results already reported in the literature and, afterwards, applied to the electromagnetic characterisation of Gielis dielectric lens antennas with shaped radiation pattern. Furthermore, a dedicated optimisation algorithm based on quantum particle swarm optimisation has been developed for the synthesis of 3D supershaped lens antennas with single feed, as well as with beamforming capabilities.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000364491200002 Publication Date 2015-08-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1751-8725 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:128659 Serial 7441
Permanent link to this record
 

 
Author McCalla, E.; Sougrati, M.T.; Rousse, G.; Berg, E.J.; Abakumov, A.; Recham, N.; Ramesha, K.; Sathiya, M.; Dominko, R.; Van Tendeloo, G.; Novák, P.; Tarascon, J.M.;
  Title Understanding the roles of anionic redox and oxygen release during electrochemical cycling of lithium-rich layered Li4FeSbO6 Type A1 Journal article
  Year 2015 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
  Volume 137 Issue (down) 137 Pages 4804-4814
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Li-rich oxides continue to be of immense interest as potential next generation Li-ion battery positive electrodes, and yet the role of oxygen during cycling is still poorly understood. Here, the complex electrochemical behavior of Li4FeSbO6 materials is studied thoroughly with a variety of methods. Herein, we show that oxygen release occurs at a distinct voltage plateau from the peroxo/superoxo formation making this material ideal for revealing new aspects of oxygen redox processes in Li-rich oxides. Moreover, we directly demonstrate the limited reversibility of the oxygenated species (O-2(n-); n = 1, 2, 3) for the first time. We also find that during charge to 4.2 V iron is oxidized from +3 to an unusual +4 state with the concomitant formation of oxygenated species. Upon further charge to 5.0 V, an oxygen release process associated with the reduction of iron +4 to +3 is present, indicative of the reductive coupling mechanism between oxygen and metals previously reported. Thus, in full state of charge, lithium removal is fully compensated by oxygen only, as the iron and antimony are both very close to their pristine states. Besides, this charging step results in complex phase transformations that are ultimately destructive to the crystallinity of the material. Such findings again demonstrate the vital importance of fully understanding the behavior of oxygen in such systems. The consequences of these new aspects of the electrochemical behavior of lithium-rich oxides are discussed in detail.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000353177100036 Publication Date 2015-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.858 Times cited 86 Open Access
  Notes Approved Most recent IF: 13.858; 2015 IF: 12.113
  Call Number c:irua:126019 Serial 3805
Permanent link to this record
 

 
Author Semkina, A.; Abakumov, M.; Grinenko, N.; Abakumov, A.; Skorikov, A.; Mironova, E.; Davydova, G.; Majouga, A.G.; Nukolova, N.; Kabanov, A.; Chekhonin, V.;
  Title Core-shell-corona doxorubicin-loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics Type A1 Journal article
  Year 2015 Publication Colloids and surfaces: B : biointerfaces Abbreviated Journal Colloid Surface B
  Volume 136 Issue (down) 136 Pages 1073-1080
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Superparamagnetic iron oxide magnetic nanoparticles (MNPs) are successfully used as contrast agents in magnetic-resonance imaging. They can be easily functionalized for drug delivery functions, demonstrating great potential for both imaging and therapeutic applications. Here we developed new pH-responsive theranostic core-shell-corona nanoparticles consisting of superparamagentic Fe3O4 core that displays high T2 relaxivity, bovine serum albumin (BSA) shell that binds anticancer drug, doxorubicin (Dox) and poly(ethylene glycol) (PEG) corona that increases stability and biocompatibility. The nanoparticles were produced by adsorption of the BSA shell onto the Fe3O4 core followed by crosslinking of the protein layer and subsequent grafting of the PEG corona using monoamino-terminated PEG via carbodiimide chemistry. The hydrodynamic diameter, zeta-potential, composition and T2 relaxivity of the resulting nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis and T2-relaxometry. Nanoparticles were shown to absorb Dox molecules, possibly through a combination of electrostatic and hydrophobic interactions. The loading capacity (LC) of the nanoparticles was 8 wt.%. The Dox loaded nanoparticles release the drug at a higher rate at pH 5.5 compared to pH 7.4 and display similar cytotoxicity against C6 and HEK293 cells as the free Dox. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000367408100131 Publication Date 2015-11-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0927-7765 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.887 Times cited 37 Open Access
  Notes Approved Most recent IF: 3.887; 2015 IF: 4.152
  Call Number UA @ lucian @ c:irua:131075 Serial 4157
Permanent link to this record
 

 
Author Ercolani, G.; Gorle, C.; Garcia Sánchez, C.; Corbari, C.; Mancini, M.
  Title RAMS and WRF sensitivity to grid spacing in large-eddy simulations of the dry convective boundary layer Type A1 Journal article
  Year 2015 Publication Computers and fluids Abbreviated Journal Comput Fluids
  Volume 123 Issue (down) 123 Pages 54-71
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Large-eddy simulations (LESS) are frequently used to model the planetary boundary layer, and the choice of the grid cell size, numerical schemes and sub grid model can significantly influence the simulation results. In the present paper the impact of grid spacing on LES of an idealized atmospheric convective boundary layer (CBL), for which the statistics and flow structures are well understood, is assessed for two mesoscale models: the Regional Atmospheric Modeling System (RAMS) and the Weather Research and Forecasting model (WRF). Nine simulations are performed on a fixed computational domain (6 x 6 x 2 km), combining three different horizontal (120, 60, 30 m) and vertical (20, 10, 5 m) spacings. The impact of the cell size on the CBL is investigated by comparing turbulence statistics and velocity spectra. The results demonstrate that both WRF and RAMS can perform LES of the CBL under consideration without requiring extremely high computational loads, but they also indicate the importance of adopting a computational grid that is adequate for the numerical schemes and subgrid models used. In both RAMS and WRF a horizontal cell size of 30 m is required to obtain a suitable turbulence reproduction throughout the CBL height. Considering the vertical grid spacing, WRF produced similar results for all the three tested values, while in RAMS it should be ensured that the aspect ratio of the cells does not exceed a value of 3. The two models were found to behave differently in function of the grid resolution, and they have different shortcomings in their prediction of CBL turbulence. WRF exhibits enhanced damping at the smallest scales, while RAMS is prone to the appearance of spurious fluctuations in the flow when the grid aspect ratio is too high. (C) 2015 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000365367500006 Publication Date 2015-10-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0045-7930 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.313 Times cited 3 Open Access
  Notes Approved Most recent IF: 2.313; 2015 IF: 1.619
  Call Number UA @ lucian @ c:irua:130200 Serial 4236
Permanent link to this record
 

 
Author Papageorgiou, D.G.; Filippousi, M.; Pavlidou, E.; Chrissafis, K.; Van Tendeloo, G.; Bikiaris, D.
  Title Effect of clay modification on structureproperty relationships and thermal degradation kinetics of \beta-polypropylene/clay composite materials Type A1 Journal article
  Year 2015 Publication Journal of thermal analysis and calorimetry Abbreviated Journal J Therm Anal Calorim
  Volume 122 Issue (down) 122 Pages 393-406
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The influence of neat and organically modified montmorillonite on the structureproperty relationships of a β-nucleated polypropylene matrix has been thoroughly investigated. High-angle annular dark field scanning transmission electron microscopy revealed that the organic modification of clay facilitated the dispersion of the clay, while X-ray diffractograms showed the α-nucleating effect of the clays on the β-nucleated matrix. The results from tensile tests showed that the organic modification of MMT affected profoundly only the tensile strength at yield and at break. The effect of the organic modification of the clay on the thermal stability of the composites was finally evaluated by thermogravimetric analysis, where the samples filled with oMMT decomposed faster than the ones filled with neat MMT, due to the decomposition of the organic salts that were initially used for the modification of MMT. A kinetics study of the thermal degradation of the composites was also performed, in order to export additional conclusions on the activation energy of the samples.
  Address
  Corporate Author Thesis
  Publisher Place of Publication S.l. Editor
  Language Wos 000361431200042 Publication Date 2015-04-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1388-6150;1588-2926; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.953 Times cited 7 Open Access
  Notes 262348 Esmi Approved Most recent IF: 1.953; 2015 IF: 2.042
  Call Number c:irua:127492 Serial 805
Permanent link to this record
 

 
Author Ramakers, M.; Michielsen, I.; Aerts, R.; Meynen, V.; Bogaerts, A.
  Title Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume 12 Issue (down) 12 Pages 755-763
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract This paper demonstrates that the CO2 conversion in a dielectric barrier discharge rises drastically upon addition of Ar or He, and the effect is more pronounced for Ar than for He. The effective CO2 conversion, on the other hand, drops upon addition of Ar or He, which is logical due to the lower CO2 content in the gas mixture, and the same is true for the energy efficiency, because a considerable fraction of the energy is then consumed into ionization/excitation of Ar or He atoms. The higher absolute CO2 conversion upon addition of Ar or He can be explained by studying in detail the Lissajous plots and the current profiles. The breakdown voltage is lower in the CO2/Ar and CO2/He mixtures, and the discharge gap is more filled with plasma, which enhances the possibility for CO2 conversion. The rates of electron impact excitationdissociation of CO2, estimated from the electron densities and mean electron energies, are indeed higher in the CO2/Ar and (to a lower extent) in the CO2/He mixtures, compared to the pure CO2 plasma. Moreover, charge transfer between Ar+ or Ar2+ ions and CO2, followed by electron-ion dissociative recombination of the CO2+ ions, might also contribute to, or even be dominant for the CO2 dissociation. All these effects can explain the higher CO2 conversion, especially upon addition of Ar, but also upon addition of He.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000359672400007 Publication Date 2015-02-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.846 Times cited 63 Open Access
  Notes Approved Most recent IF: 2.846; 2015 IF: 2.453
  Call Number c:irua:126822 Serial 799
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Khalilov, U.; van Duin, A.C.T.; Bogaerts, A.
  Title Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species : a reactive molecular dynamics study Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume 12 Issue (down) 12 Pages 162-171
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Reactive molecular dynamics simulations are performed to study the interaction of reactive oxygen species, such as OH, HO2 and H2O2, with the endotoxic biomolecule lipid A of the gram-negative bacterium Escherichia coli. It is found that the aforementioned plasma species can destroy the lipid A, which consequently results in reducing its toxic activity. All bond dissociation events are initiated by hydrogen-abstraction reactions. However, the mechanisms behind these dissociations are dependent on the impinging plasma species, i.e. a clear difference is observed in the mechanisms upon impact of HO2 radicals and H2O2 molecules on one hand and OH radicals on the other hand. Our simulation results are in good agreement with experimental observations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000350275400005 Publication Date 2014-09-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.846 Times cited 18 Open Access
  Notes Approved Most recent IF: 2.846; 2015 IF: 2.453
  Call Number c:irua:123540 Serial 1589
Permanent link to this record
 

 
Author Vanmeert, F.; van der Snickt, G.; Janssens, K.
  Title Plumbonacrite identified by X-ray powder diffraction tomography as a missing link during degradation of red lead in a Van Gogh painting Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
  Volume 54 Issue (down) 12 Pages 3607-3610
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Red lead, a semiconductor pigment used by artists since antiquity, is known to undergo several discoloration phenomena. These transformations are either described as darkening of the pigment caused by the formation of either plattnerite (β-PbO2) or galena (PbS) or as whitening by which red lead is converted into anglesite (PbSO4) or (hydro)cerussite (2 PbCO3⋅Pb(OH)2; PbCO3). X-ray powder diffraction tomography, a powerful analytical method that allows visualization of the internal distribution of different crystalline compounds in complex samples, was used to investigate a microscopic paint sample from a Van Gogh painting. A very rare lead mineral, plumbonacrite (3 PbCO3⋅ Pb(OH)2⋅PbO), was revealed to be present. This is the first reported occurrence of this compound in a painting dating from before the mid 20th century. It constitutes the missing link between on the one hand the photoinduced reduction of red lead and on the other hand (hydro)cerussite, and thus sheds new light on the whitening of red lead.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000351178300008 Publication Date 2015-02-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited 24 Open Access
  Notes ; The authors acknowledge L. Van der Loeff and M. Leeuwestein (Kroller-Muller Museum) for providing the paint sample. We thank Dr. J. Jaroszewicz (WUT) for performing the CT measurements. This research was carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF). We thank Dr. G. Falkenberg and the members of his team for their assistance in using beam line P06. We acknowledge financial support from the University of Antwerp GOA projects “XANES meets EELS” and “SOLARPaint”, as well as from BELSPO (Brussels) Project S2-ART and FWO (Brussels) project “ESRF-Dubble”. ; Approved Most recent IF: 11.994; 2015 IF: 11.261
  Call Number UA @ admin @ c:irua:124620 Serial 5774
Permanent link to this record
 

 
Author Caretti, I.; Keulemans, M.; Verbruggen, S.W.; Lenaerts, S.; Van Doorslaer, S.
  Title Light-induced processes in plasmonic Gold/TiO2 photocatalysts studied by electron paramagnetic resonance Type A1 Journal article
  Year 2015 Publication Topics in catalysis Abbreviated Journal Top Catal
  Volume 58 Issue (down) 12 Pages 776-782
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract X-band and W-band continuous-wave (CW) electron paramagnetic resonance (EPR) was used to study in situ light-induced (LI) mechanisms in commercial P90 titania (90 % anatase/10 % rutile) compared to plasmon-enhanced Au-P90 photocatalyst. These materials were excited using UV and 532 nm visible light to generate different excitation states and distinguish pure charge separation from plasmon-assisted resonance processes. Up to nine different photoinduced species of trapped electrons and holes were identified. LI CW EPR of P90 is presented for the first time, showing a UV excitation response similar to the well-known mixed-phase P25 titania. It is shown that incorporation of Au nanoparticles in Au-P90 and formation of a Schottky junction affects the charge separation state of the catalyst under UV light. Moreover, Au impregnation activated P90 through plasmon hot electron injection under visible light excitation (plasmonic sensitization effect). In general, EPR proved to be crucial to determine the different photoexciation paths and reactions that regulate plasmonic photocatalysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000360011200008 Publication Date 2015-08-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1022-5528 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.486 Times cited 22 Open Access
  Notes ; IC and SVD acknowledge the Research Foundation-Flanders (FWO) for financial support (Grant G.0687.13). SV thanks FWO for financial support through a postdoctoral fellowship and MK acknowledges the agency for Innovation by Science and Technology in Flanders (IWT) for financial support (Ph.D. Grant). ; Approved Most recent IF: 2.486; 2015 IF: 2.365
  Call Number UA @ admin @ c:irua:127413 Serial 5968
Permanent link to this record
 

 
Author Tirez, K.; Vanhoof, C.; Bronders, J.; Seuntjens, P.; Bleux, N.; Berghmans, P.; De Brucker, N.; Vanhaecke, F.
  Title Do ICP-MS based methods fulfill the EU monitoring requirements for the determination of elements in our environment? Type A1 Journal article
  Year 2015 Publication Environmental science : processes & impacts Abbreviated Journal
  Volume 17 Issue (down) 12 Pages 2034-2050
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Undoubtedly, the most important advance in the environmental regulatory monitoring of elements of the last decade is the widespread introduction of ICP-mass spectrometry (ICP-MS) due to standards developed by the European Committee for Standardization. The versatility of ICP-MS units as a tool for the determination of major, minor and trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, Ti, V and Zn) in surface water, groundwater, river sediment, topsoil, subsoil, fine particulates and atmospheric deposition is illustrated in this paper. Ranges of background concentrations for major, minor and trace elements obtained from a regional case study (Flanders, Belgium) are summarized for all of these environmental compartments and discussed in the context of a harmonized implementation of European regulatory monitoring requirements. The results were derived from monitoring programs in support of EU environmental quality directives and were based on a selection of (non-polluted) background locations. Because of the availability of ICP-MS instruments nowadays, it can be argued that the main hindrance for meeting the European environmental monitoring requirements is no longer the technical feasibility of analysis at these concentration levels, but rather (i) potential contamination during sampling and analysis, (ii) too limited implementation of quality control programs, validating the routinely applied methods (including sampling and low level verification) and (iii) lack of harmonization in reporting of the chemical environmental status between the individual member states.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000365915600005 Publication Date 2015-10-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7887; 2050-7895 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:130316 Serial 7821
Permanent link to this record
 

 
Author Huygh, S.; Neyts, E.C.
  Title Adsorption of C and CHx radicals on anatase (001) and the influence of oxygen vacancies Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue (down) 119 Pages 4908-4921
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The adsorption of C and CHx radicals on anatase (001) was studied using DFT within the generalized gradient approximation using the Perde-Burke-Ernzerhof (PBE) functional. We have studied the influence of oxygen vacancies in and at the surface on the adsorption properties of the radicals. For the oxygen vacancies in anatase (001), the most stable vacancy is located at the surface. For this vacancy, the maximal adsorption strength of C and CH decreases compared to the adsorption on the stoichiometric surface, but it increases for CH2 and CH3. If an oxygen vacancy is present in the first subsurface layer, the maximal adsorption strength increases for C, CH, CH2, and CH3. When the vacancy is present in the next subsurface layer, we find that only the CH3 adsorption is enhanced, while the maximal adsorption energies for the other radical species decrease. Not only does the precise location of the oxygen vacancy determine the maximal adsorption interaction, it also influences the adsorption strengths of the radicals at different surface configurations. This determines the probability of finding a certain adsorption configuration at the surface, which in turn influences the possible surface reactions. We find that C preferentially adsorbs far away from the oxygen vacancy, while CH2 and CH3 adsorb preferentially at the oxygen vacancy site. A fraction of CH partially adsorbs at the oxygen vacancy, and another fraction adsorbs further away from the vacancy.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000350840700052 Publication Date 2015-02-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 13 Open Access
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:124909 Serial 63
Permanent link to this record
 

 
Author Quan Manh, P.; Pourtois, G.; Swerts, J.; Pierloot, K.; Delabie, A.
  Title Atomic layer deposition of Ruthenium on Ruthenium surfaces : a theoretical study Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue (down) 119 Pages 6592-6603
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Atomic, layer deposition,(ALD of ruthenium using two ruthenium precursors, i.e., Ru(C5H5)(2) (RuCp2) and Ru(C5H5)(C4H4N) (RuCpPy), is studied using density functional theory. By investigating the reaction mechanisms On bare ruthenium surfaces, i.e., (001), (101), and (100), and H-terminated surfaces, an atomistic insight in the Ru ALD is provided. The calculated results show that on the Ru surfaces both RuCp2 and RuCpPy an undergo dehydrogenation and ligand dissociation reactions. RuCpPy is more reactive than RuCp2. By forming a, strong, bond between N of Py and Ru of the surface, RuCpPy can easily chemisorb on the surfaces. The reactions of RuCp2,On the Surfaces are less favorable the adsorption is not strong enough This could be a,factor contributing to the higher growth-per-cycle of Ru using RuCpPy, as observed experimentally. By Studying, the adsorption on H-terminated Ru surfaces, We showed that H Can prevent the adsorption of the precursors, thus inhibiting the growth of Ru. Our calculations indicate that the H content on the surface can have an impact on the growth-per-cycle. Finally, our simulations also demonstrate large impacts of the surface structure on the reaction mechanisms. Of the three surfaces, the (100) surface, which is the less stable and has a zigzag surface structure, is also the most reactive one.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000351970800015 Publication Date 2015-03-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 10 Open Access
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:125544 Serial 171
Permanent link to this record
 

 
Author Kato, T.; Neyts, E.C.; Abiko, Y.; Akama, T.; Hatakeyama, R.; Kaneko, T.
  Title Kinetics of energy selective Cs encapsulation in single-walled carbon nanotubes for damage-free and position-selective doping Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue (down) 119 Pages 11903-11908
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A method has been developed for damage-free cesium (Cs) encapsulation within single-walled carbon nanotubes (SWNTs) with fine position selectivity. Precise energy tuning of Cs-ion irradiation revealed that there is a clear energy window (2060 eV) for the efficient encapsulation of Cs through the hexagonal network of SWNT sidewalls without causing significant damage. This minimum energy threshold of Cs-ion encapsulation (∼20 eV) matches well with the value obtained by ab initio simulation (∼22 eV). Furthermore, position-selective Cs encapsulation was carried out, resulting in the successful formation of pn-junction SWNT thin films with excellent environmental stability.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000355495600072 Publication Date 2015-05-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 3 Open Access
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:125928 Serial 1760
Permanent link to this record
 

 
Author De Bie, C.; van Dijk, J.; Bogaerts, A.
  Title The Dominant Pathways for the Conversion of Methane into Oxygenates and Syngas in an Atmospheric Pressure Dielectric Barrier Discharge Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue (down) 119 Pages 22331-22350
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A one-dimensional fluid model for a dielectric barrier discharge in CH4/O2 and CH4/CO2 gas mixtures is developed. The model describes the gas-phase chemistry for partial oxidation and for dry reforming of methane. The spatially averaged densities of the various plasma species are presented as a function of time and initial gas mixing ratio. Besides, the conversion of the inlet gases and the selectivities of the reaction products are calculated. Syngas, higher hydrocarbons, and higher oxygenates are typically found to be important reaction products. Furthermore, the main underlying reaction pathways for the formation of syngas, methanol, formaldehyde, and other higher oxygenates are determined.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000362385700010 Publication Date 2015-09-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 46 Open Access
  Notes This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the Universiteit Antwerpen. The authors also acknowledge financial support from the IAP/7 (Interuniversity Attraction Pole) program “PSI-Physical Chemistry of Plasma- Surface Interactions” by the Belgian Federal Office for Science Policy (BELSPO) and from the Fund for Scientific Research Flanders (FWO). Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:128774 Serial 3960
Permanent link to this record
 

 
Author Nicholls, D.; Li, R.R.; Ware, B.; Pansegrau, C.; Çakir, D.; Hoffmann, M.R.; Oncel, N.
  Title Scanning tunneling microscopy and density functional theory study on zinc(II)-phthalocyanine tetrasulfonic acid on bilayer epitaxial graphene on silicon carbide(0001) Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue (down) 119 Pages 9845-9850
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Zinc(II)-phthalocyanine tetrasulfonic acid (Zn-PcS) molecules physisorbed on bilayer epitaxial graphene on silicon carbide (SiC(0001)) were studied by using scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT). Two different methods were used to deposit Zn-PcS molecules and regardless of the method being used, the surface coverage stayed very low indicating the weakness of surface-molecule interaction. STS measurements revealed that derivative of tunneling current with respect to voltage (dI/dV) measured on Zn-PcS molecules did not exhibit the characteristic dip observed on dI/dV curves of pristine bilayer epitaxial graphene. DFT calculations show that the energy of the lowest unoccupied molecular orbital (LUMO) of the Zn-PcS molecule is below the Dirac point of graphene which enhances local density of states (LDOS). We attribute the disappearance of the dip in the dI/dV curves measured on the Zn-PcS/bilayer system to the LUMO of Zn-PcS. Charge density calculations along Zn-PcS/graphene interface reveal that there is a small charge transfer from graphene to the molecule. Calculated adsorption energy (3.13 eV) of the molecule is notably low and is consistent with the observed low surface coverage at room temperature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000354339000020 Publication Date 2015-04-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 3 Open Access
  Notes ; We gratefully acknowledge the NSF (Grant Nos.: DMR-1306101, EPS-814442, and EPS-1354366) for financial support. ; Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:126370 Serial 2947
Permanent link to this record
 

 
Author Esfahani; Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M.
  Title Structural transitions in monolayer MOS2 by lithium adsorption Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue (down) 119 Pages 10602-10609
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Based on first-principles calculations, we study the structural stability of the H and T phases of monolayer MoS2 upon Li doping. Our calculations demonstrate that it is possible to stabilize a distorted T phase of MoS2 over the H phase through adsorption of Li atoms on the MoS2 surface. Through molecular dynamics and phonon calculations, we show that the T phase of MoS2 is dynamically unstable and undergoes considerable distortions. The type of distortion depends on the concentration of adsorbed Li atoms and changes from zigzag-like to diamond-like when increasing the Li doping. There exists a substantial energy barrier to transform the stable H phase to the distorted T phases, which is considerably reduced by increasing the concentration of Li atoms. We show that it is necessary that the Li atoms adsorb on both sides of the MoS2 monolayer to reduce the barrier sufficiently. Two processes are examined that allow for such two-sided adsorption, namely, penetration through the MoS2 layer and diffusion over the MoS2 surface. We show that while there is only a small barrier of 0.24 eV for surface diffusion, the amount of energy needed to pass through a pure MoS2 layer is of the order of similar or equal to 2 eV. However, when the MoS2 layer is covered with Li atoms the amount of energy that Li atoms should gain to penetrate the layer is drastically reduced and penetration becomes feasible.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000354912200051 Publication Date 2015-04-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 96 Open Access
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl) and the Methusalem program of the Flemish government. H. S is supported by an FWO Pegasus-Long Marie Curie fellowship. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government department EWI. ; Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:126409 Serial 3270
Permanent link to this record
 

 
Author Heijkers, S.; Snoeckx, R.; Kozák, T.; Silva, T.; Godfroid, T.; Britun, N.; Snyders, R.; Bogaerts, A.
  Title CO2 conversion in a microwave plasma reactor in the presence of N2 : elucidating the role of vibrational levels Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue (down) 119 Pages 12815-12828
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A chemical kinetics model is developed for a CO2/N2 microwave plasma, focusing especially on the vibrational levels of both CO2 and N2. The model is used to calculate the CO2 and N2 conversion as well as the energy efficiency of CO2 conversion for different power densities and for N2 fractions in the CO2/N2 gas mixture ranging from 0 to 90%. The calculation results are compared with measurements, and agreements within 23% and 33% are generally found for the CO2 conversion and N2 conversion, respectively. To explain the observed trends, the destruction and formation processes of both CO2 and N2 are analyzed, as well as the vibrational distribution functions of both CO2 and N2. The results indicate that N2 contributes in populating the lower asymmetric levels of CO2, leading to a higher absolute CO2 conversion upon increasing N2 fraction. However, the effective CO2 conversion drops because there is less CO2 initially present in the gas mixture; thus, the energy efficiency also drops with rising N2 fraction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000356317500005 Publication Date 2015-05-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 56 Open Access
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:126325 Serial 3523
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Peeters, F.M.
  Title Tuning carrier confinement in the MoS2/WS2 lateral heterostructure Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue (down) 119 Pages 9580-9586
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract To determine and control the spatial confinement of charge carriers is of importance for nanoscale optoelectronic device applications. Using first-principles calculations, we investigate the tunability of band alignment and Charge localization in lateral and combined lateral vertical heterostructures of MoS2 and WS2. First, we Show that a type-II to type-I band alignment transition takes place when tensile strain is applied on the WS2 region. This band alignment transition is a result of the different response of the band edge states with strain and is caused by their different wave function characters. Then we show that the presence of the grain boundary introduces localized in-gap states. The boundary at the armchair interface significantly modifies the charge distribution of the valence band maximum (VBM) state, whereas in a heterostructure with tilt grain domains both conducation band maximum (CBM) and VBM are found to be localized around the grain boundary. We also found that the thickness of the constituents in a lateral heterostructure also determines how the electrons and holes are confined. Creating combined lateral vertical heterostructures of MOS2/WS2 provides another way cif tuning the charge confinement. These results provide possible ways to tune the carrier confinement in MoS2/WS2 heterostructures, which are interesting for its practical: applications in the future.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000353930700066 Publication Date 2015-04-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 73 Open Access
  Notes ; This work was supported by the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship and J.K. by a FWO Pegasus Marie Curie-short Fellowship. ; Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:126381 Serial 3747
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M.
  Title Vacancy formation and oxidation characteristics of single layer TiS3 Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue (down) 119 Pages 10709-10715
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The structural, electronic, and magnetic properties of pristine, defective, and oxidized monolayer TiS3 are investigated using first-principles calculations in the framework of density functional theory. We found that a single layer of TiS3 is a direct band gap semiconductor, and the bonding nature of the crystal is fundamentally different from other transition metal chalcogenides. The negatively charged surfaces of single layer TiS3 makes this crystal a promising material for lubrication applications. The formation energies of possible vacancies, i.e. S, Ti, TiS, and double S, are investigated via total energy optimization calculations. We found that the formation of a single S vacancy was the most likely one among the considered vacancy types. While a single S vacancy results in a nonmagnetic, semiconducting character with an enhanced band gap, other vacancy types induce metallic behavior with spin polarization of 0.3-0.8 mu(B). The reactivity of pristine and defective TiS3 crystals against oxidation was investigated using conjugate gradient calculations where we considered the interaction with atomic O, O-2, and O-3. While O-2 has the lowest binding energy with 0.05-0.07 eV, O-3 forms strong bonds stable even at moderate temperatures. The strong interaction (3.9-4.0 eV) between atomic O and TiS3 results in dissociative adsorption of some O-containing molecules. In addition, the presence of S-vacancies enhances the reactivity of the surface with atomic O, whereas it had a negative effect on the reactivity with O-2 and O-3 molecules.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000354912200063 Publication Date 2015-04-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 51 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. RI., H.S., and R.T.S. acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:126410 Serial 3829
Permanent link to this record
 

 
Author Alyörük, M.M.; Aierken, Y.; Çakır, D.; Peeters, F.M.; Sevik, C.
  Title Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue (down) 119 Pages 23231-23237
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Piezoelectricity is a unique material property that allows one to convert mechanical energy into electrical one or vice versa. Transition metal dichalcogenides (TMDC) and transition metal dioxides (TMDO) are expected to have great potential for piezoelectric device applications due to their noncentrosymmetric and two-dimensional crystal structure. A detailed theoretical investigation of the piezoelectric stress (e 11 ) and piezoelectric strain (d 11 ) coefficients of single layer TMDCs and TMDOs with chemical formula MX 2 (where M= Cr, Mo, W, Ti, Zr, Hf, Sn and X = O, S, Se, Te) is presented by using first-principles calculations based on density func- tional theory. We predict that not only the Mo- and W-based members of this family but also the other materials with M= Cr, Ti, Zr and Sn exhibit highly promising piezoelectric properties. CrTe 2 has the largest e 11 and d 11 coefficients among the group VI elements (i.e., Cr, Mo, and W). In addition, the relaxed-ion e 11 and d 11 coefficients of SnS 2 are almost the same as those of CrTe 2 . Furthermore, TiO 2 and ZrO 2 pose comparable or even larger e 11 coefficients as compared to Mo- and W-based TMDCs and TMDOs. Our calculations reveal that TMDC and TMDO structures are strong candidates for future atomically thin piezoelectric applications such as transducers, sensors, and energy harvesting devices due to their piezoelectric coefficients that are comparable (even larger) to currently used bulk piezoelectric materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000362702100054 Publication Date 2015-09-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 134 Open Access
  Notes M.M.A and C.S. acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK- 113F333). C.S. acknowledges support from Anadolu University (BAP-1407F335, -1505F200), and Turkish Academy of Sciences (TUBA-GEBIP). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:129418 Serial 4035
Permanent link to this record
 

 
Author Berdiyorov, G.; Harrabi, K.; Mehmood, U.; Peeters, F.M.; Tabet, N.; Zhang, J.; Hussein, I.A.; McLachlan, M.A.
  Title Derivatization and diffusive motion of molecular fullerenes : ab initio and atomistic simulations Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 118 Issue (down) 118 Pages 025101
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using first principles density functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of derivatization on the electronic and transport properties of C-60 fullerene. As a typical example, we consider [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM), which forms one of the most efficient organic photovoltaic materials in combination with electron donating polymers. Extra peaks are observed in the density of states (DOS) due to the formation of new electronic states localized at/near the attached molecule. Despite such peculiar behavior in the DOS of an isolated molecule, derivatization does not have a pronounced effect on the electronic transport properties of the fullerene molecular junctions. Both C-60 and PCBM show the same response to finite voltage biasing with new features in the transmission spectrum due to voltage induced delocalization of some electronic states. We also study the diffusive motion of molecular fullerenes in ethanol solvent and inside poly(3-hexylthiophene) lamella using reactive molecular dynamics simulations. We found that the mobility of the fullerene reduces considerably due to derivatization; the diffusion coefficient of C-60 is an order of magnitude larger than the one for PCBM. (c) 2015 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000357961000036 Publication Date 2015-07-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 2 Open Access
  Notes ; K.H., U.M. and I.A.H. would like to thank the National Science, Technology and Innovation Program of KACST for funding this research under Project No. 12-ENE2379-04. They also acknowledge support from KFUPM and Research Institute. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
  Call Number c:irua:127098 Serial 652
Permanent link to this record
 

 
Author Zhao, S.-X.; Gao, F.; Wang, Y.-P.; Wang, Y.-N.; Bogaerts, A.
  Title Effects of feedstock availability on the negative ion behavior in a C4F8 inductively coupled plasma Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 118 Issue (down) 118 Pages 033301
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this paper, the negative ion behavior in a C4F8 inductively coupled plasma (ICP) is investigated using a hybrid model. The model predicts a non-monotonic variation of the total negative ion density with power at low pressure (1030 mTorr), and this trend agrees well with experiments that were carried out in many fluorocarbon (fc) ICP sources, like C2F6, CHF3, and C4F8. This behavior is explained by the availability of feedstock C4F8 gas as a source of the negative ions, as well as by the presence of low energy electrons due to vibrational excitation at low power. The maximum of the negative ion density shifts to low power values upon decreasing pressure, because of the more pronounced depletion of C4F8 molecules, and at high pressure (∼50 mTorr), the anion density continuously increases with power, which is similar to fc CCP sources. Furthermore, the negative ion composition is identified in this paper. Our work demonstrates that for a clear understanding of the negative ion behavior in radio frequency C4F8 plasma sources, one needs to take into account many factors, like the attachment characteristics, the anion composition, the spatial profiles, and the reactor configuration. Finally, a detailed comparison of our simulation results with experiments is conducted.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000358429200004 Publication Date 2015-07-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 1 Open Access
  Notes Approved Most recent IF: 2.068; 2015 IF: 2.183
  Call Number c:irua:126735 Serial 861
Permanent link to this record
 

 
Author Milovanović, S.P.; Moldovan, D.; Peeters, F.M.
  Title Veselago lensing in graphene with a p-n junction: Classical versus quantum effects Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 118 Issue (down) 118 Pages 154308
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The feasibility of Veselago lensing in graphene with a p-n junction is investigated numerically for realistic injection leads. Two different set-ups with two narrow leads are considered with absorbing or reflecting side edges. This allows us to separately determine the influence of scattering on electron focusing for the edges and the p-n interface. Both semiclassical and tight-binding simulations show a distinctive peak in the transmission probability that is attributed to the Veselago lensing effect. We investigate the robustness of this peak on the width of the injector, the position of the p-n interface, and different gate potential profiles. Furthermore, the influence of scattering by both short- and long-range impurities is considered.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000363535800022 Publication Date 2015-10-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 19 Open Access
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2015 IF: 2.183
  Call Number c:irua:129452 Serial 3969
Permanent link to this record
 

 
Author Schoeters, B.; Leenaerts, O.; Pourtois, G.; Partoens, B.
  Title Ab-initio study of the segregation and electronic properties of neutral and charged B and P dopants in Si and Si/SiO2 nanowires Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 118 Issue (down) 118 Pages 104306
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We perform first-principles calculations to investigate the preferred positions of B and P dopants, both neutral and in their preferred charge state, in Si and Si/SiO2 core-shell nanowires (NWs). In order to understand the observed trends in the formation energy, we isolate the different effects that determine these formation energies. By making the distinction between the unrelaxed and the relaxed formation energy, we separate the impact of the relaxation from that of the chemical environment. The unrelaxed formation energies are determined by three effects: (i) the effect of strain caused by size mismatch between the dopant and the host atoms, (ii) the local position of the band edges, and (iii) a screening effect. In the case of the SiNW (Si/SiO2 NW), these effects result in an increase of the formation energy away from the center (interface). The effect of relaxation depends on the relative size mismatch between the dopant and host atoms. A large size mismatch causes substantial relaxation that reduces the formation energy considerably, with the relaxation being more pronounced towards the edge of the wires. These effects explain the surface segregation of the B dopants in a SiNW, since the atomic relaxation induces a continuous drop of the formation energy towards the edge. However, for the P dopants, the formation energy starts to rise when moving from the center but drops to a minimum just next to the surface, indicating a different type of behavior. It also explains that the preferential location for B dopants in Si/SiO2 core-shell NWs is inside the oxide shell just next to the interface, whereas the P dopants prefer the positions next to the interface inside the Si core, which is in agreement with recent experiments. These preferred locations have an important impact on the electronic properties of these core-shell NWs. Our simulations indicate the possibility of hole gas formation when B segregates into the oxide shell.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000361636900031 Publication Date 2015-09-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 3 Open Access
  Notes This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. Approved Most recent IF: 2.068; 2015 IF: 2.183
  Call Number c:irua:128729 Serial 4056
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: