toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Huygh, S.; Neyts, E.C. pdf  url
doi  openurl
  Title Adsorption of C and CHx radicals on anatase (001) and the influence of oxygen vacancies Type A1 Journal article
  Year (down) 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages 4908-4921  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The adsorption of C and CHx radicals on anatase (001) was studied using DFT within the generalized gradient approximation using the Perde-Burke-Ernzerhof (PBE) functional. We have studied the influence of oxygen vacancies in and at the surface on the adsorption properties of the radicals. For the oxygen vacancies in anatase (001), the most stable vacancy is located at the surface. For this vacancy, the maximal adsorption strength of C and CH decreases compared to the adsorption on the stoichiometric surface, but it increases for CH2 and CH3. If an oxygen vacancy is present in the first subsurface layer, the maximal adsorption strength increases for C, CH, CH2, and CH3. When the vacancy is present in the next subsurface layer, we find that only the CH3 adsorption is enhanced, while the maximal adsorption energies for the other radical species decrease. Not only does the precise location of the oxygen vacancy determine the maximal adsorption interaction, it also influences the adsorption strengths of the radicals at different surface configurations. This determines the probability of finding a certain adsorption configuration at the surface, which in turn influences the possible surface reactions. We find that C preferentially adsorbs far away from the oxygen vacancy, while CH2 and CH3 adsorb preferentially at the oxygen vacancy site. A fraction of CH partially adsorbs at the oxygen vacancy, and another fraction adsorbs further away from the vacancy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000350840700052 Publication Date 2015-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 13 Open Access  
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:124909 Serial 63  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: