|   | 
Details
   web
Records
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D.
Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue (up) 94 Pages 52140-52146
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200-400 degrees C) is reported. The use of the fluorinated Fe(hfa)(2)TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine) molecular precursor in Ar/O-2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in gamma-Fe2O3 at 200 degrees C and alpha-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 degrees C the formation of highly oriented alpha-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344389000041 Publication Date 2014-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 4 Open Access
Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:121239 Serial 2813
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D.
Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
Year 2014 Publication Rsc Advances Abbreviated Journal Rsc Adv
Volume Issue (up) 94 Pages 52140-52146
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200400 °C) is reported. The use of the fluorinated Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) molecular precursor in Ar/O2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in γ-Fe2O3 at 200 °C and α-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 °C the formation of highly oriented α-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344389000041 Publication Date 2014-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 4 Open Access
Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:119529 Serial 2814
Permanent link to this record
 

 
Author da Costa; Zarenia, M.; Chaves, A.; Pereira, J.M., Jr.; Farias, G.A.; Peeters, F.M.
Title Hexagonal-shaped monolayer-bilayer quantum disks in graphene : a tight-binding approach Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 035415
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding approach, we investigate confined states in two different hybrid monolayer-bilayer systems: (i) a hexagonal monolayer area surrounded by bilayer graphene in the presence of a perpendicularly applied electric field and (ii) a hexagonal bilayer graphene dot surrounded by monolayer graphene. The dependence of the energy levels on dot size and external magnetic field is calculated. We find that the energy spectrum for quantum dots with zigzag edges consists of states inside the gap which range from dot-localized states, edge states, to mixed states coexisting together, whereas for dots with armchair edges, only dot-localized states are observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379502200008 Publication Date 2016-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas No. 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation, under the process No. BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, the Brazilian Program Science Without Borders (CsF), and the Lemann Foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:134947 Serial 4190
Permanent link to this record
 

 
Author Zhao, H.J.; Wu, W.; Zhou, W.; Shi, Z.X.; Misko, V.R.; Peeters, F.M.
Title Reentrant dynamics of driven pancake vortices in layered superconductors Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 024514
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dynamics of driven pancake vortices in layered superconductors is studied using molecular-dynamics simulations. We found that, with increasing driving force, for strong interlayer coupling, the preexisted vortex lines either directly depin or first transform to two-dimensional (2D) pinned states before they are depinned, depending on the pinning strength. In a narrow region of pinning strengths, we found an interesting repinning process, which results in a negative differential resistance. For weak interlayer coupling, individually pinned pancake vortices first form disordered 2D flow and then transform to ordered three-dimensional (3D) flow with increasing driving force. However, for extremely strong pinning, the random pinning-induced thermal-like Langevin forces melt 3D vortex lines, which results in a persistent 2D flow in the fast-sliding regime. In the intermediate regime, the peak effect is found: With increasing driving force, the moving pancake vortices first crystallize to moving 3D vortex lines, and then these 3D vortex lines are melted, leading to the appearance of a reentrant 2D flow state. Our results are summarized in a dynamical phase diagram.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380097800006 Publication Date 2016-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; We acknowledge useful discussions with C. Olson Reichhardt. This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20150595), National Natural Science Foundation of China (Grants No. NSFC-U1432135 and No. 11611140101). V.R.M. acknowledges support from the “Odysseus” program of the Flemish Government and Flemish Science Foundation (FWO-Vl), the FWO-Vl, and the Research Fund of the University of Antwerp. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:134943 Serial 4238
Permanent link to this record
 

 
Author Zhang, L.; Fernández Becerra, V.; Covaci, L.; Milošević, M.V.
Title Electronic properties of emergent topological defects in chiral p-wave superconductivity Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 024520
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Chiral p-wave superconductors in applied magnetic field can exhibit more complex topological defects than just conventional superconducting vortices, due to the two-component order parameter (OP) and the broken time-reversal symmetry. We investigate the electronic properties of those exotic states, some of which contain clusters of one-component vortices in chiral components of the OP and/or exhibit skyrmionic character in the relative OP space, all obtained as a self-consistent solution of the microscopic Bogoliubov-de Gennes equations. We reveal the link between the local density of states (LDOS) of the novel topological states and the behavior of the chiral domain wall between the OP components, enabling direct identification of those states in scanning tunneling microscopy. For example, a skyrmion always contains a closed chiral domain wall, which is found to be mapped exactly by zero-bias peaks in LDOS. Moreover, the LDOS exhibits electron-hole asymmetry, which is different from the LDOS of conventional vortex states with same vorticity. Finally, we present the magnetic field and temperature dependence of the properties of a skyrmion, indicating that this topological defect can be surprisingly large in size, and can be pinned by an artificially indented nonsuperconducting closed path in the sample. These features are expected to facilitate the experimental observation of skyrmionic states, thereby enabling experimental verification of chirality in emerging superconducting materials.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000381479500002 Publication Date 2016-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:135742 Serial 4303
Permanent link to this record
 

 
Author Klimin, S.N.; Tempere, J.; Verhelst, N.; Milošević, M.V.
Title Finite-temperature vortices in a rotating Fermi gas Type A1 Journal article
Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A
Volume 94 Issue (up) 94 Pages 023620
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract Vortices and vortex arrays have been used as a hallmark of superfluidity in rotated, ultracold Fermi gases. These superfluids can be described in terms of an effective field theory for a macroscopic wave function representing the field of condensed pairs, analogous to the Ginzburg-Landau theory for superconductors. Here we establish how rotation modifies this effective field theory, by rederiving it starting from the action of Fermi gas in the rotating frame of reference. The rotation leads to the appearance of an effective vector potential, and the coupling strength of this vector potential to the macroscopic wave function depends on the interaction strength between the fermions, due to a renormalization of the pair effective mass in the effective field theory. The mass renormalization derived here is in agreement with results of functional renormalization-group theory. In the extreme Bose-Einstein condensate regime, the pair effective mass tends to twice the fermion mass, in agreement with the physical picture of a weakly interacting Bose gas of molecular pairs. Then we use our macroscopic-wave-function description to study vortices and the critical rotation frequencies to form them. Equilibrium vortex state diagrams are derived and they are in good agreement with available results of the Bogoliubov-de Gennes theory and with experimental data.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y. Editor
Language Wos 000381473100001 Publication Date 2016-08-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9934 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 6 Open Access
Notes ; We are grateful to G. C. Strinati and H. Warringa for valuable discussions. This research was supported by the Flemish Research Foundation Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N, by the Scientific Research Network of the Flemish Research Foundation, Grant No. WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved Most recent IF: 2.925
Call Number UA @ lucian @ c:irua:135686 Serial 4304
Permanent link to this record
 

 
Author Sisakht, E.T.; Fazileh, F.; Zare, M.H.; Zarenia, M.; Peeters, F.M.
Title Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 085417
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding (TB) approximation with inclusion of the spin-orbit interaction, we predict a topological phase transition in the electronic band structure of phosphorene in the presence of axial strains. We derive a low-energy TB Hamiltonian that includes the spin-orbit interaction for bulk phosphorene. Applying a compressive biaxial in-plane strain and perpendicular tensile strain in ranges where the structure is still stable leads to a topological phase transition. We also examine the influence of strain on zigzag phosphorene nanoribbons (zPNRs) and the formation of the corresponding protected edge states when the system is in the topological phase. For zPNRs up to a width of 100 nm the energy gap is at least three orders of magnitude larger than the thermal energy at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000381600800004 Publication Date 2016-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 76 Open Access
Notes ; This work was supported by Ministry of Science, Research and Technology, Iran. M.Z. acknowledges support as a postdoctoral fellow of the Flemish Research Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:135643 Serial 4309
Permanent link to this record
 

 
Author Juchtmans, R.; Guzzinati, G.; Verbeeck, J.
Title Extension of Friedel's law to vortex-beam diffraction Type A1 Journal article
Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A
Volume 94 Issue (up) 94 Pages 033858
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Friedel's law states that the modulus of the Fourier transform of real functions is centrosymmetric, while the phase is antisymmetric. As a consequence of this, elastic scattering of plane-wave photons or electrons within the first-order Born-approximation, as well as Fraunhofer diffraction on any aperture, is bound to result in centrosymmetric diffraction patterns. Friedel's law, however, does not apply for vortex beams, and centrosymmetry in general is not present in their diffraction patterns. In this work we extend Friedel's law for vortex beams by showing that the diffraction patterns of vortex beams with opposite topological charge, scattered on the same two-dimensional potential, always are centrosymmetric to one another, regardless of the symmetry of the scattering object. We verify our statement by means of numerical simulations and experimental data. Our research provides deeper understanding in vortex-beam diffraction and can be used to design new experiments to measure the topological charge of vortex beams with diffraction gratings or to study general vortex-beam diffraction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384374500010 Publication Date 2016-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 13 Open Access
Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_; Approved Most recent IF: 2.925
Call Number EMAT @ emat @ c:irua:137200UA @ admin @ c:irua:137200 Serial 4314
Permanent link to this record
 

 
Author Bekaert, J.; Vercauteren, S.; Aperis, A.; Komendová, L.; Prozorov, R.; Partoens, B.; Milošević, M.V.
Title Anisotropic type-I superconductivity and anomalous superfluid density in OsB2 Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 144506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a microscopic study of superconductivity in OsB2 , and discuss the origin and characteristic length

scales of the superconducting state. From first-principles we show that OsB2 is characterized by three different

Fermi sheets, and we prove that this fermiology complies with recent quantum-oscillation experiments. Using the

found microscopic properties, and experimental data from the literature, we employ Ginzburg-Landau relations

to reveal that OsB2 is a distinctly type-I superconductor with a very low Ginzburg-Landau parameter κ—a rare

property among compound materials. We show that the found coherence length and penetration depth corroborate

the measured thermodynamic critical field. Moreover, our calculation of the superconducting gap structure using

anisotropic Eliashberg theory and ab initio calculated electron-phonon interaction as input reveals a single but

anisotropic gap. The calculated gap spectrum is shown to give an excellent account for the unconventional

behavior of the superfluid density of OsB2 measured in experiments as a function of temperature. This reveals

that gap anisotropy can explain such behavior, observed in several compounds, which was previously attributed

solely to a two-gap nature of superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385622500009 Publication Date 2016-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes Fonds Wetenschappelijk Onderzoek; European Cooperation in Science and Technology, MP1201 ; Vetenskapsrådet; Approved Most recent IF: 3.836
Call Number CMT @ cmt @ c:irua:139020 Serial 4338
Permanent link to this record
 

 
Author Samaeeaghmiyoni, V.; Idrissi, H.; Groten, J.; Schwaiger, R.; Schryvers, D.
Title Quantitative in-situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach Type A1 Journal article
Year 2017 Publication Micron Abbreviated Journal Micron
Volume 94 Issue (up) 94 Pages 66-73
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Twin-jet electro-polishing and Focused Ion Beam (FIB) were combined to produce small size Nickel single crystal specimens for quantitative in-situ nanotensile experiments in the transmission electron microscope. The combination of these techniques allows producing samples with nearly defect-free zones in the centre in contrast to conventional FIB-prepared samples. Since TEM investigations can be performed on the electro-polished samples prior to in-situ TEM straining, specimens with desired crystallographic orientation and initial microstructure can be prepared. The present results reveal a dislocation nucleation controlled plasticity, in which small loops induced by FIB near the edges of the samples play a central role.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393247300008 Publication Date 2016-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 11 Open Access OpenAccess
Notes This research has been performed with the financial support of the Belgian Science Policy (Belspo) under the framework of the interuniversity attraction poles program, IAP7/21. Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13N and SCHW855/5-1, respectively, is gratefully acknowledged. V. Samaeeaghmiyoni also acknowledges the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H. Idrissi is currently mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 1.98
Call Number EMAT @ emat @ c:irua:139515 Serial 4341
Permanent link to this record
 

 
Author De Beule, C.; Ziani, N.T.; Zarenia, M.; Partoens, B.; Trauzettel, B.
Title Correlation and current anomalies in helical quantum dots Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 155111
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the ground-state properties of a quantum dot defined on the surface of a strong three-dimensional time-reversal invariant topological insulator. Confinement is realized by ferromagnetic barriers and Coulomb interaction is treated numerically for up to seven electrons in the dot. Experimentally relevant intermediate interaction strengths are considered. The topological origin of the dot has several consequences: (i) spin polarization increases and the ground state exhibits quantum phase transitions at specific angular momenta as a function of interaction strength, (ii) the onset of Wigner correlations takes place mainly in one spin channel, and (iii) the ground state is characterized by a robust persistent current that changes sign as a function of the distance from the center of the dot.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385242200001 Publication Date 2016-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; We thank F. Cavaliere, F. Crepin, C. Felser, and B. Yan for interesting discussions, and S. Curreli for performing the finite-element calculation of the magnetic field in COMSOL. C.D.B. and M.Z. are supported by the Flemish Research Foundation (FWO). N.T.Z. and B.T. acknowledge financial support by the DFG (SPP1666 and SFB1170 “ToCoTronics”), the Helmholtz Foundation (VITI), and the ENB Graduate School on “Topological Insulators.” ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:137234 Serial 4351
Permanent link to this record
 

 
Author Mirzakhani, M.; Zarenia, M.; da Costa, D.R.; Ketabi, S.A.; Peeters, F.M.
Title Energy levels of ABC-stacked trilayer graphene quantum dots with infinite-mass boundary conditions Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 165423
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the continuum model, we investigate the confined states and the corresponding wave functions of ABC-stacked trilayer graphene (TLG) quantum dots (QDs). First, a general infinite-mass boundary condition is derived and applied to calculate the electron and hole energy levels of a circular QD in both the absence and presence of a perpendicular magnetic field. Our analytical results for the energy spectra agree with those obtained by using the tight-binding model, where a TLG QD is surrounded by a staggered potential. Our findings show that (i) the energy spectrum exhibits intervalley symmetry E-K(e)(m) = -E-K'(h)(m) for the electron (e) and hole (h) states, where m is the angular momentum quantum number, (ii) the zero-energy Landau level (LL) is formed by the magnetic states with m <= 0 for both Dirac valleys, that is different from monolayer and bilayer graphene QD with infinite-mass potential in which only one of the cones contributes, and (iii) groups of three quantum Hall edge states in the tight-binding magnetic spectrum approach the zero LL, which results from the layer symmetry in TLG QDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386168000011 Publication Date 2016-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Brazilian Council for Research (CNPq), the Science without Borders program, PRONEX/FUNCAP, and CAPES foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:138174 Serial 4353
Permanent link to this record
 

 
Author Xiao, Y.M.; Xu, W.; Van Duppen, B.; Peeters, F.M.
Title Infrared to terahertz optical conductivity of n-type and p-type monolayer MoS2 in the presence of Rashba spin-orbit coupling Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 155432
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the effect of Rashba spin-orbit coupling (SOC) on the optoelectronic properties of n- and p-type monolayer MoS2. The optical conductivity is calculated within the Kubo formalism. We find that the spin-flip transitions enabled by the Rashba SOC result in a wide absorption window in the optical spectrum. Furthermore, we evaluate the effects of the polarization direction of the radiation, temperature, carrier density, and the strength of the Rashba spin-orbit parameter on the optical conductivity. We find that the position, width, and shape of the absorption peak or absorption window can be tuned by varying these parameters. This study shows that monolayer MoS2 can be a promising tunable optical and optoelectronic material that is active in the infrared to terahertz spectral range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386097800003 Publication Date 2016-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 20 Open Access
Notes ; Y.M.X. acknowledges financial support from the China Scholarship Council (CSC). This work was also supported by the National Natural Science Foundation of China (Grant No. 11574319), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. B.V.D. is supported by a Ph.D. fellowship from the Flemish Science Foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:138175 Serial 4355
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Senger, R.T.; Peeters, F.M.; Sahin, H.
Title Mechanical properties of monolayer GaS and GaSe crystals Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 245407
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The mechanical properties of monolayer GaS and GaSe crystals are investigated in terms of their elastic constants: in-plane stiffness (C), Poisson ratio (nu), and ultimate strength (sigma(U)) by means of first-principles calculations. The calculated elastic constants are compared with those of graphene and monolayer MoS2. Our results indicate that monolayer GaS is a stiffer material than monolayer GaSe crystals due to the more ionic character of the Ga-S bonds than the Ga-Se bonds. Although their Poisson ratio values are very close to each other, 0.26 and 0.25 for GaS and GaSe, respectively, monolayer GaS is a stronger material than monolayer GaSe due to its slightly higher sU value. However, GaS and GaSe crystals are found to be more ductile and flexible materials than graphene and MoS2. We have also analyzed the band-gap response of GaS and GaSe monolayers to biaxial tensile strain and predicted a semiconductor-metal crossover after 17% and 14% applied strain, respectively, for monolayer GaS and GaSe. In addition, we investigated how the mechanical properties are affected by charging. We found that the flexibility of single layer GaS and GaSe displays a sharp increase under 0.1e/cell charging due to the repulsive interactions between extra charges located on chalcogen atoms. These charging-controllable mechanical properties of single layers of GaS and GaSe can be of potential use for electromechanical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000389503400008 Publication Date 2016-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 108 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. R.T.S. acknowledges the support from TUBITAK through project 114F397. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:139229 Serial 4356
Permanent link to this record
 

 
Author Khoeini, F.; Shakouri; Peeters, F.M.
Title Peculiar half-metallic state in zigzag nanoribbons of MoS2 : spin filtering Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 125412
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Layered structures of molybdenum disulfide (MoS2) belong to a new class of two-dimensional (2D) semiconductor materials in which monolayers exhibit a direct band gap in their electronic spectrum. This band gap has recently been shown to vanish due to the presence of metallic edge modes when MoS2 monolayers are terminated by zigzag edges on both sides. Here, we demonstrate that a zigzag nanoribbon of MoS2, when exposed to an external exchange field in combination with a transverse electric field, has the potential to exhibit a peculiar half-metallic nature and thereby allows electrons of only one spin direction to move. The peculiarity of such spin-selective conductors originates from a spin switch near the gap-closing region, so the allowed spin orientation can be controlled by means of an external gate voltage. It is shown that the induced half-metallic phase is resistant to random fluctuations of the exchange field as well as the presence of edge vacancies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383238800009 Publication Date 2016-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:137130 Serial 4360
Permanent link to this record
 

 
Author Callewaert, V.; Shastry, K.; Saniz, R.; Makkonen, I.; Barbiellini, B.; Assaf, B.A.; Heiman, D.; Moodera, J.S.; Partoens, B.; Bansil, A.; Weiss, A.H.;
Title Positron surface state as a spectroscopic probe for characterizing surfaces of topological insulator materials Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 115411
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Topological insulators are attracting considerable interest due to their potential for technological applications and as platforms for exploring wide-ranging fundamental science questions. In order to exploit, fine-tune, control, and manipulate the topological surface states, spectroscopic tools which can effectively probe their properties are of key importance. Here, we demonstrate that positrons provide a sensitive probe for topological states and that the associated annihilation spectrum provides a technique for characterizing these states. Firm experimental evidence for the existence of a positron surface state near Bi2Te2Se with a binding energy of E-b = 2.7 +/- 0.2 eV is presented and is confirmed by first-principles calculations. Additionally, the simulations predict a significant signal originating from annihilation with the topological surface states and show the feasibility to detect their spin texture through the use of spin-polarized positron beams.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383232800012 Publication Date 2016-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes ; I.M. acknowledges discussions with M. Ervasti and A. Harju. V.C. and R.S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. The computational resources and services used in this paper were, in part, provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government (EWI Department). I.M. acknowledges financial support from the Academy of Finland (Projects No. 285809 and No. 293932). The work at Northeastern University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences Grant No. DE-FG02-07ER46352 and benefited from Northeastern University's Advanced Scientific Computation Center (ASCC) and the NERSC supercomputing center through DOE Grant No. DE-AC02-05CH11231. K.S. and A.W. acknowledge financial support from the National Science Foundation through Grants No. DMR-MRI-1338130 and No. DMR-1508719. D.H. received financial support from the National Science Foundation (Grant No. ECCS-1402738). J.S.M. was supported by the STC Center for Integrated Quantum Materials under NSF Grants No. DMR-1231319, No. DMR-1207469, and ONR Grant No. N00014-13-1-0301. B.A.A. also acknowledges support from the LabEx ENS-ICFP Grant No. ANR-10-LABX-0010/ANR-10-IDEX-0001-02 PSL. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:137134 Serial 4362
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Torun, E.; Senger, R.T.; Peeters, F.M.; Sahin, H.
Title Mg(OH)2-WS2 van der Waals heterobilayer : electric field tunable band-gap crossover Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 195403
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnesium hydroxide [Mg(OH)(2)] has a layered brucitelike structure in its bulk form and was recently isolated as a new member of two-dimensional monolayer materials. We investigated the electronic and optical properties of monolayer crystals of Mg(OH)(2) and WS2 and their possible heterobilayer structure by means of first-principles calculations. It was found that both monolayers of Mg(OH)(2) and WS2 are direct-gap semiconductors and these two monolayers form a typical van der Waals heterostructure with a weak interlayer interaction and a type-II band alignment with a staggered gap that spatially separates electrons and holes. We also showed that an out-of-plane electric field induces a transition from a staggered to a straddling-type heterojunction. Moreover, by solving the Bethe-Salpeter equation on top of single-shot G(0)W(0) calculations, we show that the low-energy spectrum of the heterobilayer is dominated by the intralyer excitons of the WS2 monolayer. Because of the staggered interfacial gap and the field-tunable energy-band structure, the Mg(OH)(2)-WS2 heterobilayer can become an important candidate for various optoelectronic device applications in nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386769400007 Publication Date 2016-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWOPegasus Long Marie Curie Fellowship. H.S. and R.T.S. acknowledge support from TUBITAK through Project No. 114F397. H.S. acknowledges support from Bilim Akademisi – The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:138205 Serial 4364
Permanent link to this record
 

 
Author Shumilin, A.V.; Baranov, V.V.; Kabanov, V.V.
Title Upper critical field in the model with finite-range interaction between electrons Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 174506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We develop a theory of the upper critical field in a BCS superconductor with a nonlocal interaction between electrons. We have shown that the nonlocal interaction is characterized by the parameter k(F)rho(0), where k(F) is the Fermi momentum and rho(0) is the radius of electron-electron interaction. The presence of the external magnetic field leads to the generation of additional components of the order parameter with different angular momenta. This effect leads to the enhancement of the upper critical field above the orbital limiting field. In addition the upward curvature in the temperature dependence of H-c2 (T) in the clean limit is predicted. The impurity scattering suppresses the effect in the dirty limit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387884100005 Publication Date 2016-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record
Impact Factor 3.836 Times cited Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:139166 Serial 4365
Permanent link to this record
 

 
Author Juchtmans, R.; Clark, L.; Lubk, A.; Verbeeck, J.
Title Spiral phase plate contrast in optical and electron microscopy Type A1 Journal article
Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A
Volume 94 Issue (up) 94 Pages 023838
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The use of phase plates in the back focal plane of a microscope is a well-established technique in optical microscopy to increase the contrast of weakly interacting samples and is gaining interest in electron microscopy as well. In this paper we study the spiral phase plate (SPP), also called helical, vortex, or two-dimensional Hilbert phase plate, which adds an angularly dependent phase of the form exp(iℓϕk) to the exit wave in Fourier space. In the limit of large collection angles, we analytically calculate that the average of a pair of l=+-1

SPP filtered images is directly proportional to the gradient squared of the exit wave, explaining the edge contrast previously seen in optical SPP work. We discuss the difference between a clockwise-anticlockwise pair of SPP filtered images and derive conditions under which the modulus of the wave's gradient can be seen directly from one SPP filtered image. This work provides the theoretical background to interpret images obtained with a SPP, thereby opening new perspectives for new experiments to study, for example, magnetic materials in an electron microscope.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000381882800011 Publication Date 2016-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 10 Open Access
Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_ Approved Most recent IF: 2.925
Call Number EMAT @ emat @ c:irua:140086 Serial 4418
Permanent link to this record
 

 
Author Fernández Becerra, V.; Milošević, M.V.
Title Multichiral ground states in mesoscopic p-wave superconductors Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 184517
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using Ginzburg-Landau formalism, we investigate the effect of confinement on the ground state of mesoscopic chiral p-wave superconductors in the absence of magnetic field. We reveal stable multichiral states with domain walls separating the regions with different chiralities, as well as monochiral states with spontaneous currents flowing along the edges. We show that multichiral states can exhibit identifying signatures in the spatial profile of the magnetic field if those are not screened by edge currents in the case of strong confinement. Such magnetic detection of domain walls in topological superconductors can serve as long-sought evidence of broken time-reversal symmetry. Furthermore, when applying electric current to mesoscopic p-wave samples, we found a hysteretic behavior in the current-voltage characteristic that distinguishes states with and without domain walls, thereby providing another useful hallmark for indirect confirmation of chiral p-wave superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388816700001 Publication Date 2016-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO-Vlaanderen), the COST-EU action MP1201, and the MultiSuper network. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:139241 Serial 4456
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M.
Title Quantum transport in graphene Hall bars: Effects of vacancy disorder Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 235413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding model, we investigate the influence of vacancy disorder on electrical transport in graphene Hall bars in the presence of quantizing magnetic fields. Disorder, induced by a random distribution of monovacancies, breaks the graphene sublattice symmetry and creates states localized on the vacancies. These states are observable in the bend resistance, as well as in the total DOS. Their energy is proportional to the square root of the magnetic field, while their localization length is proportional to the cyclotron radius. At the energies of these localized states, the electron current flows around the monovacancies and, as we show, it can follow unexpected paths depending on the particular arrangement of vacancies. We study how these localized states change with the vacancy concentration, and what are the effects of including the next-nearest-neighbor hopping term. Our results are also compared with the situation when double vacancies are present in the system. Double vacancies also induce localized states, but their energy and magnetic field dependencies are different. Their localization energy scales linearly with the magnetic field, and their localization length appears not to depend on the field strength.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000389574200005 Publication Date 2016-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:140237 Serial 4459
Permanent link to this record
 

 
Author Sankaran, K.; Swerts, J.; Couet, S.; Stokbro, K.; Pourtois, G.
Title Oscillatory behavior of the tunnel magnetoresistance due to thickness variations in Ta vertical bar CoFe vertical bar MgO magnetic tunnel junctions : a first-principles study Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 094424
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract To investigate the impact of both the CoFe ferromagnetic layer thickness and the capping paramagnetic layer on the tunnel magnetoresistance (TMR), we performed first-principles simulations on epitaxial magnetic tunnel junctions contacted with either CoFe or Ta paramagnetic capping layers. We observed a strong oscillation of the TMR amplitude with respect to the thickness of the ferromagnetic layer. The TMR is found to be amplified whenever the MgO spin tunnel barrier is thickened. Quantization of the electronic structure of the ferromagnetic layers is found to be at the origin of this oscillatory behavior. Metals such as Ta contacting the magnetic layer are found to enhance the amplitude of the oscillations due to the occurrence of an interface dipole. The latter drives the band alignment and tunes the nature of the spin channels that are active during the tunneling process. Subsequently, the regular transmission spin channels are modulated in the magnetic tunnel junction stack and other complex ones are being activated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383860700004 Publication Date 2016-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:137122 Serial 4468
Permanent link to this record
 

 
Author Heshmati-Moulai, A.; Simchi, H.; Esmaeilzadeh, M.; Peeters, F.M.
Title Phase transition and spin-resolved transport in MoS2 nanoribbons Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 235424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic structure and transport properties of monolayer MoS2 are studied using a tight-binding approach coupled with the nonequilibrium Green's function method. A zigzag nanoribbon of MoS2 is conducting due to the intersection of the edge states with the Fermi level that is located within the bulk gap. We show that applying a transverse electric field results in the disappearance of this intersection and turns the material into a semiconductor. By increasing the electric field the band gap undergoes a two stage linear increase after which it decreases and ultimately closes. It is shown that in the presence of a uniform exchange field, this electric field tuning of the gap can be exploited to open low energy domains where only one of the spin states contributes to the electronic conductance. This introduces possibilities in designing spin filters for spintronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000394546100005 Publication Date 2016-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:141978 Serial 4557
Permanent link to this record
 

 
Author Van Schoubroeck, S.; Van Dael, M.; Van Passel, S.; Malina, R.
Title A review of sustainability indicators for biobased chemicals Type A1 Journal article
Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 94 Issue (up) 94 Pages 115-126
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Companies dealing with chemical products have to cope with large amounts of waste and environmental risk due to the use and production of toxic substances. Against this background, increasing attention is being paid to green chemistry and the translation of this concept into biobased chemicals. Given the multitude of economic, environmental and societal impacts that the production and use of biobased chemicals have on sustainability, assessment approaches need to be developed that allow for measurement and comparison of these impacts. To evaluate sustainability in the context of policy and decision-making, indicators are generally accepted means. However, sustainability indicators currently predominantly exist for low-value applications in the bioeconomy, like bioenergy and biofuels. In this paper, a review of the state-of-the-art sustainability indicators for biobased chemicals is conducted and a gap analysis is performed to identify indicator development needs. Based on the analysis, a clear hierarchy within the concept of sustainability is found where the environmental aspect dominates over economic and social indicators. All one-dimensional indicator-sets account for environmental impacts (50%), whereas two-dimensional sets complement the environmental issues with economic indicators (34%). Moreover, even the sets encompassing all three sustainability dimensions (16%) do not account for the dynamics and interlinkages between the environment, economy and society. Using results from the literature review, an indicator list is presented that captures all indicators currently used within sustainability assessment of biobased chemicals. Finally, a framework is proposed for future indicator selection using a stakeholder survey to obtain a prioritized list of sustainability indicators for biobased chemicals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000446310000008 Publication Date 2018-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 17 Open Access
Notes ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:154140 Serial 6244
Permanent link to this record
 

 
Author Mulkers, J.; Van Waeyenberge, B.; Milošević, M.V.
Title Effects of spatially engineered Dzyaloshinskii-Moriya interaction in ferromagnetic films Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 144401
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Dzyaloshinskii-Moriya interaction (DMI) is a chiral interaction that favors formation of domain walls. Recent experiments and ab initio calculations show that there are multiple ways to modify the strength of the interfacially induced DMI in thin ferromagnetic films with perpendicular magnetic anisotropy. In this paper we reveal theoretically the effects of spatially varied DMI on the magnetic state in thin films. In such heterochiral 2D structures we report several emergent phenomena, ranging from the equilibrium spin canting at the interface between regions with different DMI, over particularly strong confinement of domain walls and skyrmions within high-DMI tracks, to advanced applications such as domain tailoring nearly at will, design of magnonic waveguides, and much improved skyrmion racetrack memory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399382100003 Publication Date 2017-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 60 Open Access
Notes Fonds Wetenschappelijk Onderzoek, G098917N ; Approved Most recent IF: 3.836
Call Number CMT @ cmt @ c:irua:141917 Serial 4534
Permanent link to this record
 

 
Author Li, L.L.; Zarenia, M.; Xu, W.; Dong, H.M.; Peeters, F.M.
Title Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley to intervalley transition Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 045409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The magnetic-field dependence of the energy spectrum, wave function, binding energy, and oscillator strength of exciton states confined in a circular graphene quantum dot (CGQD) is obtained within the configuration interaction method. We predict that (i) excitonic effects are very significant in the CGQD as a consequence of a combination of geometric confinement, magnetic confinement, and reduced screening; (ii) two types of excitons (intravalley and intervalley) are present in the CGQD because of the valley degree of freedom in graphene; (iii) the intravalley and intervalley exciton states display different magnetic-field dependencies due to the different electron-hole symmetries of the single-particle energy spectra; (iv) with increasing magnetic field, the exciton ground state in the CGQD undergoes an intravalley to intervalley transition accompanied by a change of angular momentum; (v) the exciton binding energy does not increase monotonically with the magnetic field due to the competition between geometric and magnetic confinements; and (vi) the optical transitions of the intervalley and intravalley excitons can be tuned by the magnetic field, and valley-dependent excitonic transitions can be realized in a CGQD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000391856000006 Publication Date 2017-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grants No. 11304316, No. 11574319, and No. 11604380), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:141444 Serial 4555
Permanent link to this record
 

 
Author Satarifard, V.; Mousaei, M.; Hadadi, F.; Dix, J.; Sobrino Fernández, M.; Carbone, P.; Beheshtian, J.; Peeters, F.M.; Neek-Amal, M.
Title Reversible structural transition in nanoconfined ice Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 064105
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The report on square ice sandwiched between two graphene layers by Algara-Siller et al. [Nature (London) 519, 443 (2015)] has generated a large interest in this system. By applying high lateral pressure on nanoconfined water, we found that monolayer ice is transformed to bilayer ice when the two graphene layers are separated by H = 6,7 angstrom. It was also found that three layers of a denser phase of ice with smaller lattice constant are formed if we start from bilayer ice and apply a lateral pressure of about 0.7 GPa with H = 8,9 angstrom. The lattice constant (2.5-2.6 angstrom) in both transitions is found to be smaller than those typical for the known phases of ice and water, i.e., 2.8 angstrom. We validate these results using ab initio calculations and find good agreement between ab initio O-O distance and those obtained from classical molecular dynamics simulations. The reversibility of the mentioned transitions is confirmed by decompressing the systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393943300005 Publication Date 2017-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:141994 Serial 4558
Permanent link to this record
 

 
Author Han, F.W.; Xu, W.; Li, L.L.; Zhang, C.; Dong, H.M.; Peeters, F.M.
Title Electronic and transport properties of n-type monolayer black phosphorus at low temperatures Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 115436
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a detailed theoretical study of the electronic and transport properties of monolayer black phosphorus (BP). This study is motivated by recent experimental activities in investigating n-type few-layer BP systems. The electron density of states, the screening length, and the low-temperature electron mobility are calculated for monolayer BP (MLBP). In particular, the electron transport mobilities along the armchair and zigzag directions are examined on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation. The anisotropic electron mobilities in MLBP along different directions are demonstrated where the electron-impurity scattering is considered. Furthermore, we compare the results obtained from two electronic band structures of MLBP and find that the simplified model can describe quite rightly the electronic and transport properties of MLBP. This study is relevant to the application of few-layer BP based electronic systems as advanced electronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399140700012 Publication Date 2017-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes National Natural Science Foundation of China, 11574319 11304316 11304317 11604380 ; Ministry of Science and Technology of the People's Republic of China, 2011YQ130018 ; Chinese Academy of Sciences; Approved Most recent IF: 3.836
Call Number CMT @ cmt @ c:irua:142431 Serial 4564
Permanent link to this record
 

 
Author Zhao, H.J.; Misko, V.R.; Tempere, J.; Nori, F.
Title Pattern formation in vortex matter with pinning and frustrated intervortex interactions Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 104519
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract We investigate the effects related to vortex-core deformations when vortices approach each other. As a result of these vortex-core deformations, the vortex-vortex interaction effectively acquires an attractive component leading to a variety of vortex patterns typical for systems with nonmonotonic repulsive-attractive interaction, such as stripes and labyrinths. The core deformations are anisotropic and can induce frustration in the vortex-vortex interaction. In turn, this frustration has an impact on the resulting vortex patterns, which are analyzed in the presence of additional random pinning, as a function of the pinning strength. This analysis can be applicable to vortices in multiband superconductors or to vortices in Bose-Einstein condensates.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000399138800006 Publication Date 2017-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; We acknowledge fruitful discussions with E. Babaev and V. Gladilin. This work is partially supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20150595), the National Natural Science Foundation of China (Grants No. NSFC-U1432135, No. 11611140101, and No. 11674054), the “Odysseus” program of the Flemish Government and Flemish Research Foundation (FWO-Vl), the Flemish Research Foundation (through Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N), the Research Fund of the University of Antwerp, the RIKEN iTHES Project, the MURI Center for Dynamic Magneto-Optics via the AFOSR Award No. FA9550-14-1-0040, the IMPACT program of JST, a Grant-in-Aid for Scientific Research (A), the Japan Society for the Promotion of Science (KAKENHI), CREST, and a grant from the John Templeton Foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:142429 Serial 4602
Permanent link to this record
 

 
Author Michel, K.H.; Çakir, D.; Sevik, C.; Peeters, F.M.
Title Piezoelectricity in two-dimensional materials : comparative study between lattice dynamics and ab initio calculations Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 125415
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The elastic constant C-11 and piezoelectric stress constant e(1),(11) of two-dimensional (2D) dielectric materials comprising h-BN, 2H-MoS2, and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000396013400005 Publication Date 2017-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; The authors acknowledge useful discussions with L. Wirtz and A. Molina-Sanchez. This work was supported by the Methusalem program and the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:142444 Serial 4603
Permanent link to this record