|   | 
Details
   web
Records
Author Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M.
Title Electronic and magnetic properties of superlattices of graphene/graphane nanoribbons with different edge hydrogenation Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue (up) 16 Pages 165412-165412,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Zigzag graphene nanoribbons patterned on graphane are studied using spin-polarized ab initio calculations. We found that the electronic and magnetic properties of the graphene/graphane superlattice strongly depends on the degree of hydrogenation at the interfaces between the two materials. When both zigzag interfaces are fully hydrogenated, the superlattice behaves like a freestanding zigzag graphene nanoribbon, and the magnetic ground state is antiferromagnetic. When one of the interfaces is half hydrogenated, the magnetic ground state becomes ferromagnetic, and the system is very close to being a half metal with possible spintronics applications whereas the magnetic ground state of the superlattice with both interfaces half hydrogenated is again antiferromagnetic. In this last case, both edges of the graphane nanoribbon also contribute to the total magnetization of the system. All the spin-polarized ground states are semiconducting, independent of the degree of hydrogenation of the interfaces. The ab initio results are supplemented by a simple tight-binding analysis that captures the main qualitative features. Our ab initio results show that patterned hydrogenation of graphene is a promising way to obtain stable graphene nanoribbons with interesting technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282569500011 Publication Date 2010-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (FW/08/01). A. D. H. acknowledges also support from ANPCyT (under Grant No. PICT2008-2236) ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85030 Serial 996
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M.
Title Electronic structure of InAs/GaSb core-shell nanowires Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue (up) 16 Pages 165439-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and optical properties of InAs/GaSb core-shell nanowires are investigated within the effective mass k . p approach. These systems have a broken band gap, which results in spatially separated confinement of electrons and holes. We investigated these structures for different sizes of the InAs and GaSb core and shell radius. We found that for certain configurations, the conduction band states penetrate into the valence band states resulting in a negative band gap (E-g < 0), which leads to a conduction band ground state that lies below the valence band ground state at the Gamma point. For certain core-shell wires, only one conduction band state penetrates into the valence band and in this case, a minigap Delta opens up away from the Gamma point and as a consequence the electronic properties of the nanowire now depend on both E-g and Delta values.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000310131400005 Publication Date 2012-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 26 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:102164 Serial 1014
Permanent link to this record
 

 
Author Krstajie, P.M.; Peeters, F.M.
Title Energy-momentum dispersion relation of plasmarons in bilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue (up) 16 Pages 165420-165424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The relation between the energy and momentum of plasmarons in bilayer graphene is investigated within the Overhauser approach, where the electron-plasmon interaction is described as a field theoretical problem. We find that the Dirac-like spectrum is shifted by Delta E(k) similar to 100 divided by 150 meV depending on the electron concentration n(e) and electron momentum. The shift increases with electron concentration as the energy of plasmons becomes larger. The dispersion of plasmarons is more pronounced than in the case of single layer graphene, which is explained by the fact that the energy dispersion of electrons is quadratic and not linear. We expect that these predictions can be verified using angle-resolved photoemission spectroscopy (ARPES).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326089400004 Publication Date 2013-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE project CON-GRAN, and by the Serbian Ministry of Education and Science, within the Project No. TR 32008. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:112224 Serial 1042
Permanent link to this record
 

 
Author Burriel, M.; Garcia, G.; Rossell, M.D.; Figueras, A.; Van Tendeloo, G.; Santiso, J.
Title Enhanced high-temperature electronic transport properties in nanostructured epitaxial thin films of the Lan+1NinO3n+1 Ruddlesden-Popper series (n = 1, 2, 3, ∞) Type A1 Journal article
Year 2007 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 19 Issue (up) 16 Pages 4056-4062
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000248439400029 Publication Date 2007-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 22 Open Access
Notes Approved Most recent IF: 9.466; 2007 IF: 4.883
Call Number UA @ lucian @ c:irua:65937 Serial 1050
Permanent link to this record
 

 
Author Gensterblum, G.; Hevesi, K.; Han, B.Y.; Yu, L.M.; Pireaux, J.J.; Thiry, P.A.; Caudano, R.; Lucas, A.A.; Bernaerts, D.; Amelinckx, S.; Van Tendeloo, G.; Bendele, G.; Buslaps, T.; Johnson, R.L.; Foss, M.; Feidenhans’l, R.; Le Lay, G.;
Title Growth mode and electronic-structure of the epitaxial C60(111)/GeS(001) interface Type A1 Journal article
Year 1994 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 50 Issue (up) 16 Pages 11981-11995
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1994PR43400080 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 81 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:99825 Serial 1393
Permanent link to this record
 

 
Author van der Burgt, M.; Karavolas, V.C.; Peeters, F.M.; Singleton, J.; Nicholas, R.J.; Herlach, F.; Harris, J.J.; Van Hove, M.; Borghs, G.
Title Magnetotransport in a pseudomorphic GaAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructure with a Si \delta-doping layer Type A1 Journal article
Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 52 Issue (up) 16 Pages 12218-12231
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetotransport properties of a pseudomorphic GsAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructure are investigated in pulsed magnetic fields up to 50 T and at temperatures of T = 1.4 and 4.2 K. The structure studied consists of a Si delta layer parallel to a Ga0.8In0.2As quantum well (QW). The dark electron density of the structure is n(c) = 1.67 x 10(16) m(-2). By illumination the density can be increased up to a factor of 4; this way the second subband in the Ga0.08In0.2As QW can become populated as well as the Si delta layer. The presence of electrons in the delta layer results in drastic changes in the transport data, especially at magnetic fields beyond 30 T. The phenomena observed are interpreted as (i) magnetic freeze-out of carriers in the delta layer when a low density of electrons is present in the delta layer, and (ii) quantization of the electron motion in the two-dimensional electron gases in both the Ga0.8In0.2As QW and the Si delta layer in the case of high densities. These conclusions are corroborated by the numerical results of our theoretical model. We obtain satisfactory agreement between model and experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1995TB96600102 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 43 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:99708 Serial 1933
Permanent link to this record
 

 
Author Lobato, I.; Partoens, B.
Title Multiple Dirac particles in AA-stacked graphite and multilayers of graphene Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue (up) 16 Pages 165429-165429,9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Using the tight-binding formalism we show that in the recently experimentally realized AA-stacked graphite in essence two types of massless relativistic Dirac particles are present with a different effective speed of light. We also investigate how the electronic structure evolves from a single graphene sheet into AA-stacked graphite. It is shown that in contrast to AB-stacked graphene layers, the spectrum of AA-stacked graphene layers can be considered as a superposition of single-layer spectra and only particles with a linear spectrum at the Fermi energy around the K point are present. From the evolution of the band overlap we show that 6 multilayers of AA-stacked graphene already behave as AA-stacked graphite. The evolution of the effective speeds of light of the Dirac particles to their bulk values shows exactly the same behavior. The tight-binding parameters we use to describe AA-stacked graphite and multilayers of graphene are obtained by ab initio calculations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000290113900005 Publication Date 2011-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 68 Open Access
Notes ; ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:89717 Serial 2225
Permanent link to this record
 

 
Author Guerrero, A.; Pfannmöller, M.; Kovalenko, A.; Ripolles, T.S.; Heidari, H.; Bals, S.; Kaufmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G.
Title Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity Type A1 Journal article
Year 2015 Publication Organic electronics: physics, materials, applications Abbreviated Journal Org Electron
Volume 16 Issue (up) 16 Pages 227-233
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Organic photovoltaic (OPV) devices are on the verge of commercialization being long-term stability a key challenge. Morphology evolution during lifetime has been suggested to be one of the main pathways accounting for performance degradation. There is however a lack of certainty on how specifically the morphology evolution relates to individual electrical parameters on operating devices. In this work a case study is created based on a thermodynamically unstable organic active layer which is monitored over a period of one year under non-accelerated degradation conditions. The morphology evolution is revealed by compositional analysis of ultrathin cross-sections using nanoscale imaging in scanning transmission electron microscopy (STEM) coupled with electron energy-loss spectroscopy (EELS). Additionally, devices are electrically monitored in real-time using the non-destructive electrical techniques capacitance-voltage (C-V) and Impedance Spectroscopy (IS). By comparison of imaging and electrical techniques the relationship between nanoscale morphology and individual electrical parameters of device operation can be conclusively discerned. It is ultimately observed how the change in the cathode contact properties occurring after the migration of fullerene molecules explains the improvement in the overall device performance. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000345649500029 Publication Date 2014-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1566-1199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.399 Times cited 24 Open Access OpenAccess
Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 3.399; 2015 IF: 3.827
Call Number c:irua:122169 Serial 2267
Permanent link to this record
 

 
Author Monticelli, O.; Musina, Z.; Russo, S.; Bals, S.
Title On the use of TEM in the characterization of nanocomposites Type A1 Journal article
Year 2007 Publication Materials letters Abbreviated Journal Mater Lett
Volume 61 Issue (up) 16 Pages 3446-3450
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Both an organically modified commercial clay of montmorillonite type (MMT) and its nanocomposites, based either on polyamide 6 (PA6) or an epoxy resin, as matrix polymer, have been characterized by transmission electron microscopy (TEM). Sample micrographs, taken at increasing exposure times (t(e)), have shown the gradual disappearance of clay layers, because of an amorphisation of the MMT crystalline structures caused by prolonged sample exposure to electron beam. Indeed, the above phenomenon, which is mostly evident in the case of intercalated nanocomposites, makes the detection of the layered silicate dispersion in the polymer matrix rather difficult and compels to perform TEM measurements using very short exposure times. Moreover, the microscopy accelerating voltage has turned out to affect sample stability; namely, when decreasing the above parameter, the disappearance of clay structure occurs at lower exposure times. (C) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000247146100034 Publication Date 2006-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-577X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.572 Times cited 28 Open Access
Notes Approved Most recent IF: 2.572; 2007 IF: 1.625
Call Number UA @ lucian @ c:irua:64757 Serial 2460
Permanent link to this record
 

 
Author Verberck, B.; Nikolaev, A.V.; Michel, K.H.
Title Orientational charge density waves and the metal-insulator transition in polymerized KC60 Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 71 Issue (up) 16 Pages 165117-11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A theoretical model is presented for the description of the metal-insulator transition which accompanies the structural phase transition at T approximate to 50 K in polymerized KC60. The model involves orientational charge density waves (along the C-60 polymer chains) which were introduced previously for a description of the structural phase transition. A satisfactory qualitative and quantitative understanding is obtained when the three-dimensionality of the crystal and the presence of the K+ counterions is properly taken into account.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000228763100035 Publication Date 2005-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:104076 Serial 2514
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Devreese, J.T.
Title Polaron-cyclotron-resonance spectrum resulting from interface- and slab-phonon modes in a GaAs/AlAs quantum well Type A1 Journal article
Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 47 Issue (up) 16 Pages 10358-10374
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract The effects of interface optical-phonon and confined slab LO-phonon modes on the polaron cyclotron-resonance frequency are investigated for a GaAs/AlAs quantum well. Using degenerate second-order perturbation theory, the polaron Landau levels are calculated and the polaron resonant region is investigated. In order to know the relative importance of the different resonant frequencies we present a full calculation of the magneto-optical absorption spectrum. At a fixed magnetic field we found four different peaks in the absorption spectrum. The relative oscillator strength of the different peaks changes with increasing magnetic field. For comparative purposes, the polaron Landau levels and cyclotron mass are also calculated using only the bulk LO-phonon modes. The influence of the finiteness of the confinement potential is investigated. We found that the interface-phonon modes influence the magnetopolaron resonance considerably near the optical-phonon frequencies for narrow wells. In the limit of zero magnetic field we recover our previous results and in the case of an infinite-barrier quantum well we are able to recover the results for a two- and three-dimensional system.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1993LA29800034 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 69 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:5739 Serial 2663
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Devreese, J.T.; Wendler, L.
Title Screening of the electron-phonon interaction in quasi-one-dimensional semiconductor structures Type A1 Journal article
Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 48 Issue (up) 16 Pages 12016-12022
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1993ME60100059 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 41 Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #
Call Number UA @ lucian @ c:irua:5751 Serial 2955
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title Size effects and strain state of Ga1-xInxAs/GaAs multiple quantum wells: Monte Carlo study Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 78 Issue (up) 16 Pages 165326,1-165326,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The effect of the size of the GaAs barrier and the Ga1−xInxAs well on the structural properties of a Ga1−xInxAs/GaAs multiple quantum well structure is investigated using the Metropolis Monte Carlo approach based on a well-parametrized Tersoff potential. It is found that within the well the Ga-As and In-As bond lengths undergo contractions whose magnitude increases with increasing In content in sharp contrast with bond-length variations in the bulk Ga1−xInxAs systems. For fixed barrier size and In content, the contraction of the bonds is also found to increase with increasing size of the well. Using the local atomic structure of the heterostructures, a more local analysis of the strain state of the systems is given and comparison with the prediction of macroscopic continuum elasticity theory shows deviations from the latter.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000260574500084 Publication Date 2008-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:72920 Serial 3036
Permanent link to this record
 

 
Author Wang, X.F.; Vasilopoulos, P.; Peeters, F.M.
Title Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 65 Issue (up) 16 Pages 165217
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ballistic spin transport through waveguides, with symmetric or asymmetric double stubs attached to them periodically, is studied systematically in the presence of a weak spin-orbit coupling that makes the electrons precess. By an appropriate choice of the waveguide length and of the stub parameters injected spin-polarized electrons can be blocked completely and the transmission shows a periodic and nearly-square-type behavior, with values 1 and 0, with wide gaps when only one mode is allowed to propagate in the waveguide. A similar behavior is possible for a certain range of the stub parameters even when two modes can propagate in the waveguide and the conductance is doubled. Such a structure is a good candidate for establishing a realistic spin transistor. A further modulation of the spin current can be achieved by inserting defects in a finite-number stub superlattice. Finite-temperature effects on the spin conductance are also considered.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000175325000061 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 112 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:95128 Serial 3082
Permanent link to this record
 

 
Author Esken, D.; Noei, H.; Wang, Y.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A.
Title ZnO@ZIF-8 : stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue (up) 16 Pages 5907-5915
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microporous and activated zeolitic imidazolate framework (Zn(MeIM)2; MeIM = imidazolate-2-methyl; ZIF-8) was loaded with the MOCVD precursor diethyl zinc [Zn(C2H5)2]. Exposure of ZIF-8 to the vapour of the volatile organometallic molecule resulted in the formation of the inclusion compound [Zn(C2H5)2]0.38@ZIF-8 revealing two precursor molecules per cavity. In a second step the obtained material was treated with oxygen (5 vol% in argon) at various temperatures (oxidative annealing) to achieve the composite material ZnO0.35@ZIF-8. The new material was characterized with powder XRD, FT-IR, UV-vis, solid state NMR, elemental analysis, N2 sorption measurements, and transmission electron microscopy. The data give evidence for the presence of nano-sized ZnO particles stabilized by ZIF-8 showing a blue-shift of the UV-vis absorption caused by quantum size effect (QSE). The surface structure and reactivity of embedded ZnO nanoparticles were characterized via carbon dioxide adsorption at different temperatures monitored by ultra-high vacuum FTIR techniques. It was found that the surface of ZnO nanoparticles is dominated by polar OZnO and ZnZnO facets as well as by defect sites, which all exhibit high reactivity towards CO2 activation forming various adsorbed carbonate and chemisorbed CO2δ− species.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000289260000012 Publication Date 2011-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 76 Open Access
Notes Esteem 026019 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:88641 Serial 3936
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Gulseren, O.; Peeters, F.M.
Title Mo2C as a high capacity anode material: a first-principles study Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue (up) 16 Pages 6029-6035
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g(-1) by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000374790700033 Publication Date 2016-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 202 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C. S. acknowledges the support from Turkish Academy of Sciences (TUBA-GEBIP). C. S acknowledges the support from Anadolu University (Grant No. 1407F335). We acknowledge the support from TUBITAK, The Scientific and Technological Research Council of Turkey (Grant No. 115F024). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:144763 Serial 4669
Permanent link to this record
 

 
Author Wang, W.; Snoeckx, R.; Zhang, X.; Cha, M.S.; Bogaerts, A.
Title Modeling Plasma-based CO2and CH4Conversion in Mixtures with N2, O2, and H2O: The Bigger Plasma Chemistry Picture Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue (up) 16 Pages 8704-8723
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Because of the unique properties of plasma technology, its use in gas conversion applications is gaining significant interest around the globe. Plasma-based CO2 and CH4 conversion has become a major research area. Many investigations have already been performed regarding the single-component gases, that is, CO2 splitting and CH4 reforming, as well as for two-component mixtures, that is, dry reforming of methane

(CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2 hydrogenation (CO2/H2), and even first steps toward the influence of N2 impurities have been taken, that is, CO2/N2 and CH4/N2. In this Feature Article we briefly discuss the advances made in literature for these different steps from a plasma chemistry modeling point of view. Subsequently, we present a comprehensive plasma chemistry set, combining the knowledge gathered in this field so far and supported with extensive experimental data. This set can be used for chemical kinetics plasma modeling for all possible combinations of CO2, CH4, N2, O2, and H2O to investigate the bigger picture of the underlying plasmachemical pathways for these mixtures in a dielectric barrier discharge plasma. This is extremely valuable

for the optimization of existing plasma-based CO2 conversion and CH4 reforming processes as well as for investigating the influence of N2, O2, and H2O on these processes and even to support plasma-based multireforming processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000431151200002 Publication Date 2018-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 28 Open Access OpenAccess
Notes Federaal Wetenschapsbeleid, IAP/7 ; King Abdullah University of Science and Technology; H2020 Marie Sklodowska-Curie Actions, 657304 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0383.16N G.0254.14N ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:150969 Serial 4922
Permanent link to this record
 

 
Author Kukhlevsky, S.V.; Mechler, M.; Csapó, L.; Janssens, K.; Samek, O.
Title Resonant backward scattering of light by a subwavelength metallic slit with two open sides Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 72 Issue (up) 16 Pages 165421,1-165421,7
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The backward scattering of TM-polarized light by a two-side-open subwavelength slit in a metal film is analyzed. We show that the reflection coefficient versus wavelength possesses a Fabry-Perot-like dependence that is similar to the anomalous behavior of transmission reported in the study [Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001)]. The open slit totally reflects the light at the near-to-resonance wavelengths. In addition, we show that the interference of incident and resonantly backward-scattered light produces in the near-field diffraction zone a spatially localized wave whose intensity is 10103 times greater than the incident wave, but one order of magnitude smaller than the intracavity intensity. The amplitude and phase of the resonant wave at the slit entrance and exit are different from that of a Fabry-Perot cavity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000232934900123 Publication Date 2005-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ admin @ c:irua:71385 Serial 5815
Permanent link to this record
 

 
Author Rutten, I.; Daems, D.; Lammertyn, J.
Title Boosting biomolecular interactions through DNA origami nano-tailored biosensing interfaces Type A1 Journal article
Year 2020 Publication Journal Of Materials Chemistry B Abbreviated Journal J Mater Chem B
Volume 8 Issue (up) 16 Pages 3606-3615
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The interaction between a bioreceptor and its target is key in developing sensitive, specific and robust diagnostic devices. Suboptimal interbioreceptor distances and bioreceptor orientation on the sensor surface, resulting from uncontrolled deposition, impede biomolecular interactions and lead to a decreased biosensor performance. In this work, we studied and implemented a 3D DNA origami design, for the first time comprised of assay specifically tailored anchoring points for the nanostructuring of the bioreceptor layer on the surface of disc-shaped microparticles in the continuous microfluidic environment of the innovative EvalutionTM platform. This bioreceptor immobilization strategy resulted in the formation of a less densely packed surface with reduced steric hindrance and favoured upward orientation. This increased bioreceptor accessibility led to a 4-fold enhanced binding kinetics and a 6-fold increase in binding efficiency compared to a directly immobilized non-DNA origami reference system. Moreover, the DNA origami nanotailored biosensing concept outperformed traditional aptamer coupling with respect to limit of detection (11 × improved) and signal-to-noise ratio (2.5 × improved) in an aptamer-based sandwich bioassay. In conclusion, our results highlight the potential of these DNA origami nanotailored surfaces to improve biomolecular interactions at the sensing surface, thereby increasing the overall performance of biosensing devices. The combination of the intrinsic advantages of DNA origami together with a smart design enables bottom-up nanoscale engineering of the sensor surface, leading towards the next generation of improved diagnostic sensing devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000548186500032 Publication Date 2020-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-750x; 2050-7518 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7 Times cited 2 Open Access
Notes ; We gratefully acknowledge financial support from Fund for Scientific Research (FWO, FWO-Flanders Doctoral grant Iene Rutten 1S30016N and FWO-Flanders Postdoctoral Fellow Devin Daems 12U1618N). We kindly thank MyCartis for access to their EvalutionTM platform, microparticle supplies and technical support. We would also like to thank Steven De Feyter and Joan Teyssandier (Molecular imaging and Photonics, Department of Chemistry, KU Leuven, Belgium) for providing the AFM facilities and technical support. We thank Peter Vangheluwe (Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven) for access to their gel imaging system, Typhoon FLA 9000. ; Approved Most recent IF: 7; 2020 IF: 4.543
Call Number UA @ admin @ c:irua:166104 Serial 6462
Permanent link to this record
 

 
Author Tirry, W.; Coghe, F.; Bouvier, S.; Gasperini, M.; Rabet, L.; Schryvers, D.
Title A multi-scale characterization of deformation twins in Ti6Al4V sheet material deformed by simple shear Type A1 Journal article
Year 2010 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 527 Issue (up) 16/17 Pages 4136-4145
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ti6Al4V sheet material is subjected to simple shear deformation with strain ratio's of 10%, 30% and 50%. Optical microscopy, transmission electron microscopy and electron backscatter diffraction techniques are applied to study the presence and morphology of deformation twins. Only the View the MathML source type of twins seems to be present with a volume fraction below 1%. These View the MathML source twins show a high density of basal stacking faults of the ABABACAC type identified using atomic resolution transmission electron microscopy. A resolved shear stress analysis shows that twins most often occur on those planes with the highest resolved shear stresses, but that the starting texture is not beneficial for the occurrence of twins. It is further suggested that a transitory strain hardening regime observed around 530 MPa might be related with the onset of twinning.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000278766800068 Publication Date 2010-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 20 Open Access
Notes Iap Approved Most recent IF: 3.094; 2010 IF: 2.101
Call Number UA @ lucian @ c:irua:82291 Serial 2212
Permanent link to this record
 

 
Author Fedina, L.; Gutakovskii, A.; Aseev, A.; van Landuyt, J.; Vanhellemont, J.
Title Clustering of vacancies on {113} planes in Si layers close to Si-Si3N4 interfaces and further aggregation of self-interstitials inside vacancy clusters during electron irradiation Type A1 Journal article
Year 1999 Publication Institute of physics conference series T2 – Conference on Microscopy of Semiconducting Materials, MAR 22-25, 1999, UNIV OXFORD, OXFORD, ENGLAND Abbreviated Journal Inst Phys Conf Ser
Volume Issue (up) 164 Pages 495-498
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In situ HREM irradiation of (110) FZ-Si crystals covered with thin Si3N4 films was carried out in a JEOL-4000EX microscope, operated at 400 keV at room temperature. It is found that clustering of vacancies on (113) planes is realised in a Si layer close to the Si-Si3N4 interface at the initial stage of irradiation. Further aggregation of self-interstitials inside vacancy clusters is considered as an alternative way of point defect recombination in extended shape, to be accomplished with the formation of the extended defects of interstitial type upon interstitial supersaturation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000166835300106 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7503-0650-5; 0951-3248 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:102918 Serial 376
Permanent link to this record
 

 
Author Hens, S.; Bender, H.; Donaton, R.A.; Maex, K.; Vanhaelemeersch, S.; van Landuyt, J.
Title EFTEM study of plasma etched low-k Si-O-C dielectrics Type A1 Journal article
Year 2001 Publication Institute of physics conference series T2 – Royal-Microscopical-Society Conference on Microscopy of Semiconducting, Materials, MAR 25-29, 2001, UNIV OXFORD, OXFORD, ENGLAND Abbreviated Journal
Volume Issue (up) 169 Pages 415-418
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Materials with low dielectric constant ("low-k'') in combination with Cu metallization are replacing the oxide based dielectrics with Al metallization in future generations of micro-electronic devices. In this work, a carbon doped oxide low-k dielectric material is studied after different kinds of etch/strip steps in single damascene Cu. filled line structures. Interline capacitance measurements indicate a dependence of the dielectric constant on the strip conditions. EFTEM is used to study the composition of the dielectric material and the modification of the low-k material at the sidewall of the etched structures for the various treatment conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7503-0818-4; 0951-3248 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:103432 Serial 877
Permanent link to this record
 

 
Author Nistor, L.; Bender, H.; van Landuyt, J.; Nemeth, S.; Boeve, H.; De Boeck, J.; Borghs, G.
Title HREM investigation of a Fe/GaN/Fe tunnel junction Type A1 Journal article
Year 2001 Publication Institute of physics conference series T2 – Royal-Microscopical-Society Conference on Microscopy of Semiconducting, Materials, MAR 25-29, 2001, Univ of Oxford, Oxford, England Abbreviated Journal
Volume Issue (up) 169 Pages 53-56
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structure of Fe/GaN/Fe ferromagnetic electrodes is studied by high resolution transmission electron microscopy. The layers grow epitaxially on the GaAs substrate with the top Fe layer 90degrees rotated compared to the bottom one. The interfaces are quite rough. There is an indication of the possible occurrence of Fe3GaAs formation on the GaAs interface.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7503-0818-4 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:95715 Serial 1503
Permanent link to this record
 

 
Author Narayanan, V.; Lommens, P.; De Buysser, K.; Vanpoucke, D.E.P.; Huehne, R.; Molina, L.; Van Tendeloo, G.; van der Voort, P.; Van Driessche, I.
Title Aqueous CSD approach for the growth of novel, lattice-tuned LaxCe1-xO\delta epitaxial layers Type A1 Journal article
Year 2012 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 22 Issue (up) 17 Pages 8476-8483
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Lanthanumcerium oxide (LCO) films were deposited on Ni-5%W substrates by chemical solution deposition (CSD) from water-based precursors. LCO films containing different ratios of lanthanum and cerium ions (from CeO2 to La2Ce2O7) were prepared. The composition of the layers was optimized towards the formation of LCO buffer layers, lattice-matched with the superconducting YBa2Cu3Oy layer, useful for the development of coated conductors. Single, crack-free LCO layers with a thickness of up to 140 nm could be obtained in a single deposition step. The crystallinity and microstructure of these lattice-matched LCO layers were studied by X-ray diffraction techniques, RHEED and SEM. We find that only layers with thickness below 100 nm show a crystalline top surface although both thick and thin layers show good biaxial texture in XRD. On the most promising layers, AFM and (S)TEM were performed to further evaluate their morphology. The overall surface roughness varies between 3.9 and 7.5 nm, while the layers appear much more dense than the frequently used La2Zr2O7 (LZO) systems, showing much smaller nanovoids (12 nm) than the latter system. Their effective buffer layer action was studied using XPS. The thin LCO layers supported the growth of superconducting YBCO deposited using PLD methods.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000302367500044 Publication Date 2012-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 24 Open Access
Notes Iap Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:96960 Serial 148
Permanent link to this record
 

 
Author Gordon, I.; Wagner, P.; Das, A.; Vanacken, J.; Moshchalkov, V.V.; Bruynseraede, Y.; Schuddinck, W.; Van Tendeloo, G.; Ziese, M.; Borghs, G.
Title Comparative Hall studies in the electron- and hole-doped manganites La0.33Ca0.67MnO3 and La0.70Ca0.30MnO3 Type A1 Journal article
Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 62 Issue (up) 17 Pages 11633-11638
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000165201900064 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes Approved Most recent IF: 3.836; 2000 IF: NA
Call Number UA @ lucian @ c:irua:54734 Serial 417
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.; Van Rompaey, S.; Perkisas, T.; Filinchuk, Y.; Van Tendeloo, G.
Title Crystal structure of a lightweight borohydride from submicrometer crystallites by precession electron diffraction Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue (up) 17 Pages 3401-3405
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate that precession electron diffraction at low-dose conditions can be successfully applied for structure analysis of extremely electron-beam-sensitive materials. Using LiBH4 as a test material, complete structural information, including the location of the H atoms, was obtained from submicrometer-sized crystallites. This demonstrates for the first time that, where conventional transmission electron microscopy techniques fail, quantitative precession electron diffraction can provide structural information from submicrometer particles of such extremely electron-beam-sensitive materials as complex lightweight hydrides. We expect the precession electron diffraction technique to be a useful tool for nanoscale investigations of thermally unstable lightweight hydrogen-storage materials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000308833400012 Publication Date 2012-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 17 Open Access
Notes Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:101845 Serial 567
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Schroeder, F.; Fischer, R.A.; Van Tendeloo, G.
Title Direct imaging of loaded metal-organic framework materials (metal@MOF-5) Type A1 Journal article
Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 20 Issue (up) 17 Pages 5622-5627
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We illustrate the potential of advanced transmission electron microscopy for the characterization of a new class of soft porous materials: metal@Zn4O(bdc)3 (metal@MOF-5; bdc = 1,4-benzenedicarboxylate). By combining several electron microscopy techniques (transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and electron tomography) and by carefully reducing the electron dose to avoid beam damage, it is possible to simultaneously characterize the MOF-5 framework material and the loaded metal nanoparticles. We also demonstrate that electron tomography can be used to accurately determine the position and distribution of the particles within the MOF-5 framework. To demonstrate the implementation of these microscopy techniques and what kind of results can be expected, measurements on gas-phase-loaded metal−organic framework materials Ru@MOF-5 and Pd@MOF-5 are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000258941400021 Publication Date 2008-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 112 Open Access
Notes Esteem 026019 Approved Most recent IF: 9.466; 2008 IF: 5.046
Call Number UA @ lucian @ c:irua:76595 Serial 714
Permanent link to this record
 

 
Author Misko, V.R.; Peeters, F.M.
Title Dynamics of vortex shells in mesoscopic superconducting Corbino disks Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue (up) 17 Pages Artn 174507
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000242409000113 Publication Date 2006-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 30 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:61926 Serial 786
Permanent link to this record
 

 
Author Chen, Z.; Tan, Z.; Ji, G.; Schryvers, D.; Ouyang, Q.; Li, Z.
Title Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites Type A1 Journal article
Year 2015 Publication Advanced engineering materials Abbreviated Journal Adv Eng Mater
Volume 17 Issue (up) 17 Pages 1076-1084
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The SiC/Al composites have been fabricated by a vacuum hot pressing (VHP) process in order to study the effect of interface evolution on the global thermal conductivity (TC). By optimizing the VHP parameters of sintering temperature and time, the three different kinds of SiC/Al interface configurations, that is, non-bonded, diffusion-bonded, and reaction-bonded interfaces, are formed and identified by measurement of relative density, X-ray diffraction, scanning and (high-resolution) transmission electron microscopy. The VHPed composite sintered at 655 °C for 60 min is fully dense and presents a tightly-adhered and clean SiC/Al interface at the nanoscale, the ideal diffusion-bonded interface being the most favorable for minimizing interfacial thermal resistance, which in turn results in the highest TC of around 270 W/mK.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000357680700019 Publication Date 2015-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1438-1656; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.319 Times cited 9 Open Access
Notes Approved Most recent IF: 2.319; 2015 IF: 1.758
Call Number c:irua:123000 Serial 818
Permanent link to this record
 

 
Author Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B.
Title First-principles study of possible shallow donors in ZnAl2O4 spinel Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue (up) 17 Pages 174101-174107
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract ZnAl2O4 (gahnite) is a ceramic which is considered a possible transparent conducting oxide (TCO) due to its wide band gap and transparency for UV. Defects play an important role in controlling the conductivity of a TCO material along with the dopant, which is the main source of conductivity in an otherwise insulating oxide. A comprehensive first-principles density functional theory study for point defects in ZnAl2O4 spinel is presented using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) to overcome the band gap problem. We have investigated the formation energies of intrinsic defects which include the Zn, Al, and O vacancy and the antisite defects: Zn at the Al site (ZnAl) and Al at the Zn site (AlZn). The antisite defect AlZn has the lowest formation energy and acts as a shallow donor, indicating possible n-type conductivity in ZnAl2O4 spinel by Al doping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000318653300001 Publication Date 2013-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes Iwt; Fwo Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108769 Serial 1219
Permanent link to this record