|   | 
Details
   web
Records
Author Wang, W.; Berthelot, A.; Kolev, S.; Tu, X.; Bogaerts, A.
Title CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue (up) 25 Pages 065012
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO 2 conversion by a gliding arc plasma is gaining increasing interest, but the underlying mechanisms for an energy-efficient process are still far from understood. Indeed, the chemical complexity of the non-equilibrium plasma poses a challenge for plasma modeling due to the huge computational load. In this paper, a one-dimensional (1D) gliding arc model is developed in a cylindrical frame, with a detailed non-equilibrium CO 2 plasma chemistry set, including the CO 2 vibrational kinetics up to the dissociation limit. The model solves a set of time- dependent continuity equations based on the chemical reactions, as well as the electron energy balance equation, and it assumes quasi-neutrality in the plasma. The loss of plasma species and heat due to convection by the transverse gas flow is accounted for by using a characteristic frequency of convective cooling, which depends on the gliding arc radius, the relative velocity of the gas flow with respect to the arc and on the arc elongation rate. The calculated values for plasma density and plasma temperature within this work are comparable with experimental data on gliding arc plasma reactors in the literature. Our calculation results indicate that excitation to the vibrational levels promotes efficient dissociation in the gliding arc, and this is consistent with experimental investigations of the gliding arc based CO 2 conversion in the literature. Additionally, the dissociation of CO 2 through collisions with O atoms has the largest contribution to CO 2 splitting under the conditions studied. In addition to the above results, we also demonstrate that lumping the CO 2 vibrational states can bring a significant reduction of the computational load. The latter opens up the way for 2D or 3D models with an accurate description of the CO 2 vibrational kinetics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386605100002 Publication Date 2016-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 3 Open Access
Notes This research was supported by the European Marie Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No. 657304) and by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:135990 Serial 4286
Permanent link to this record
 

 
Author de de Meux, A.J.; Pourtois, G.; Genoe, J.; Heremans, P.
Title Origin of the apparent delocalization of the conduction band in a high-mobility amorphous semiconductor Type A1 Journal article
Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 29 Issue (up) 25 Pages 255702
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, we show that the apparent delocalization of the conduction band reported from first-principles simulations for the high-mobility amorphous oxide semiconductor InGaZnO4 (a-IGZO) is an artifact induced by the periodic conditions imposed to the model. Given a sufficiently large unit-cell dimension (over 40 angstrom), the conduction band becomes localized. Such a model size is up to four times the size of commonly used models for the study of a-IGZO. This finding challenges the analyses done so far on the nature of the defects and on the interpretation of numerous electrical measurements. In particular, we re-interpret the meaning of the computed effective mass reported so far in literature. Our finding also applies to materials such as SiZnSnO, ZnSnO, InZnSnO, In2O3 or InAlZnO4 whose models have been reported to display a fully delocalized conduction band in the amorphous phase.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000402434900002 Publication Date 2017-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 5 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:144183 Serial 4676
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D.
Title Multicomponent electron-hole superfluidity and the BCS-BEC crossover in double bilayer graphene Type A1 Journal article
Year 2017 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 119 Issue (up) 25 Pages 257002
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent because of the conduction and valence bands. We investigate the superfluid crossover properties as functions of the tunable carrier densities and the tunable energy band gap Eg. For small band gaps there is a significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein condensate (BEC) regime at low densities. At a given larger density, a band gap E-g similar to 80-120 meV can carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for realization of high-Tc superfluidity.'));
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000418619100017 Publication Date 2017-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 18 Open Access
Notes ; We thank Mohammad Zarenia for useful discussions. Part of this work was supported by FWO-VI (Flemish Science Foundation) and the Methusalem program. ; Approved Most recent IF: 8.462
Call Number UA @ lucian @ c:irua:148509 Serial 4885
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; Girovsky, J.; Martinez-Velarte, M.C.; Manca, N.; Mattoni, G.; Monteiro, A.M.R.V.L.; Gauquelin, N.; Verbeeck, J.; Otte, A.F.; Gabay, M.; Picozzi, S.; Caviglia, A.D.
Title Spin-orbit semimetal SrIrO3 in the two-dimensional limit Type A1 Journal article
Year 2017 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 119 Issue (up) 25 Pages 256403
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('We investigate the thickness-dependent electronic properties of ultrathin SrIrO3 and discover a transition from a semimetallic to a correlated insulating state below 4 unit cells. Low-temperature magnetoconductance measurements show that spin fluctuations in the semimetallic state are significantly enhanced while approaching the transition point. The electronic properties are further studied by scanning tunneling spectroscopy, showing that 4 unit cell SrIrO(3)d is on the verge of a gap opening. Our density functional theory calculations reproduce the critical thickness of the transition and show that the opening of a gap in ultrathin SrIrO3 requires antiferromagnetic order.'));
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000418619100014 Publication Date 2017-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 79 Open Access OpenAccess
Notes ; This work was supported by The Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience program (NanoFront), by the Dutch Foundation for Fundamental Research on Matter (FOM), and by the European Research Council under the European Union's H2020 programme/ERC Grant Agreement No. [677458]. The authors thank R. Claessen, P. Schutz, D. Di Sante, G. Sangiovanni, and A. Santander Syro for useful discussions. M. G. gratefully acknowledges support from the French National Research Agency (ANR) (Project LACUNES No. ANR-13-BS04-0006-01). C. A. and S. P. acknowledge financial support from Fondazione Cariplo via the project Magister (Project No. 2013-0726) and from CNR-SPIN via the Seed Project “CAMEO”. N. G. and J. V. acknowledge support from the GOA project “Solarpaint” of the University of Antwerp. The Qu-AntEM microscope was partly funded by the Hercules fund from the Flemish Government. ; Approved Most recent IF: 8.462
Call Number UA @ lucian @ c:irua:148510 Serial 4897
Permanent link to this record
 

 
Author Kumar, N.; Attri, P.; Dewilde, S.; Bogaerts, A.
Title Inactivation of human pancreatic ductal adenocarcinoma with atmospheric plasma treated media and water: a comparative study Type A1 Journal article
Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 51 Issue (up) 25 Pages 255401
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In recent years, the interest in treating cancer cells with plasma treated media (PTM) and plasma treated water (PTW) has increased tremendously. However, the actions of PTM and PTW are still not entirely understood. For instance, it is not clear whether the action of PTM is due to a modification in proteins/amino acids after plasma treatment of the media, or due to reactive oxygen and nitrogen species (RONS) generated from the plasma, or a combination of both effects. To differentiate between the actions of RONS and modified proteins/amino acids on the treatment of cancer cells, we compared the effects of PTM and PTW on two different pancreatic ductal adenocarcinomas (MiaPaca-2, BxPc3) and pancreatic stellate cells

(PSCs) (hPSC128-SV). PSCs closely interact with cancer cells to create a tumor-promoting environment that stimulates local tumor progression and metastasis. We treated culture media and deionized water with a cold atmospheric plasma (CAP) jet, and subsequently applied this PTM/PTW at various ratios to the pancreatic cancer and PSC cell lines. We evaluated cell death, intracellular ROS concentrations and the mRNA expression profiles of four oxidative stress-related genes, i.e. Mitogen-activated protein kinase 7 (MAPK7), B-cell lymphoma 2 (BCL2), Checkpoint kinase 1 (CHEK1) and DNA damage-inducible transcript 3, also known as C/EBP homologous protein (CHOP). Our findings demonstrate that PTM and PTW have a similar efficacy to kill pancreatic cancer cells, while PTW is slightly more effective in killing PSCs, as compared to PTM. Furthermore, we observed an enhancement of the intracellular ROS concentrations in both pancreatic cancer cells and PSCs. Thus, it is likely that under our experimental conditions, the anti-cancer activity of PTM can be attributed more to the RONS present in the treated liquid, than to the modification of proteins/amino acids in the media. Furthermore, the fact that the chemo-resistant PSCs were killed by PTM/PTW may offer possibilities for new anti-cancer therapies for pancreatic cancer cells, including PSCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000434266900001 Publication Date 2018-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 6 Open Access OpenAccess
Notes We gratefully acknowledge financial support from the Research Foundation—Flanders (FWO) (grant number 12J5617N) and from the European Marie Skłodowska–Curie Individual Fellowship ‘Anticancer-PAM’ within Horizon2020 (grant number 743546). We also thank Atsushi Masamune (Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi Prefecture, Japan) for providing us with human PSCs (hPSC128-SV) for this study. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:151962 Serial 4997
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Peeters, F.M.
Title Topological Dirac semimetal phase in <tex> $GexSny alloys Type A1 Journal article
Year 2018 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 112 Issue (up) 25 Pages 251601
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, two stable allotropes (germancite and stancite) for the group IV elements (Ge and Sn) with a staggered layered dumbell structure were proposed to be three-dimensional (3D) topological Dirac semimetals [Phys. Rev. B 93, 241117 (2016)]. A pair of Dirac points is on the rotation axis away from the time-reversal invariant momentum, and the stability of the 3D bulk Dirac points is protected by the C-3 rotation symmetry. Here, we use the first principles calculations to investigate GexSny alloys which share the same rhombohedral crystal structure with the space group of D-3d(6). Six GexSny alloys are predicted to be energetically and dynamically stable, where (x, y) = (8, 6) and (6, 8) and the alpha and beta phases of (10, 4) and (4, 10). Our results demonstrate that all the six GexSny alloys are topological Dirac semimetals. The different nontrivial surface states and surface Fermi arcs are identified. Our work will substantially enrich the family of 3D Dirac semimetals which are within the reach of experimental realization. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000435987400013 Publication Date 2018-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes ; This work was supported by the Collaborative Innovation Center of Quantum Matter, the Fonds voor Wetenschappelijk Onderzoek (FWO-VI), and the FLAG-ERA Project TRANS 2D TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:151970UA @ admin @ c:irua:151970 Serial 5045
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Peeters, F.M.
Title Graphene-based heterostructures with moire superlattice that preserve the Dirac cone: a first-principles study Type A1 Journal article
Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 31 Issue (up) 25 Pages 255302
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In van der Waals heterostructures consisting of graphene and a substrate, lattice mismatch often leads to a moire pattern with a huge supercell, preventing its treatment within first- principles calculations. Previous theoretical works considered mostly simple stacking models such as AB, AA with straining the lattice of graphene to match that of the substrate. Here, we propose a moire superlattice build from graphene and porous graphene or graphyne like monolayers, having a lower interlayer binding energy, needing little strain in order to match the lattices. In contrast to the results from the simple stacking models, the present ab initio calculations for the moire superlattices show different properties in lattice structure, energy, and band structures. For example, the Dirac cone at the K point is preserved and a linear energy dispersion near the Fermi level is obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000464184300001 Publication Date 2019-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 4 Open Access
Notes ; This work is supported by the Collaborative Innovation Center of Quantum Matter, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl) and the FLAG-ERA project TRANS-2D-TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 2.649
Call Number UA @ admin @ c:irua:159314 Serial 5215
Permanent link to this record
 

 
Author Vanmeert, F.; Hendriks, E.; van der Snickt, G.; Monico, L.; Dik, J.; Janssens, K.
Title Chemical Mapping by Macroscopic X-ray Powder Diffraction (MA-XRPD) of Van Gogh's Sunflowers : identification of areas with higher degradation risk Type A1 Journal article
Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 57 Issue (up) 25 Pages 7418-7422
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The discoloration rate of chrome yellow (CY), a class of synthetic inorganic pigments (PbCr1-xSxO4) frequently used by Van Gogh and his contemporaries, strongly depends on its sulfate content and on its crystalline structure (either monoclinic or orthorhombic). Macroscopic X-Ray powder diffraction imaging of selected areas on Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam) revealed the presence of two subtypes of CY: the light-fast monoclinic PbCrO4 (LF-CY) and the light-sensitive monoclinic PbCr1-xSxO4 (x approximate to 0.5; LS-CY). The latter was encountered in large parts of the painting (e.g., in the pale-yellow background and the bright-yellow petals, but also in the green stems and flower hearts), thus indicating their higher risk for past or future darkening. Overall, it is present in more than 50% of the CY regions. Preferred orientation of LS-CY allows observation of a significant ordering of the elongated crystallites along the direction of Van Gogh's brush strokes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000434949200023 Publication Date 2018-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 10 Open Access
Notes ; The authors acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, the GOA Project Solarpaint (University of Antwerp Research Council), and the Interreg Smart*Light project. Raman analyses were performed using the European MOLAB platform, which is financially supported by the Horizon 2020 Programme (IPERION CH Grant 654028). The authors thank the staff of the Van Gogh Museum for their collaboration. ; Approved Most recent IF: 11.994
Call Number UA @ admin @ c:irua:153185 Serial 5517
Permanent link to this record
 

 
Author Miliani, C.; Monico, L.; Melo, M.J.; Fantacci, S.; Angelin, E.M.; Romani, A.; Janssens, K.
Title Photochemistry of Artists' Dyes and Pigments : towards better understanding and prevention of colour change in works of art Type A1 Journal article
Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 57 Issue (up) 25 Pages 7324-7334
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The absorption of light gives a pigment its colour and its reason for being, but it also creates excited states, that is, new molecules with an energy excess that can be dissipated through degradation pathways. Photodegradation processes provoke long-term, cumulative and irreversible colour changes (fading, darkening, blanching) of which the prediction and prevention are challenging tasks. Of all the environmental risks that affect heritage materials, light exposure is the only one that cannot be controlled without any impact on the optimal display of the exhibit. Light-induced alterations are not only associated with the pigment itself but also with its interactions with support/binder and, in turn, are further complicated by the nature of the environmental conditions. In this Minireview we investigate how chemistry, encompassing multi-scale analytical investigations of works of art, computational modelling and physical and chemical studies contributes to improve our prediction of artwork appearance before degradation and to establish effective preventive conservation strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000434949200006 Publication Date 2018-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 10 Open Access
Notes ; We acknowledge: ACS and APS for the permission to adapt Figure 1c,d; RSC to adapt Figures 1e, 3c,d and 4a; Wiley and IUCr to adapt Figures 3b and 4b-d; for the detail of a Andean textile in Figure 5, Museum of Fine Arts, Boston, USA; for the illuminated initial in Figure 6, Torre do Tombo (ANTT). Financial support from the H2020 project IPERION-CH (GA. 654028) is gratefully acknowledged. ; Approved Most recent IF: 11.994
Call Number UA @ admin @ c:irua:153184 Serial 5769
Permanent link to this record
 

 
Author Ben Dkhil, S.; Perkhun, P.; Luo, C.; Mueller, D.; Alkarsifi, R.; Barulina, E.; Quiroz, Y.A.A.; Margeat, O.; Dubas, S.T.; Koganezawa, T.; Kuzuhara, D.; Yoshimoto, N.; Caddeo, C.; Mattoni, A.; Zimmermann, B.; Wuerfel, U.; Pfannmöller, M.; Bals, S.; Ackermann, J.; Videlot-Ackermann, C.
Title Direct correlation of nanoscale morphology and device performance to study photocurrent generation in donor-enriched phases of polymer solar cells Type A1 Journal article
Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 12 Issue (up) 25 Pages 28404-28415
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-b]-thiophene-alt-benzodithiophene (PTB7):[6,6]phenyl C-71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 1:1.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 1:0.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7:PC71BM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000543780900058 Publication Date 2020-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 7 Open Access OpenAccess
Notes ; J.A., O.M., and C.V.-A. acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (Grant Number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, Grant Number: 287594). J.A., C.V.-A., and E.B. acknowledge the Association Nationale de la Recherche et de la Technologie (ANRT) and the Ministere de l'Enseignement Superieur, de la Recherche et de l'Innovation, awarded through the company Dracula Technologies (Valence, France), for framework of a CIFRE Ph.D. grant 2017/0529. J.A. and P.P. received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant agreement no. 713750. They further acknowledge support of the Regional Council of Provence-Alpes-Cote d'Azur, A*MIDEX (no. ANR-11-IDEX-0001-02), and the Investissements d'Avenir project funded by the French Government, managed by the French National Research Agency (ANR). J.A. and Y.A.A.Q. acknowledge the French Research Agency for funding through the project NFA-15 (ANR-17-CE05-0020-01). N.Y. acknowledges that the synchrotron radiation experiments were performed at BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2017B1629 and 2018B1791). S.B. acknowledges financial support from the European Research Council (ERC Consolidator Grant 815128-REALNANO) and from FWO (G.0381.16N). M.P. gratefully acknowledges funding by the Ministerium fur Wissenschaft, Forschung und Kunst Baden-Wurttemberg through the HEiKA materials research centre FunTECH-3D (MWK, 33-753-30-20/3/3) and the Large-Scale-Data-Facility (LSDF) sds@hd through grant INST 35/1314-1 FUGG. A.M. acknowledges Italian MIUR for funding through the project PON04a2 00490 M2M Netergit, PRACE, for awarding access to Marconi KNL at CINECA, Italy, through projects DECONVOLVES (2018184466) and PROVING-IL (2019204911). C.C. acknowledges the CINECA award under the ISCRA initiative for the availability of high-performance computing resources and support (project MITOMASC). ; sygma Approved Most recent IF: 9.5; 2020 IF: 7.504
Call Number UA @ admin @ c:irua:170703 Serial 6484
Permanent link to this record
 

 
Author Akgenc, B.; Sarikurt, S.; Yagmurcukardes, M.; Ersan, F.
Title Aluminum and lithium sulfur batteries : a review of recent progress and future directions Type A1 Journal article
Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 33 Issue (up) 25 Pages 253002
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Advanced materials with various micro-/nanostructures have attracted plenty of attention for decades in energy storage devices such as rechargeable batteries (ion- or sulfur based batteries) and supercapacitors. To improve the electrochemical performance of batteries, it is uttermost important to develop advanced electrode materials. Moreover, the cathode material is also important that it restricts the efficiency and practical application of aluminum-ion batteries. Among the potential cathode materials, sulfur has become an important candidate material for aluminum-ion batteries cause of its considerable specific capacity. Two-dimensional materials are currently potential candidates as electrodes from lab-scale experiments to possible pragmatic theoretical studies. In this review, the fundamental principles, historical progress, latest developments, and major problems in Li-S and Al-S batteries are reviewed. Finally, future directions in terms of the experimental and theoretical applications have prospected.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000655281200001 Publication Date 2021-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.649
Call Number UA @ admin @ c:irua:179034 Serial 6971
Permanent link to this record
 

 
Author Ben Hafsia, A.; Hendrickx, M.; Batuk, M.; Khitouni, M.; Hadermann, J.; Greneche, J.-M.; Rammeh, N.
Title Crystal structure study of manganese and titanium substituted BaLaFe2O6-δ Type A1 Journal article
Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 251 Issue (up) 251 Pages 186-193
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Barium lanthanum ferrite and four Mn/Ti substituted materials were synthesized by the sol-gel method. The crystal structure of the materials was studied by a combination of X-ray powder diffraction, electron diffraction, scanning transmission electron microscopy and 57Fe Mössbauer spectrometry. BaLaFe2O6-δ has a cubic perovskite structure and Ba0.7La1.3FeMnO6-δ is distorted perovskite with the R-3c symmetry, both from electron diffraction and X-ray powder diffraction. However, according to transmission electron microscopy, the crystals of BaLaFeTiO6-δ, BaLaFeTi0.5Mn0.5O6-δ, and BaLaFe0.5Ti0.5MnO6-δ consist of nanodomains with different symmetries (Pm3m next to R-3c due to octahedral tilts), whereas the bulk X-ray powder diffraction patterns for these compounds correspond to the simple cubic structure. 57Fe Mössbauer spectrometry confirms that all materials contain high spin state Fe3+ ions which are strongly influenced by the chemical disorder

resulting from various cationic environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000402581200024 Publication Date 2017-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited Open Access Not_Open_Access
Notes This study has been supported by the Tunisian Ministry of Higher Education and Scientific Research and by the University of Antwerp BOF Grant 33024 funding scheme. Approved Most recent IF: 2.299
Call Number EMAT @ emat @ c:irua:143988 Serial 4582
Permanent link to this record
 

 
Author Michel, K.H.; Costamagna; Peeters, F.M.
Title Theory of thermal expansion in 2D crystals Type A1 Journal article
Year 2015 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 252 Issue (up) 252 Pages 2433-2437
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The thermal expansion alpha(T) in layered crystals is of fundamental and technological interest. As suggested by I. M. Lifshitz in 1952, in thin solid films (crystalline membranes) a negative contribution to alpha(T) is due to anharmonic couplings between in-plane stretching modes and out-of-plane bending (flexural modes). Genuine in-plane anharmonicities give a positive contribution to alpha(T). The competition between these two effects can lead to a change of sign (crossover) from a negative value of alpha(T) in a temperature (T) range T <= T-alpha to a positive value of alpha(T) for T > T-alpha in layered crystals. Here, we present an analytical lattice dynamical theory of these phenomena for a two-dimensional (2D) hexagonal crystal. We start from a Hamiltonian that comprises anharmonic terms of third and fourth order in the lattice displacements. The in-plane and out-of-plane contributions to the thermal expansion are studied as functions of T for crystals of different sizes. Besides, renormalization of the flexural mode frequencies plays a crucial role in determining the crossover temperature T-alpha. Numerical examples are given for graphene where the anharmonic couplings are determined from experiments. The theory is applicable to other layer crystals wherever the anharmonic couplings are known. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000364690400014 Publication Date 2015-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 21 Open Access
Notes ; We thank B. Verberck, D. Lamoen, and A. Dobry for useful comments. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. This work is supported by the Euro GRAPHENE project CONGRAN. ; Approved Most recent IF: 1.674; 2015 IF: 1.489
Call Number UA @ lucian @ c:irua:130281 Serial 4264
Permanent link to this record
 

 
Author Matulis, A.; Zarenia, M.; Peeters, F.M.
Title Wave fronts and packets in 1D models of different meta-materials : graphene, left-handed media and transmission line Type A1 Journal article
Year 2015 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 252 Issue (up) 252 Pages 2330-2338
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A comparative study is made of the propagation of wave packets and fronts in three different meta-media, i.e. graphene, left-handed media (LHM) and transmission lines, using one-dimensional models. It is shown that a potential step in graphene influences only the frequency of the electronic wave, i.e., the particular spectrum branch (electron or hole) to which the wave belongs to, while the envelop function (the wave front or packet form) remains unchanged. Although the model for a vacuum and LHM interface is similar to that of the potential step in graphene, the solutions are quite different due to differences in the chirality of the waves. Comparing the propagation of wave fronts and packets in a standard transmission line and its meta-analog we demonstrate that the propagating packets in the meta-line are much more deformed as compared to the standard one, including broadening, asymmetry and even the appearance of fast moving precursors. This influence is seen not only in the case of packets with steep fronts but in soft Gaussian packets as well.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000362722300025 Publication Date 2015-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 1 Open Access
Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government, and the European Social Fund under the Global Grant Measure (Grant No. VP1-3.1-SMM-07-K-02-046). ; Approved Most recent IF: 1.674; 2015 IF: 1.489
Call Number UA @ lucian @ c:irua:128776 Serial 4277
Permanent link to this record
 

 
Author Michel, K.H.; Neek-Amal, M.; Peeters, F.M.
Title Static flexural modes and piezoelectricity in 2D and layered crystals Type A1 Journal article
Year 2016 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 253 Issue (up) 253 Pages 2311-2315
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Piezo- and flexoelectricity are manifestations of electromechanical coupling in solids with potential applications in nanoscale materials. Naumov etal. [Phys. Rev. Lett. 102, 217601 (2009)] have shown by first principles calculations that a monolayer BN sheet becomes macroscopically polarized in-plane when in a corrugated state. Here, we investigate the interplay of layer corrugation and in-plane polarization by atomistic lattice dynamics. We treat the coupling between static flexural modes and in-plane atomic ion displacements as an anharmonic effect, similar to the membrane effect that is at the origin of negative thermal expansion in layered crystals. We have derived analytical expressions for the corrugation-induced static in-plane strains and the optical displacements with the resulting polarization response functions. Beyond h-BN, the theory applies to transition metal dichalcogenides and dioxides. Numerical calculations show that the effects are considerably stronger for 2D h-BN than for 2H-MoS2.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000390339000002 Publication Date 2016-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 5 Open Access
Notes ; The authors acknowledge useful discussions with L. Wirtz, A. Molina-Sanchez, and C. Sevik. This work was supported by the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.674
Call Number UA @ lucian @ c:irua:140309 Serial 4462
Permanent link to this record
 

 
Author Zeng, C.Y.; Cao, S.; Li, Y.Y.; Zhao, Z.X.; Yao, X.Y.; Ma, X.; Zhang, X.P.
Title A hidden single-stage martensitic transformation from B2 parent phase to B19 ' martensite phase in an aged Ni51Ti49 alloy Type A1 Journal article
Year 2019 Publication Materials letters Abbreviated Journal Mater Lett
Volume 253 Issue (up) 253 Pages 99-101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The aged Ni-rich NiTi shape memory alloys (SMAs) exhibit the multi-stage martensitic transformation (MMT), which has important influences on functional properties and practical applications of the NiTi SMAs. A hidden single-stage martensitic transformation from B2 parent phase to B19' martensite phase is found in an aged Ni51Ti49 alloy, which happens concurrently with a commonly observed two-stage martensitic transformation B2-R-B19' (R: martensite phase) and actually composes one stage of a multi-stage martensitic transformation (MMT) together with the two-stage one. B2-B19' martensitic transformation occurs in the NiTi matrix containing Ni4Ti3 precipitates with relatively large inter-particle space, while B2-R-B19' transformation takes place in the NiTi matrix with Ni4Ti3 precipitates having relatively small inter-particle space. (C) 2019 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000482629500025 Publication Date 2019-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-577x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.572 Times cited Open Access
Notes ; This work was supported by the Natural Science Foundation of Guangdong Province under Grant Nos. 2018B0303110012 and 2017A030313323, and the National Natural Science Foundation of China under Grant Nos. 51401081 and 51571092. ; Approved Most recent IF: 2.572
Call Number UA @ admin @ c:irua:162764 Serial 5381
Permanent link to this record
 

 
Author Brault, P.; Neyts, E.C.
Title Molecular dynamics simulations of supported metal nanocatalyst formation by plasma sputtering Type A1 Journal article
Year 2015 Publication Catalysis today Abbreviated Journal Catal Today
Volume 256 Issue (up) 256 Pages 3-12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Magnetron sputtering is a widely used physical vapor deposition technique for deposition and formation of nanocatalyst thin films and clusters. Nevertheless, so far only few studies investigated this formation process at the fundamental level. We here review atomic scale molecular dynamics simulations aimed at elucidating the nanocatalyst growth process through magnetron sputtering. We first introduce the basic magnetron sputtering background and machinery of molecular dynamics simulations, and then describe the studies conducted in this field so far. We also present a perspective view on how the field may be developed further.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000360085300002 Publication Date 2015-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.636 Times cited 18 Open Access
Notes Approved Most recent IF: 4.636; 2015 IF: 3.893
Call Number c:irua:127408 Serial 2174
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.(K.)
Title Nanoscale thermodynamic aspects of plasma catalysis Type A1 Journal article
Year 2015 Publication Catalysis today Abbreviated Journal Catal Today
Volume 256 Issue (up) 256 Pages 23-28
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis continues to gain increasing scientific interest, both in established fields like toxic waste abatement and emerging fields like greenhouse gas conversion into value-added chemicals. Attention is typically focused on the obtained conversion process selectivity, rates and energy efficiency. Much less attention is usually paid to the underlying mechanistic aspects of the processes that occur. In this contribution, we critically examine a number of fundamentally important nanoscale thermodynamic aspects of plasma catalysis, which are very relevant to these processes but so far have been overlooked or insufficiently covered in the plasma catalysis literature.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000360085300004 Publication Date 2015-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.636 Times cited 14 Open Access
Notes Approved Most recent IF: 4.636; 2015 IF: 3.893
Call Number c:irua:127409 Serial 2274
Permanent link to this record
 

 
Author Nozaki, T.; Neyts, E.C.; Sankaran, M.; Ostrikov, K.(K.); Liu, C.-J.
Title Plasmas for enhanced catalytic processes (ISPCEM 2014) Type Editorial
Year 2015 Publication Catalysis today Abbreviated Journal Catal Today
Volume 256 Issue (up) 256 Pages 1-2
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000360085300001 Publication Date 2015-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.636 Times cited 2 Open Access
Notes Approved Most recent IF: 4.636; 2015 IF: 3.893
Call Number c:irua:127407 Serial 2641
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M.
Title Quantum transport in graphene Hall bars : effects of side gates Type A1 Journal article
Year 2017 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 257 Issue (up) 257 Pages 20-26
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Quantum electron transport in side-gated graphene Hall bars is investigated in the presence of quantizing external magnetic fields. The asymmetric potential of four side-gates distorts the otherwise flat bands of the relativistic Landau levels, and creates new propagating states in the Landau spectrum (i.e. snake states). The existence of these new states leads to an interesting modification of the bend and Hall resistances, with new quantizing plateaus appearing in close proximity of the Landau levels. The electron guiding in this system can be understood by studying the current density profiles of the incoming and outgoing modes. From the fact that guided electrons fully transmit without any backscattering (similarly to edge states), we are able to analytically predict the values of the quantized resistances, and they match the resistance data we obtain with our numerical (tight-binding) method. These insights in the electron guiding will be useful in predicting the resistances for other side-gate configurations, and possibly in other system geometries, as long as there is no backscattering of the guided states.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000401101400005 Publication Date 2017-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.554 Times cited Open Access
Notes ; This work was supported by the Methusalem programme of the Flemish government. One of us (F. M. Peeters) acknowledges correspondence with K. Novoselov. ; Approved Most recent IF: 1.554
Call Number UA @ lucian @ c:irua:143761 Serial 4604
Permanent link to this record
 

 
Author Chin, C.-M.; Battle, P.D.; Blundell, S.J.; Hunter, E.; Lang, F.; Hendrickx, M.; Sena, R.P.; Hadermann, J.
Title Comparative study of the magnetic properties of La3Ni2B'O9 for B' = Nb, Ta or Sb Type A1 Journal article
Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 258 Issue (up) 258 Pages 825-834
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (mu SR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random 1/3Ni/2/3B' mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B'O-9 (B' = Nb or Ta) at 5 K although in each case mu SR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2NbO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000423650400107 Publication Date 2017-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 6 Open Access Not_Open_Access
Notes ; We thank EPSRC for funding through Grants EP/M0189541 and EP/N023803. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful E. Suard for experimental assistance at ILL. ; Approved Most recent IF: 2.299
Call Number UA @ lucian @ c:irua:149284 Serial 4928
Permanent link to this record
 

 
Author Istomin, S.Y.; Morozov, A.V.; Abdullayev, M.M.; Batuk, M.; Hadermann, J.; Kazakov, S.M.; Sobolev, A.V.; Presniakov, I.A.; Antipov, E.V.
Title High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-\delta perovskites as prospective electrode materials for symmetrical SOFC Type A1 Journal article
Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 258 Issue (up) 258 Pages 1-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract La1-yCayFe0.5+x(Mg,Mo)(0.5-x)O3-delta oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mossbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-delta and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-delta) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-delta is oxygen deficient with delta approximate to 0.15. Oxides are stable in reducing atmosphere (Ar/H-2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1-xGdxO2-x/2 electrolyte mixtures treated at 1173-1373K, while Fe-rich compositions (x >= 0.1) react with Zr1-xYxO2-x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4-12.7 ppm K-1. In reducing atmosphere their TECs were found to increase up to 12.1-15.4 ppm K-1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H-2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000423650400001 Publication Date 2017-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 5 Open Access Not_Open_Access
Notes ; This work was financially supported by Russian Science Foundation (project number 16-13-10327). ; Approved Most recent IF: 2.299
Call Number UA @ lucian @ c:irua:149283 Serial 4936
Permanent link to this record
 

 
Author Robin, I.-C.; Aichele, T.; Bougerol, C.; André, R.; Tatarenko, S.; Bellet-Amalric, E.; van Daele, B.; Van Tendeloo, G.
Title CdSe quantum dot formation: alternative paths to relaxation of a strained CdSe layer and influence of the capping conditions Type A1 Journal article
Year 2007 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 18 Issue (up) 26 Pages 265701,1-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000247103500012 Publication Date 2007-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 8 Open Access
Notes Approved Most recent IF: 3.44; 2007 IF: 3.310
Call Number UA @ lucian @ c:irua:64756 Serial 303
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Hernandez, A.D.; Peeters, F.M.
Title Confinement effects on intermediate-state flux patterns in mesoscopic type-I superconductors Type A1 Journal article
Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 103 Issue (up) 26 Pages 267002,1-267002,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Intermediate-state flux structures in mesoscopic type-I superconductors are studied within the Ginzburg-Landau theory. In addition to well-established tubular and laminar structures, the strong confinement leads to the formation of (i) a phase of singly quantized vortices, which is typical for type-II superconductors and (ii) a ring of a normal domain at equilibrium. The stability region and the formation process of these intermediate-state structures are strongly influenced by the geometry of the sample.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000273232200042 Publication Date 2009-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 28 Open Access
Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ c:irua:80574 Serial 488
Permanent link to this record
 

 
Author Wee, L.H.; Wiktor, C.; Turner, S.; Vanderlinden, W.; Janssens, N.; Bajpe, S.R.; Houthoofd, K.; Van Tendeloo, G.; De Feyter, S.; Kirschhock, C.E.A.; Martens, J.A.;
Title Copper benzene tricarboxylate metal-organic framework with wide permanent mesopores stabilized by keggin polyoxometallate ions Type A1 Journal article
Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 134 Issue (up) 26 Pages 10911-10919
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Porous solids with organized multiple porosity are of scientific and technological importance for broadening the application range from traditional areas of catalysis and adsorption/separation to drug release and biomedical imaging. Synthesis of crystalline porous materials offering a network of uniform micro- and mesopores remains a major scientific challenge. One strategy is based on variation of synthesis parameters of microporous networks, such as, for example, zeolites or metal organic frameworks (MOFs). Here, we show the rational development of an hierarchical variant of the microporous cubic Cu-3(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate) HKUST-1 MOF having strictly repetitive S inn wide mesopores separated by uniform microporous walls in a single crystal structure. This new material coined COK-15 (COK = Centrum voor Oppervlaktechemie en Katalyse) was synthesized via a dual-templating approach. Stability was enhanced by Keggin type phosphotungstate (HPW) systematically occluded in the cavities constituting the walls between the mesopores.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000305863900037 Publication Date 2012-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 83 Open Access
Notes Iap; Fwo Approved Most recent IF: 13.858; 2012 IF: 10.677
Call Number UA @ lucian @ c:irua:100330 Serial 514
Permanent link to this record
 

 
Author Lebedev, O.I.; Millange, F.; Serre, C.; Van Tendeloo, G.; Férey, G.
Title First direct imaging of giant pores of the metal-organic framework MIL-101 Type A1 Journal article
Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 17 Issue (up) 26 Pages 6525-6527
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000234187300007 Publication Date 2005-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 191 Open Access
Notes Approved Most recent IF: 9.466; 2005 IF: 4.818
Call Number UA @ lucian @ c:irua:56404 Serial 1197
Permanent link to this record
 

 
Author Dobbelaere, W.; de Boeck, J.; Heremans, P.; Mertens, R.; Borghs, G.; Luyten, W.; van Landuyt, J.
Title InAs0.85Sb0.15 infrared photodiodes grown on GaAs and GaAs-coated Si by molecular beam epitaxy Type A1 Journal article
Year 1992 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 600 Issue (up) 26 Pages 3256-3258
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1992JA80600019 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 32 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:4102 Serial 1591
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M.
Title Influence of the substrate orientation on the electronic and optical properties of InAs/GaAs quantum dots Type A1 Journal article
Year 2006 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 89 Issue (up) 26 Pages 1-3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000243157600032 Publication Date 2006-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 16 Open Access
Notes Approved Most recent IF: 3.411; 2006 IF: 3.977
Call Number UA @ lucian @ c:irua:62199 Serial 1653
Permanent link to this record
 

 
Author Li, H.; Bender, H.; Conard, T.; Maex, K.; Gutakovskii, A.; van Landuyt, J.; Froyen, L.
Title Interaction of a Ti-capped Co thin film with Si3N4 Type A1 Journal article
Year 2000 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 77 Issue (up) 26 Pages 4307-4309
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The reaction of a Ti (8 nm) capped Co film (15 nm) with a Si3N4 layer (150 nm) is studied after rapid thermal annealing at 660 degreesC for 120 s in a N-2 ambient. X-ray photoelectron spectroscopy, transmission electron microscopy, electron energy-loss spectroscopy, and Auger electron spectroscopy are used to study the reaction products. Combining the results of the different analyses yields a layer stack consisting of: TiO2/TiO/unreacted Co/(Ti,Co)(2)N/Co2Si, followed by amorphous Si3N4. The reaction mechanisms are discussed. Conclusions concerning the risk for degradation of nitride spacers in advanced devices are drawn. (C) 2000 American Institute of Physics. [S0003-6951(00)05248-7].
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000166120500021 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 3 Open Access
Notes Approved Most recent IF: 3.411; 2000 IF: 3.906
Call Number UA @ lucian @ c:irua:104225 Serial 1683
Permanent link to this record
 

 
Author Copley, J.R.D.; Michel, K.H.
Title Neutron and X-ray-scattering cross sections of orientationally disordered solid C60 Type A1 Journal article
Year 1993 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 5 Issue (up) 26 Pages 4353-4370
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Differential cross sections for neutron and x-ray scattering have been derived for the orientationally disordered phase of solid C60. Interaction centres are placed at nuclei and at the centres of interatomic bonds. Bragg and diffuse scattering cross sections, for single crystals and for powders, are formulated using symmetry-adapted rotator functions. Thermal averages are calculated taking account of crystal field effects. Thermally averaged orientational distribution functions have also been calculated.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1993LK74100008 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.346 Times cited 34 Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #
Call Number UA @ lucian @ c:irua:102972 Serial 2298
Permanent link to this record