|   | 
Details
   web
Records
Author Filippousi, M.; Angelakeris, M.; Katsikini, M.; Paloura, E.; Efthimiopoulos, I.; Wang, Y.; Zamboulis, D.; Van Tendeloo, G.
Title Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue (up) 29 Pages 16209-16217
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Iron oxide nanoparticles were prepared using the simplest and most efficient chemical route, the coprecipitation, in the absence and the presence of three different and widely used surfactants. The purpose of this study is to investigate the possible influence of the different surfactants on the structure and therefore on the magnetic properties of the iron oxide nanoparticles. Thus, different techniques were employed in order to elucidate the composition and structure of the magnetic iron oxide nanoparticles. By combining transmission electron microscopy with X-ray powder diffraction and X-ray absorption fine structure measurements, we were able to determine and confirm the crystal structure of the constituent iron oxides. The magnetic properties were investigated by measuring the hysteresis loops where the surfactant influence on their collective magnetic behavior and subsequent AC magnetic hyperthermia response is apparent. The results indicate that the produced iron oxide nanoparticles may be considered as good candidates for biomedical applications in hyperthermia treatments because of their high heating capacity exhibited under an alternating magnetic field, which is sufficient to provoke damage to the cancer cells.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000339540700073 Publication Date 2014-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 47 Open Access
Notes European Research Council under the seventh Framework Program (FP7); ERC Grant No. 246791 – COUNTATOMS; IAP-AIP functional Supramolecular structure IUAP P7/05 Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:118129 Serial 3398
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C.
Title Density functional theory study of interface interactions in hydroxyapatite/rutile composites for biomedical applications Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue (up) 29 Pages 15687-15695
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract To gain insight into the nature of the adhesion mechanism between hydroxyapatite (HA) and rutile (rTiO(2)), the mutual affinity between their surfaces was systematically studied using density functional theory (DFT). We calculated both bulk and surface properties of HA and rTiO(2), and explored the interfacial bonding mechanism of amorphous HA (aHA) surface onto amorphous as well as stoichiometric and nonstoichiometric crystalline rTiO(2). Formation energies of bridging and subbridging oxygen vacancies considered in the rTiO(2)(110) surface were evaluated and compared with other theoretical and experimental results. The interfacial interaction was evaluated through the work of adhesion. For the aHA/rTiO(2)(110) interfaces, the work of adhesion is found to depend strongly on the chemical environment of the rTiO(2)(110) surface. Electronic analysis indicates that the charge transfer is very small in the case of interface formation between aHA and crystalline rTiO(2)(110). In contrast, significant charge transfer occurs between aHA and amorphous rTiO(2) (aTiO(2)) slabs during the formation of the interface. Charge density difference (CDD) analysis indicates that the dominant interactions in the interface have significant covalent character, and in particular the Ti-O and Ca-O bonds. Thus, the obtained results reveal that the aHA/aTiO(2) interface shows a more preferable interaction and is thermodynamically more stable than other interfaces. These results are particularly important for improving the long-term stability of HA-based implants.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000406726200022 Publication Date 2017-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access
Notes Approved Most recent IF: 4.536
Call Number UA @ lucian @ c:irua:145195 Serial 4715
Permanent link to this record
 

 
Author Vermeiren, V.; Bogaerts, A.
Title Improving the Energy Efficiency of CO2Conversion in Nonequilibrium Plasmas through Pulsing Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue (up) 29 Pages 17650-17665
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nonequilibrium plasmas offer a pathway for energy-efficient CO2 conversion through vibrationally induced dissociation. However, the efficiency of this pathway is limited by a rise in gas temperature, which increases vibrational−translational (VT) relaxation and quenches the vibrational levels. Therefore, we investigate here the effect of plasma pulsing on the VT nonequilibrium and on the CO2 conversion by means of a zerodimensional chemical kinetics model, with self-consistent gas temperature calculation. Specifically, we show that higher energy efficiencies can be reached by correctly tuning the plasma pulse and interpulse times. The ideal plasma pulse time corresponds to the time needed to reach the highest vibrational temperature. In addition, the highest energy efficiencies are obtained with long interpulse times, that is, ≥0.1 s, in which the gas temperature can entirely drop to room temperature. Furthermore, additional cooling of the reactor walls can give higher energy efficiencies at shorter interpulse times of 1 ms. Finally, our model shows that plasma pulsing can significantly improve the energy efficiency at low reduced electric fields (50 and 100 Td, typical for microwave and gliding arc plasmas) and intermediate ionization degrees (5 × 10−7 and 10−6).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477785000003 Publication Date 2019-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 1 Open Access
Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; This research was supported by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. We also like to thank N. Britun (ChIPS) for the interesting discussions. Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:161621 Serial 5289
Permanent link to this record
 

 
Author Ustarroz, J.; Ke, X.; Hubin, A.; Bals, S.; Terryn, H.
Title New insights into the early stages of nanoparticle electrodeposition Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue (up) 3 Pages 2322-2329
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electrodeposition is an increasingly important method to synthesize supported nanoparticles, yet the early stages of electrochemical nanoparticle formation are not perfectly understood. In this paper, the early stages of silver nanoparticle electrodeposition on carbon substrates have been studied by aberration-corrected TEM, using carbon-coated TEM grids as electrochemical electrodes. In this manner we have access to as-deposited nanoparticle size distribution and structural characterization at the atomic scale combined with electrochemical measurements, which represents a breakthrough in a full understanding of the nanoparticle electrodeposition mechanisms. Whereas classical models, based upon characterization at the nanoscale, assume that electrochemical growth is only driven by direct attachment, the results reported hereafter indicate that early nanoparticle growth is mostly driven by nanocluster surface movement and aggregation. Hence, we conclude that electrochemical nulceation and growth models should be revised and that an electrochemical aggregative growth mechanism should be considered in the early stages of nanoparticle electrodeposition.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000299584400037 Publication Date 2011-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 104 Open Access
Notes Fwo Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:96225 Serial 2316
Permanent link to this record
 

 
Author Debroye, E.; Yuan, H.; Bladt, E.; Baekelant, W.; Van der Auweraer, M.; Hofkens, J.; Bals, S.; Roeffaers, M.B.J.
Title Facile morphology-controlled synthesis of organolead iodide perovskite nanocrystals using binary capping agents Type A1 Journal article
Year 2017 Publication ChemNanoMat : chemistry of nanomaterials for energy, biology and more Abbreviated Journal Chemnanomat
Volume 3 Issue (up) 3 Pages 223-227
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Controlling the morphology of organolead halide perovskite crystals is crucial to a fundamental understanding of the materials and to tune their properties for device applications. Here, we report a facile solution-based method for morphology-controlled synthesis of rod-like and plate-like organolead halide perovskite nanocrystals using binary capping agents. The morphology control is likely due to an interplay between surface binding kinetics of the two capping agents at different crystal facets. By high-resolution scanning transmission electron microscopy, we show that the obtained nanocrystals are monocrystalline. Moreover, long photoluminescence decay times of the nanocrystals indicate long charge diffusion lengths and low trap/defect densities. Our results pave the way for large-scale solution synthesis of organolead halide perovskite nanocrystals with controlled morphology for future device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399604300003 Publication Date 2017-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-692x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.937 Times cited 19 Open Access OpenAccess
Notes ; We acknowledge financial support from the Research Foundation-Flanders (FWO, grant G.0197.11, G.0962.13, G0B39.15, postdoctoral fellowship to E. D. and H. Y.), KU Leuven Research Fund (C14/15/053), the Flemish government through long term structural funding Methusalem (CASAS2, Meth/15/04), the Hercules foundation (HER/11/14), the Belgian Federal Science Policy Office (IAP-PH05), the EC through the Marie Curie ITN project iSwitch (GA-642196) and the ERC project LIGHT (GA307523). S. B. acknowledges financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS). E. B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen). ; ecas_Sara Approved Most recent IF: 2.937
Call Number UA @ lucian @ c:irua:143678UA @ admin @ c:irua:143678 Serial 4656
Permanent link to this record
 

 
Author Berthold, T.; Castro, C.R.; Winter, M.; Hoerpel, G.; Kurttepeli, M.; Bals, S.; Antonietti, M.; Fechler, N.
Title Tunable nitrogen-doped carbon nanoparticles from tannic acid and urea and their potential for sustainable soots Type A1 Journal article
Year 2017 Publication ChemNanoMat : chemistry of nanomaterials for energy, biology and more Abbreviated Journal Chemnanomat
Volume 3 Issue (up) 3 Pages 311-318
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nano-sized nitrogen-doped carbon spheres are synthesized from two cheap, readily available and sustainable precursors: tannic acid and urea. In combination with a polymer structuring agent, nitrogen content, sphere size and the surface (up to 400 m(2)g(-1)) can be conveniently tuned by the precursor ratio, temperature and structuring agent content. Because the chosen precursors allow simple oven synthesis and avoid harsh conditions, this carbon nanosphere platform offers a more sustainable alternative to classical soots, for example, as printing pigments or conduction soots. The carbon spheres are demonstrated to be a promising as conductive carbon additive in anode materials for lithium ion batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403299200006 Publication Date 2017-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-692x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.937 Times cited 14 Open Access OpenAccess
Notes ; S.B. is grateful for funding by the European Research Council (ERC starting grant # 335078-COLOURATOMS). ; ecas_Sara Approved Most recent IF: 2.937
Call Number UA @ lucian @ c:irua:144287UA @ admin @ c:irua:144287 Serial 4699
Permanent link to this record
 

 
Author Salzmann, B.B.V.; Wit, J. de; Li, C.; Arenas-Esteban, D.; Bals, S.; Meijerink, A.; Vanmaekelbergh, D.
Title Two-Dimensional CdSe-PbSe Heterostructures and PbSe Nanoplatelets: Formation, Atomic Structure, and Optical Properties Type A1 Journal article
Year 2022 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 126 Issue (up) 3 Pages 1513-1522
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000744909200001 Publication Date 2022-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 12 Open Access OpenAccess
Notes H. Meeldijk is kindly acknowledged for helping with electron microscopy at Utrecht University. T. Prins is kindly acknowledged for useful discussions. B.B.V.S. and D.V. acknowledge the Dutch NWO for financial support via the TOP-ECHO Grant No. 715.016.002. D.V. acknowledges financial support from the European ERC Council, ERC Advanced Grant 692691 “First Step”. J.W. and A.M. acknowledge financial support from the project CHEMIE.PGT.2019.004 of TKI/ Topsector Chemie, which is partly financed by the Dutch NWO. S.B, C.L., and D.A.E. acknowledge financial support from the European ERC Council, ERC Consolidator Grant realnano No. 815128. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant No. 731019 (EUSMI). sygmaSB Approved Most recent IF: 3.7
Call Number EMAT @ emat @c:irua:185454 Serial 6953
Permanent link to this record
 

 
Author Amini, M.N.; Leenaerts, O.; Partoens, B.; Lamoen, D.
Title Graphane- and fluorographene-based quantum dots Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue (up) 31 Pages 16242-16247
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract With the help of first-principles calculations, we investigate graphane/fluorographene heterostructures with special attention for graphane and fluorographene-based quantum dots. Graphane and fluorographene have large electronic band gaps, and we show that their band structures exhibit a strong type-II alignment. In this way, it is possible to obtain confined electron states in fluorographene nanostructures by embedding them in a graphane crystal. Bound hole states can be created in graphane domains embedded in a fluorographene environment. For circular graphane/fluorographene quantum dots, localized states can be observed in the band gap if the size of the radii is larger than approximately 4 to 5 Å.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000323082300046 Publication Date 2013-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 14 Open Access
Notes FWO; GOW; Hercules Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:109457 Serial 1367
Permanent link to this record
 

 
Author Nourbakhsh, A.; Cantoro, M.; Klekachev, A.V.; Pourtois, G.; Vosch, T.; Hofkens, J.; van der Veen, M.H.; Heyns, M.M.; de Gendt, S.; Sels, B.F.
Title Single layer vs bilayer graphene : a comparative study of the effects of oxygen plasma treatment on their electronic and optical properties Type A1 Journal article
Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue (up) 33 Pages 16619-16624
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This contribution presents the effects of a mild O2 plasma treatment on the structural, optical, and electrical properties of single-layer (SLG) and bilayer graphene (BLG). Unexpectedly, we observe only photoluminescence in the SLG parts of a graphene flake composed of regions of various thickness upon O2 plasma treatment, whereas the BLG and few-layer graphene (FLG) parts remain optically unchanged. Confirmed with X-ray photoelectron spectroscopy (XPS) that O2 plasma induces epoxide and hydroxyl-like groups in graphene, density functional theory (DFT) calculations are carried out on representative epoxidized and hydroxylated SLG and BLG models to predict density of states (DOS) and band structures. Sufficiently oxidized SLG shows a bandgap and thus loss of semimetallic behavior, while oxidized BLG maintains its semimetallic behavior even at high oxygen density in agreement with the results of the photoluminescence spectroscopy (PL) experiments. DFT calculations confirm that the Fermi velocity in epoxidized BLG is remarkably comparable with that of pristine SLG, pointing to a similarity of electronic band structure. The similarity is also experimentally demonstrated by the electrical characterization of a plasma-treated BLG-FET. As expected from the electronegative oxygen adatoms in the graphene, epoxidized BLG presents conductive features typical of hole doping. Moreover, the electrical characteristics suggest band structures closely related to that of epoxidized graphene while deviating from that of hydroxylated graphene. Finally, upon O2 plasma treatment of BLG, the four-component 2D peak around 2700 cm1 in the Raman spectrum evolves into a single Lorentzian line, very like the 2D peak of pristine SLG. Summarizing, the data in this contribution recommend that a controlled O2 plasma treatment, which is compatible with CMOS process flow in contrast to wet chemical oxidation methods, provides an efficient and valuable technique to exploit the transport properties of the bottom layer of BLG.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000294077000047 Publication Date 2011-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 46 Open Access
Notes Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:91715 Serial 3024
Permanent link to this record
 

 
Author Ao, Z.M.; Peeters, F.M.
Title Electric field activated hydrogen dissociative adsorption to nitrogen-doped graphene Type A1 Journal article
Year 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 114 Issue (up) 34 Pages 14503-14509
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Graphane, hydrogenated graphene, was very recently synthesized and predicted to have great potential applications. In this work, we propose a new promising approach for hydrogenation of graphene based on density functional theory (DFT) calculations through the application of a perpendicular electric field after substitutionally doping by nitrogen atoms. These DFT calculations show that the doping by nitrogen atoms into the graphene layer and applying an electrical field normal to the graphene surface induce dissociative adsorption of hydrogen. The dissociative adsorption energy barrier of an H2 molecule on a pristine graphene layer changes from 2.7 to 2.5 eV on N-doped graphene, and to 0.88 eV on N-doped graphene under an electric field of 0.005 au. When increasing the electric field above 0.01 au, the reaction barrier disappears. Therefore, N doping and applying an electric field have catalytic effects on the hydrogenation of graphene, which can be used for hydrogen storage purposes and nanoelectronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000281129100027 Publication Date 2010-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 110 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524
Call Number UA @ lucian @ c:irua:84588 Serial 882
Permanent link to this record
 

 
Author Delabie, A.; Sioncke, S.; Rip, J.; van Elshocht, S.; Caymax, M.; Pourtois, G.; Pierloot, K.
Title Mechanisms for the trimethylaluminum reaction in aluminum oxide atomic layer deposition on sulfur passivated germanium Type A1 Journal article
Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue (up) 35 Pages 17523-17532
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Germanium combined with high-κ dielectrics is investigated for the next generations of CMOS devices. Therefore, we study reaction mechanisms for Al2O3 atomic layer deposition on sulfur passivated Ge using calculations based on density functional theory and total reflection X-ray fluorescence (TXRF). TXRF indicates 6 S/nm2 and 4 Al/nm2 after the first TMA/H2O reaction cycle, and growth inhibition from the second reaction cycle on. Calculations are performed on molecular clusters representing −GeSH surface sites. The calculations confirm that the TMA reaction does not affect the S content. On fully SH-terminated Ge, TMA favorably reacts with up to three −GeSH sites, resulting in a near tetrahedral Al coordination. Electron deficient structures with a GeS site shared between two Al atoms are proposed. The impact of the cluster size on the structures and reaction energetics is systematically investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000294386000037 Publication Date 2011-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 9 Open Access
Notes Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:91714 Serial 1980
Permanent link to this record
 

 
Author Sivek, J.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title First-principles investigation of bilayer fluorographene Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue (up) 36 Pages 19240-19245
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Ab initio calculations within the density functional theory formalism are performed to investigate the stability and electronic properties of fluorinated bilayer graphene (bilayer fluorographene). A comparison is made to previously investigated graphane, bilayer graphane, and fluorographene. Bilayer fluorographene is found to be a much more stable material than bilayer graphane. Its electronic band structure is similar to that of monolayer fluorographene, but its electronic band gap is significantly larger (about 1 eV). We also calculate the effective masses around the Gamma-point for fluorographene and bilayer fluorographene and find that they are isotropic, in contrast to earlier reports. Furthermore, it is found that bilayer fluorographene is almost as strong as graphene, as its 2D Young's modulus is approximately 300 N m(-1).
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000308631300022 Publication Date 2012-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 39 Open Access
Notes ; This work is supported by the ESF-Eurocores program EuroGRAPHENE (project CONERAN) and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:101842 Serial 1211
Permanent link to this record
 

 
Author Kurttepeli, M.; Deng, S.; Verbruggen, S.W.; Guzzinati, G.; Cott, D.J.; Lenaerts, S.; Verbeeck, J.; Van Tendeloo, G.; Detavernier, C.; Bals, S.
Title Synthesis and characterization of photoreactive TiO2carbon nanosheet composites Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue (up) 36 Pages 21031-21037
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We report the atomic layer deposition of titanium dioxide on carbon nanosheet templates and investigate the effects of postdeposition annealing in a helium environment using different characterization techniques. The crystallization of the titanium dioxide coating upon annealing is observed using in situ X-ray diffraction. The (micro)structural characterization of the films is carried out by scanning electron microscopy and advanced transmission electron microscopy techniques. Our study shows that the annealing of the atomic layer deposition processed and carbon nanosheets templated titanium dioxide layers in helium environment resulting in the formation of a porous, nanocrystalline and photocatalytically active titanium dioxide-carbon nanosheet composite film. Such composites are suitable for photocatalysis and dye-sensitized solar cells applications.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000341619500034 Publication Date 2014-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 9 Open Access OpenAccess
Notes This research was funded by the Flemish research foundation FWO-Vlaanderen, by the European Research Council (Starting Grant No. 239865) and by the Special Research Fund BOF of Ghent University (GOA-01G01513). G.G, M.K., J.V., S.B., and G.V.T. acknowledge funding from the European Research Council under the seventh Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and No. 335078 COLOURATOMS. ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:119085 Serial 3416
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Martens, J.A.; Lenaerts, S.
Title Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue (up) 37 Pages 19142-19145
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Gold-silver alloy nanoparticles display surface plasmon resonance (SPR) over a broad range of the UV-vis spectrum. We propose a model to predict the SPR wavelength of gold-silver alloy colloids based on the combined effect of alloy composition and particle size. The SPR wavelength is derived from extinction spectra simulated using available experimental dielectric constant data and accounts for particle size by applying Mie theory. Comparison of calculated values with experimental data evidences the accuracy of the model. The new SPR wavelength estimation tool will be of particular interest for developing dedicated bimetallic plasmonic nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000330162600042 Publication Date 2013-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 51 Open Access
Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. JAM. acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ admin @ c:irua:114837 Serial 5985
Permanent link to this record
 

 
Author Phung, Q.M.; Vancoillie, S.; Pourtois, G.; Swerts, J.; Pierloot, K.; Delabie, A.
Title Atomic layer deposition of ruthenium on a titanium nitride surface : a density functional theory study Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue (up) 38 Pages 19442-19453
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Because of its excellent properties in nanotechnology applications, atomic layer deposition of ruthenium (Ru) has been the subject of numerous experimental studies. Recently, two different Ru precursors were compared for plasma-enhanced atomic layer deposition (PEALD) of Ru, and their reactivity was found to be different. Inhibition was observed for bis(ethylcyclopentadienyl)ruthenium (Ru(EtCp)(2)), while nearly linear growth behavior was observed for (methylcyclopentadienyl-pyrrolyl)ruthenium (Ru(MeCp)Py). To understand this difference in reactivity, we investigate the adsorption of RuCp, and RuCpPy (i.e., without substituents) on a TiN surface using calculations based on periodic boundary conditions density functional theory (DFT) combined with experiments based on Rutherford backscattering spectroscopy (RBS). The calculations demonstrate that the RuCpPy precursor chemisorbs on the TiN(100) surface while the RuCp2 precursor only physisorbs. We propose a reaction mechanism for the chemisorption of RuCpPy. The area density of the calculated RuCpPy surface species is compared with the experimental values from RBS. The impact of a H-plasma is also investigated. The DFT calculations and experimental results from RBS provide insight into the adsorption processes of the RuCpPy and RuCp2 precursors on the TiN(100) surface.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000330162500022 Publication Date 2013-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 6 Open Access
Notes Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:114855 Serial 170
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C.
Title Plasma species interacting with nickel surfaces : toward an atomic scale understanding of plasma-catalysis Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue (up) 39 Pages 20958-20965
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The adsorption probability and reaction behavior of CHx plasma species on various nickel catalyst surfaces is investigated by means of reactive molecular dynamics (MD) simulations using the ReaxFF potential. Such catalysts are used in the reforming of hydrocarbons and in the growth of carbon nanotubes, and further insight in the underlying mechanisms of these processes is needed to increase their applicability. Single and consecutive impacts of CHx radicals (x={1,2,3}) were performed on four different Ni surfaces, at a temperature of 400 K. The adsorption probability is shown to be related to the number of free electrons, i.e. a higher number leads to more adsorptions, and the steric hindrance caused by the hydrogen atoms bonded to the impacting CHx species. Furthermore, some of the CH bonds break after adsorption, which generally leads to diffusion of the hydrogen atom over the surface. Additionally, these adsorbed H-atoms can be used in reactions to form new molecules, such as CH4 and C2Hx, although this is dependent on the precise morphology of the surface. New molecules are also formed by subtraction of H-atoms from adsorbed radicals, leading to occasional formation of H2 and C2Hx molecules.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000309375700040 Publication Date 2012-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 37 Open Access
Notes Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:101522 Serial 2640
Permanent link to this record
 

 
Author Ban, V.; Soloninin, A.V.; Skripov, A.V.; Hadermann, J.; Abakumov, A.; Filinchuk, Y.
Title Pressure-Collapsed Amorphous Mg(BH4)(2): An Ultradense Complex Hydride Showing a Reversible Transition to the Porous Framework Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue (up) 40 Pages 23402-23408
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hydrogen-storage properties of complex hydrides depend of their form, such as a polymorphic form or an eutectic mixture. This Paper reports on an easy and reproducible way to synthesize a new stable form of magnesium borohydride by pressure-induced collapse of the porous gamma-Mg(BH4)(2). This amorphous complex hydride was investigated by temperature-programmed synchrotron X-ray diffraction (SXRD), transmission electron microscopy (TEM), thermogravimetric analysis, differential scanning calorimetry analysis, and Raman spectroscopy, and the dynamics of the BH4 reorientation was studied by spinlattice relaxation NMR spectroscopy. No long-range order is observed in the lattice region by Raman spectroscopy, while the internal vibration modes of the BH4 groups are the same as in the crystalline state. A hump at 4.9 angstrom in the SXRD pattern suggests the presence of nearly linear MgBH4 Mg fragments constituting all the known crystalline polymorphs of Mg(BH4)(2), which are essentially frameworks built of tetrahedral Mg nodes and linear BH4 linkers. TEM shows that the pressure-collapsed phase is amorphous down to the nanoscale, but surprisingly, SXRD reveals a transition at similar to 90 degrees C from the dense amorphous state (density of 0.98 g/cm(3)) back to the porous ? phase having only 0.55 g/cm(3) crystal density. The crystallization is slightly exothermic, with the enthalpy of -4.3 kJ/mol. The volumetric hydrogen density of the amorphous form is 145 g/L, one of the highest among hydrides. Remarkably, this form of Mg(BH4)2 has different reactivity compared to the crystalline forms. The parameters of the reorientational motion of BH4 groups in the amorphous Mg(BH4)(2) found from NMR measurements differ significantly from those in the known crystalline forms. The behavior of the nuclear spinlattice relaxation rates can be described in terms of a Gaussian distribution of the activation energies centered on 234 +/- 9 meV with the dispersion of 100 +/- 10 meV.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000343016800067 Publication Date 2014-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 23 Open Access
Notes Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:121113 Serial 2711
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C.
Title On the c-Si\mid a-SiO2 interface in hyperthermal Si oxidation at room temperature Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue (up) 41 Pages 21856-21863
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The exact structure and properties of the Si vertical bar SiO2 interface are very important in microelectronics and photovoltaic devices such as metal-oxide-semiconductor field-effect transistors (MOSFETs) and solar cells. Whereas Si vertical bar SiO2 structures are traditionally produced by thermal oxidation, hyperthermal oxidation shows a number of promising advantages. However, the Si vertical bar SiO2 interface induced in hyperthermal Si oxidation has not been properly investigated yet. Therefore, in this work, the interface morphology and interfacial stresses during hyperthermal oxidation at room temperature are studied using reactive molecular dynamics simulations based on the ReaxFF potential. Interface thickness and roughness, as well as the bond length and bond angle distributions in the interface are discussed and compared with other models developed for the interfaces induced by traditional thermal oxidation. The formation of a compressive stress is observed. This compressive stress, which at the interface amounts about 2 GPa, significantly slows down the inward silica growth. This value is close to the experimental value in the Si vertical bar SiO2 interface obtained in traditional thermal oxidation.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000309902100026 Publication Date 2012-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 27 Open Access
Notes Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:102167 Serial 2458
Permanent link to this record
 

 
Author Heijkers, S.; Bogaerts, A.
Title CO2Conversion in a Gliding Arc Plasmatron: Elucidating the Chemistry through Kinetic Modeling Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue (up) 41 Pages 22644-22655
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract By means of chemical kinetics modeling, it is possible to elucidate the main dissociation mechanisms of CO2 in a gliding arc plasmatron (GAP). We obtain good agreement between the calculated and experimental conversions and energy efficiencies, indicating that the model can indeed be used to study the underlying mechanisms. The calculations predict that vibration-induced dissociation is the main dissociation mechanism of CO2, but it occurs mainly from the lowest vibrational levels because of fast thermalization of the vibrational distribution. Based on these findings, we propose ideas for improving the performance of the GAP, but testing of these ideas in the simulations reveals that they do not always lead to significant enhancement, because of other side effects, thus illustrating the complexity of the process. Nevertheless, the model allows more insight into the underlying mechanisms to be obtained and limitations to be identified.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413617900007 Publication Date 2017-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 6 Open Access OpenAccess
Notes Federaal Wetenschapsbeleid, IAP/7 ; Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:147436 Serial 4801
Permanent link to this record
 

 
Author Bittencourt, C.; Navio, C.; Nicolay, A.; Ruelle, B.; Godfroid, T.; Snyders, R.; Colomer, J.-F.; Lagos, M.J.; Ke, X.; Van Tendeloo, G.; Suarez-Martinez, I.; Ewels, C.P.
Title Atomic oxygen functionalization of vertically aligned carbon nanotubes Type A1 Journal article
Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue (up) 42 Pages 20412-20418
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Vertically aligned multiwalled carbon nanotubes (v-MWCNTs) are functionalized using atomic oxygen generated in a microwave plasma. X-ray photoelectron spectroscopy depth profile analysis shows that the plasma treatment effectively grafts oxygen exclusively at the v-MWCNT tips. Electron microscopy shows that neither the vertical alignment nor the structure of v-MWCNTs were affected by the plasma treatment. Density functional calculations suggest assignment of XPS C 1s peaks at 286.6 and 287.5 eV, to epoxy and carbonyl functional groups, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000296205600009 Publication Date 2011-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 31 Open Access
Notes Iap Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:91890 Serial 174
Permanent link to this record
 

 
Author Sirotina, A.P.; Callaert, C.; Volykhov, A.A.; Frolov, A.S.; Sanchez-Barriga, J.; Knop-Gericke, A.; Hadermann, J.; Yashina, L.V.
Title Mechanistic studies of gas reactions with multicomponent solids : what can we learn by combining NAP XPS and atomic resolution STEM/EDX? Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue (up) 43 Pages 26201-26210
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Rapid development of experimental techniques has enabled real time studies of solid gas reactions at the level reaching the atomic scale. In the present paper, we focus on a combination of atomic resolution STEM/EDX, which visualizes the reaction zone, and near ambient pressure (NAP) XPS, which collects information for a surface layer of variable thickness under reaction conditions. We compare the behavior of two affined topological insulators, Bi2Te3 and Sb2Te3. We used a simple reaction with molecular oxygen occurring at 298 K, which is of practical importance to avoid material degradation. Despite certain limitations, a combination of in situ XPS and ex situ cross-sectional STEM/EDX allowed us to obtain a self-consistent picture of the solid gas reaction mechanism for oxidation of Sb2Te3 and Bi2Te3 crystals, which includes component redistribution between the oxide and the subsurface layer and Te segregation with formation of a thin ordered layer at the interface. The process is multistep in case of both compounds. At the very beginning of the oxidation process the reactivity is determined by the energy benefit of the corresponding element oxygen bond formation. Further in the oxidation process, the behavior of these two compounds becomes similar and features component redistribution between the oxide and the subsurface layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000493865700019 Publication Date 2019-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:164664 Serial 6310
Permanent link to this record
 

 
Author Aerts, R.; Martens, T.; Bogaerts, A.
Title Influence of vibrational states on CO2 splitting by dielectric barrier discharges Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue (up) 44 Pages 23257-23273
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, the splitting of CO2 in a pulsed plasma system, such as a dielectric barrier discharge (DBD), is evaluated from a chemical point of view by means of numerical modeling. For this purpose, a chemical reaction set of CO2 in an atmospheric pressure plasma is developed, including the vibrational states of CO2, O2, and CO. The simulated pulses are matched to the conditions of a filament (or microdischarge) and repeated with intervals of 1 μs. The influence of vibrationally excited CO2 as well as other neutral species, ions, and electrons on the CO2 splitting is discussed. Our calculations predict that the electrons have the largest contribution to the CO2 splitting at the conditions under study, by electron impact dissociation. The contribution of vibrationally excited CO2 levels in the splitting of CO2 is found be 6.4%, when only considering one microdischarge pulse and its afterglow, but it can be much higher for consecutive discharge pulses, as is typical for a filamentary DBD, when the interpulse time is short enough and accumulation effects in the vibrationally excited CO2 densities can occur.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000310769300012 Publication Date 2012-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 112 Open Access
Notes Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:101764 Serial 1659
Permanent link to this record
 

 
Author Skaltsas, T.; Ke, X.; Bittencourt, C.; Tagmatarchis, N.
Title Ultrasonication induces oxygenated species and defects onto exfoliated graphene Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue (up) 44 Pages 23272-23278
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The effect of ultrasonication parameters, such as time and power applied, to exfoliate graphite in o-dichlorobenzene (o-DCB) and N-methyl-1,2-pyrrolidone (NMP) was examined. It was found that the concentration of graphene was higher in o-DCB, while its dispersibility was increased when sonication was applied for a longer period and/or at higher power. However, spectroscopic examination by X-ray photoelectron spectroscopy (XPS) revealed that ultrasonication causes defects and induces oxygen functional groups in the form of carboxylic acids and ethers/epoxides onto the graphene lattice. Additional proof for the latter arose from Raman, IR, and thermogravimetry studies. The carboxylic acids and ethers/epoxides onto exfoliated graphene were derived from air during ultrasonication and found independent of the solvent used for the exfoliation and the power and/or time ultrasonication applied. Quantitative evaluation of the amount of oxygenated species present on exfoliated graphene as performed by high-resolution XPS revealed that the relative oxygen percentage was higher when exfoliation was performed in NMP. Finally, the sonication time and/or power affected the oxygen content on exfoliated graphene, since extended ultrasonication resulted in a decrease in the oxygen content on exfoliated graphene, with a simultaneous increase of defected sp(3) carbon atoms.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000326845400090 Publication Date 2013-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 65 Open Access
Notes Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:112710 Serial 3797
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Wang, W.; Ramakers, M.; Bogaerts, A.
Title CO2Conversion in a Gliding Arc Plasmatron: Multidimensional Modeling for Improved Efficiency Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue (up) 44 Pages 24470-24479
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The gliding arc plasmatron (GAP) is a highly efficient atmospheric plasma source, which is very promising for CO2 conversion applications. To understand its operation principles and to improve its application, we present here comprehensive modeling results, obtained by means of computational fluid dynamics simulations and plasma modeling. Because of the complexity of the CO2 plasma, a full 3D plasma model would be computationally impractical. Therefore, we combine a 3D turbulent gas flow model with a 2D plasma and gas heating model in order to calculate the plasma parameters and CO2 conversion characteristics. In addition, a complete 3D gas flow and plasma model with simplified argon chemistry is used to evaluate the gliding arc evolution in space and time. The calculated values are compared with experimental data from literature as much as possible in order to validate the model. The insights obtained in this study are very helpful for improving the application of CO2 conversion, as they allow us to identify the limiting factors in the performance, based on which solutions can be provided on how to further improve the capabilities of CO2 conversion in the GAP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000415140400014 Publication Date 2017-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access OpenAccess
Notes H2020 Marie Sklodowska-Curie Actions, 657304 ; Fonds Wetenschappelijk Onderzoek, 11U5316N G038316N ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:147193 Serial 4765
Permanent link to this record
 

 
Author Marikutsa, A.V.; Rumyantseva, M.N.; Frolov, D.D.; Morozov, I.V.; Boltalin, A.I.; Fedorova, A.A.; Petukhov, I.A.; Yashina, L.V.; Konstantinova, E.A.; Sadovskaya, E.M.; Abakumov, A.M.; Zubavichus, Y.V.; Gaskov, A.M.;
Title Role of PdOx and RuOy clusters in oxygen exchange between nanocrystalline tin dioxide and the gas phase Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue (up) 45 Pages 23858-23867
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The effect of palladium- and ruthenium-based clusters on nanocrystalline tin dioxide interaction with oxygen was studied by temperature-programmed oxygen isotopic exchange with mass-spectrometry detection. The modification of aqueous sol-gel prepared SnO2 by palladium and, to a larger extent, by ruthenium, increases surface oxygen concentration on the materials. The revealed effects on oxygen exchange-lowering the threshold temperature, separation of surface oxygen contribution to the process, increase of heteroexchange rate and oxygen diffusion coefficient, decrease of activation energies of exchange and diffusion-were more intensive for Ru-modified SnO2 than in the case of SnO2/Pd. The superior promoting activity of ruthenium on tin dioxide interaction with oxygen was interpreted by favoring the dissociative O-2 adsorption and increasing the oxygen mobility, taking into account the structure and chemical composition of the modifier clusters.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000327110500046 Publication Date 2013-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 20 Open Access
Notes Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:112706 Serial 2924
Permanent link to this record
 

 
Author dela Encarnacion, C.; Lenzi, E.; Henriksen-Lacey, M.; Molina, B.; Jenkinson, K.; Herrero, A.; Colas, L.; Ramos-Cabrer, P.; Toro-Mendoza, J.; Orue, I.; Langer, J.; Bals, S.; Jimenez de Aberasturi, D.; Liz-Marzan, L.M.
Title Hybrid magnetic-plasmonic nanoparticle probes for multimodal bioimaging Type A1 Journal article
Year 2022 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 126 Issue (up) 45 Pages 19519-19531
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Multimodal contrast agents, which take advantage of different imaging modalities, have emerged as an interesting approach to overcome the technical limitations of individual techniques. We developed hybrid nanoparticles comprising an iron oxide core and an outer gold spiky layer, stabilized by a biocompatible polymeric shell. The combined magnetic and optical properties of the different components provide the required functionalities for magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS), and fluorescence imaging. The fabrication of such hybrid nanoprobes comprised the adsorption of small gold nanoparticles onto premade iron oxide cores, followed by controlled growth of spiky gold shells. The gold layer thickness and branching degree (tip sharpness) can be controlled by modifying both the density of Au nanoparticle seeds on the iron oxide cores and the subsequent nanostar growth conditions. We additionally demonstrated the performance of these hybrid multifunctional nanoparticles as multimodal contrast agents for correlative imaging of in vitro cell models and ex vivo tissues.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000883021700001 Publication Date 2022-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 10 Open Access Not_Open_Access
Notes The authors acknowledge financial support from the European Research Council (ERC-AdG-2017, 787510) and MCIN/AEI/10.13039/501100011033 through grants PID2019-108854RA-I00 and Maria de Maeztu Unit of Excellence No. MDM-2017-0720. S.B. and K.J. acknowledge financial support from the European Commission under the Horizon 2020Programme by Grant No. 823717 (ESTEEM3) and ERC Consolidator Grant No. 815128 (REALNANO) . Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:192104 Serial 7311
Permanent link to this record
 

 
Author Buffière, M.; Zaghi, A.E.; Lenaers, N.; Batuk, M.; Khelifi, S.; Drijkoningen, J.; Hamon, J.; Stesmans, A.; Kepa, J.; Afanas’ev, V.V.; Hadermann, J.; D’Haen, J.; Manca, J.; Vleugels, J.; Meuris, M.; Poortmans, J.;
Title Effect of binder content in Cu-In-Se precursor ink on the physical and electrical properties of printed CuInSe2 solar cells Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue (up) 47 Pages 27201-27209
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Printed chalcopyrite thin films have attracted considerable attention in recent years due to their potential in the high-throughput production of photovoltaic devices. To improve the homogeneity of printed CuInSe2 (CISe) layers, chemical additives such as binder can be added to the precursor ink. In this contribution, we investigate the influence of the dicyandiamide (DCDA) content, used as a binder in the precursor ink, on the physical and electrical properties of printed CISe solar cells. It is shown that the use of the binder leads to a dense absorber, composed of large CISe grains close to the surface, while the bulk of the layer consists of CISe crystallites embedded in a CuxS particle based matrix, resulting from the limited sintering of the precursor in this region. The expected additional carbon contamination of the CISe layer due to the addition of the binder appears to be limited, and the optical properties of the CISe layer are similar to the reference sample without additive. The electrical characterization of the corresponding CISe/CdS solar cells shows a degradation of the efficiency of the devices, due to a modification in the predominant recombination mechanisms and a limitation of the space charge region width when using the binder; both effects could be explained by the inhomogeneity of the bulk of the CISe absorber and high defect density at the CISe/CuxS-based matrix interface.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000345722400003 Publication Date 2014-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 4 Open Access
Notes Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:121332 Serial 801
Permanent link to this record
 

 
Author Badalov, S.V.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
Title Enhanced stability of single-layer w-Gallenene through hydrogenation Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue (up) 49 Pages 28302-28309
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Using density functional theory based first-principles calculations, the effect of surface hydrogenation on the structural, dynamical, electronic, and mechanical properties of monolayer washboard-gallenene (w-gallenene) is investigated. It is found that the dynamically stabilized strained monolayer of w-gallenene has a metallic nonmagnetic ground state. Both one-sided and two-sided hydrogenations of w-gallenene suppress its dynamical instability even when unstrained. Unlike one-sided hydrogenated monolayer w-gallenene (os-w-gallenene), two-sided hydrogenated monolayer w-gallenene (ts-w-gallenene) possesses the same crystal structure as w-gallenene. Electronic band structure calculations reveal that monolayers of hydrogenated derivatives of w-gallenene exhibit also metallic nonmagnetic ground state. Moreover, the linear-elastic constants, in-plane stiffness and Poisson ratio, are enhanced by hydrogenation, which is opposite to the behavior of other hydrogenated monolayer crystals. Furthermore, monolayer w-gallenene and ts-w-gallenene remain dynamically stable up to relatively higher biaxial strains as compared to borophene. With its enhanced dynamical stability, robust metallic character, and enhanced linear-elastic properties, hydrogenated monolayer w-gallenene is a potential candidate for nanodevice applications as a two-dimensional flexible metal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453488300053 Publication Date 2018-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 20 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work was supported by FLAG-ERA project TRANS-2D-TMD. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:156229 Serial 5210
Permanent link to this record
 

 
Author Khalilov, U.; Neyts, E.C.; Pourtois, G.; van Duin, A.C.T.
Title Can we control the thickness of ultrathin silica layers by hyperthermal silicon oxidation at room temperature? Type A1 Journal article
Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue (up) 50 Pages 24839-24848
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations by means of the ReaxFF potential, we studied the growth mechanism of ultrathin silica (SiO2) layers during hyperthermal oxidation at room temperature. Oxidation of Si(100){2 × 1} surfaces by both atomic and molecular oxygen was investigated in the energy range 15 eV. The oxidation mechanism, which differs from thermal oxidation, is discussed. In the case of oxidation by molecular O2, silica is quickly formed and the thickness of the formed layers remains limited compared to oxidation by atomic oxygen. The Si/SiO2 interfaces are analyzed in terms of partial charges and angle distributions. The obtained structures of the ultrathin SiO2 films are amorphous, including some intrinsic defects. This study is important for the fabrication of silica-based devices in the micro- and nanoelectronics industry, and more specifically for the fabrication of metal oxide semiconductor devices.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297947700050 Publication Date 2011-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 36 Open Access
Notes Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:94303 Serial 273
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W.
Title Coupled plasmon modes in 2D gold nanoparticle clusters and their effect on local temperature control Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue (up) 50 Pages 30594-30603
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Assemblies of closely separated gold nanoparticles exhibit a strong collective plasmonic response due to coupling of the plasmon modes of the individual nanostructures. In the context of self-assembly of nanoparticles, close-packed two-dimensional (2D) clusters of spherical nanoparticles present an important composite system that promises numerous applications. The present study probes the collective plasmonic characteristics and resulting photothermal behavior of close-packed 2D Au nanoparticle clusters to delineate the effects of the cluster size, interparticle distance, and particle size. Smaller nanoparticles (20 and 40 nm in diameter) that exhibit low individual scattering and high absorption were considered for their relevance to photothermal applications. In contrast to typical literature studies, the present study compares the optical response of clusters of different sizes ranging from a single nanoparticle up to large assemblies of 61 nanoparticles. Increasing the cluster size induces significant changes to the spectral position and optophysical characteristics. Based on the model outcome, an optimal cluster size for maximum absorption per nanoparticle is also determined for enhanced photothermal effects. The effect of the particle size and interparticle distance is investigated to elucidate the nature of interaction in terms of near-field and far-field coupling. The photothermal effect resulting from absorption is compared for different cluster sizes and interparticle distances considering a homogeneous water medium. A strong dependence of the steady-state temperature of the nanoparticles on the cluster size, particle position in the cluster, incident light polarization, and interparticle distance provides new physical insight into the local temperature control of plasmonic nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000503919500061 Publication Date 2019-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:164530 Serial 5938
Permanent link to this record