|   | 
Details
   web
Records
Author Zalfani, M.; Hu, Z.-Y.; Yu, W.-B.; Mahdouani, M.; Bourguig, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djoued, Y.; Su, B.-L.
Title BiVO4/3DOM TiO2 nanocomposites: Effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants Type A1 Journal article
Year 2016 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
Volume 205 Issue (down) 205 Pages 121-132
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A series of BiVO4/3DOM TiO2 nanocomposites have been synthesized and their photocatalytic activity was investigated under visible light irradiation using the RhB dye as model pollutant molecule in an aqueous solution. The effect of the amount of BiVO4 as visible light sensitizer on the photocatalytic activity of BiVO4/3DOM TiO2 nanocomposites was highlighted. The heterostructured composite system leads to much higher photocatalytic efficiencies than bare 3DOM TiO2 and BiVO4 nanoparticles. As the proportion of BiVO4 in BiVO4/3DOM TiO2 nanocomposites increases from 0.04 to 0.6, the photocatalytic performance of the BiVO4/3DOM TiO2 nanocomposites increases and then decreases after reaching a maximum at 0.2. This improvement in photocatalytic perfomance is related to 1) the interfacial electron transfer efficiency between the coupled materials, 2) the 3DOM TiO2 inverse opal structure with interconnected pores providing an easy mass transfer of the reactant molecules and high accessibility to the active sites and large surface area and 3) the effect of light sensitizer of BiVO4. Intensive studies on structural, textural, optical and surface properties reveal that the electronic interactions between BiVO4 and TiO2 lead to an improved charge separation of the coupled BiVO4/TiO2 system. The photogenerated charge carrier densities increase with increasing the BiVO4 content, which acts as visible light sensitizer to the TiO2 and is responsible for the enhancement in the rate of photocatalytic degradation. However, the photocatalytic activity is reduced when the BiVO4 amount is much higher than that of 3DOM TiO2. Two reasons could account for this behavior. First, with increasing BiVO4 content, the photogenerated electron/hole pairs are accumulated at the surface of the BiVO4 nanoparticles and the recombination rate increases as shown by the PL results. Second, decreasing the amount of 3DOM TiO2 in the nanocomposite decreases the surface area as shown by the BET results. Moreover, the poor adsorptive properties of the BiVO4 photocatalyst also affect the photocatalytic performance, in particular at higher BiVO4 content. The present work demonstrates that BiVO4/3DOM TiO2 is a very promising heterojunction system for visible light photocatalytic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393931000013 Publication Date 2016-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 52 Open Access OpenAccess
Notes Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 9.446
Call Number EMAT @ emat @ Serial 4323
Permanent link to this record
 

 
Author Zalfani, M.; Hu, Z.-Y.; Yu, W.-B.; Mahdouani, M.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djoued, Y.; Su, B.-L.
Title BiVo4/3DOM TiO2 nanocomposites : effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants Type A1 Journal article
Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 205 Issue (down) 205 Pages 121-132
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A series of BiVO4/3DOM TiO2 nanocomposites have been synthesized and their photocatalytic activity was investigated under visible light irradiation using the RhB dye as model pollutant molecule in an aqueous solution. The effect of the amount of BiVO4 as visible light sensitizer on the photocatalytic activity of BiVO4/3DOM TiO2 nanocomposites was highlighted. The heterostructured composite system leads to much higher photocatalytic efficiencies than bare 3DOM TiO2 and BiVO4 nanoparticles. As the proportion of BiVO4 in BiVO4/3DOM TiO2 nanocomposites increases from 0.04 to 0.6, the photocatalytic performance of the BiVO4/3DOM TiO2 nanocomposites increases and then decreases after reaching a maximum at 0.2. This improvement in photocatalytic perfomance is related to 1) the interfacial electron transfer efficiency between the coupled materials, 2) the 3DOM TiO2 inverse opal structure with interconnected pores providing an easy mass transfer of the reactant molecules and high accessibility to the active sites and large surface area and 3) the effect of light sensitizer of BiVO4. Intensive studies on structural, textural, optical and surface properties reveal that the electronic interactions between BiVO4 and TiO2 lead to an improved charge separation of the coupled BiVO4/TiO2 system. The photogenerated charge carrier densities increase with increasing the BiVO4 content, which acts as visible light sensitizer to the TiO2 and is responsible for the enhancement in the rate of photocatalytic degradation. However, the photocatalytic activity is reduced when the BiVO4 amount is much higher than that of 3DOM TiO2. Two reasons could account for this behavior. First, with increasing BiVO4 content, the photogenerated electron/hole pairs are accumulated at the surface of the BiVO4 nanoparticles and the recombination rate increases as shown by the PL results. Second, decreasing the amount of 3DOM TiO2 in the nanocomposite decreases the surface area as shown by the BET results. Moreover, the poor adsorptive properties of the BiVO4 photocatalyst also affect the photocatalytic performance, in particular at higher BiVO4 content. The present work demonstrates that BiVO4/3DOM TiO2 is a very promising heterojunction system for visible light photocatalytic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000393931000013 Publication Date 2016-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 52 Open Access OpenAccess
Notes ; This work was realized with the financial support of Chinese Ministry of Education in a framework of the Changjiang Scholar Innovative Research Team Program (IRT_15R52). B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Member, University of Cambridge. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is also supported by PhD Programs Foundation (20120143120019) of Chinese Ministry of Education, the Wuhan Youth Chenguang Program of Science and Technology (2013070104010003), Hubei Provincial Natural Science Foundation (2014CFB160, 2015CFB516), the National Science Foundation for Young Scholars of China (No. 51502225) and Self-determined and Innovative Research Funds of the SKLWUT (2015-ZD-7). MZ thanks the scholarship support from the Laboratory of Inorganic Materials Chemistry ay the University of Namur. Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). This research used resources of the Electron Microscopy Service located at the University of Namur. This Service is member of the “Plateforme Technologique Morphologie – Imagerie”. The XPS analyses were made in the LISE, Department of Physics of University of Namur thanks to Dr. P. Louette. XRD measurements, UV-vis and photoluminescent spectroscopic analyses and N<INF>2</ INF> adsorption-desorption measurements were made with the facility of the “Plateforme Technologique Physico-Chimique”. ; Approved Most recent IF: 9.446
Call Number UA @ lucian @ c:irua:138601 Serial 4405
Permanent link to this record
 

 
Author Folens, K.; Leus, K.; Nicomel, N.R.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P.
Title Fe3O4@MIL-101-A selective and regenerable adsorbent for the removal of as species from water Type A1 Journal article
Year 2016 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume 2016 Issue (down) 2016 Pages 4395-4401
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The chromium-based metal organic framework MIL-101(Cr) served as a host for the in situ synthesis of Fe3O4 nano particles. This hybrid nanomaterial was tested as an adsorbent for arsenite and arsenate species in groundwater and surface water and showed excellent affinity towards As-III and As-V species. The adsorption capacities of 121.5 and 80.0 mg g(-1) for arsenite and arsenate species, respectively, are unprecedented. The presence of Ca2+, Mg2+, and phosphate ions and natural organic matter does not affect the removal efficiency or the selectivity. The structural integrity of the hybrid nanomaterial was maintained during the adsorption process and even after desorption through phosphate elution. Additionally, no significant leaching of Cr or Fe species was observed.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000386166900019 Publication Date 2016-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 27 Open Access
Notes Approved Most recent IF: 2.444
Call Number UA @ lucian @ c:irua:139220 Serial 4442
Permanent link to this record
 

 
Author Chemchuen, S.; Zhou, K.; Kabir, N.A.; Chen, Y.; Ke, X.; Van Tendeloo, G.; Verpoort, F.
Title Tuning metal sites of DABCO MOF for gas purification at ambient conditions Type A1 Journal article
Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 201 Issue (down) 201 Pages 277-285
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Metalorganic frameworks (MOFs) have emerged as new porous materials for capture and separation of binary gas mixtures. Tuning the metal sites in MOF structures has an impact on properties, which enhance affinity of gas adsorption and selectivity (e.g., surface area, cavity, electric field, etc.). The synthesis and characterization of a M-DABCO series (M = Ni, Co, Cu, Zn) of MOFs are described in this study. The experiments were conducted using multicomponent gas mixtures and the Ideal Adsorbed Solution Theory (IAST) was applied to determine the CO2/CH4 selectivity. Experimental adsorption isotherms were fitted with a model equation to evaluate the characteristic adsorption energy (Isosteric, Qst) of this series. The Ni metal in the M-DABCO series reveals the best performance concerning CO2 adsorption and CH4/CO2 selectivity at ambient conditions based on IAST calculations. The combination of characterizations, calculations and adsorption experiments were used to discuss the metal impact on the adsorption sites in the M-DABCO series at ambient conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000345185200030 Publication Date 2014-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 38 Open Access
Notes 246791-Countatoms Approved Most recent IF: 3.615; 2015 IF: 3.453
Call Number c:irua:120473 Serial 3748
Permanent link to this record
 

 
Author Belik, A.A.; Abakumov, A.M.; Tsirlin, A.A.; Hadermann, J.; Kim, J.; Van Tendeloo, G.; Takayama-Muromachi, E.
Title Article Structure and magnetic properties of BiFe0.75Mn0.25O3 perovskite prepared at ambient and high pressure Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue (down) 20 Pages 4505-4514
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Solid solutions of BiFe1xMnxO3 (0.0 ≤ x ≤ 0.4) were prepared at ambient pressure and at 6 GPa. The ambient-pressure (AP) phases crystallize in space group R3c similarly to BiFeO3. The high-pressure (HP) phases crystallize in space group R3c for x = 0.05 and in space group Pnma for 0.15 ≤ x ≤ 0.4. The structure of HP-BiFe0.75Mn0.25O3 was investigated using synchrotron X-ray powder diffraction, electron diffraction, and transmission electron microscopy. HP-BiFe0.75Mn0.25O3 has a PbZrO3-related √2ap × 4ap × 2√2ap (ap is the parameter of the cubic perovskite subcell) superstructure with a = 5.60125(9) Å, b = 15.6610(2) Å, and c = 11.2515(2) Å similar to that of Bi0.82La0.18FeO3. A remarkable feature of this structure is the unconventional octahedral tilt system, with the primary ab0a tilt superimposed on pairwise clockwise and counterclockwise rotations around the b-axis according to the oioi sequence (o stands for out-of-phase tilt, and i stands for in-phase tilt). The (FeMn)O6 octahedra are distorted, with one longer metaloxygen bond (2.222.23 Å) that can be attributed to a compensation for covalent BiO bonding. Such bonding results in the localization of the lone electron pair on Bi3+ cations, as confirmed by electron localization function analysis. The relationship between HP-BiFe0.75Mn0.25O3 and antiferroelectric structures of PbZrO3 and NaNbO3 is discussed. On heating in air, HP-BiFe0.75Mn0.25O3 irreversibly transforms to AP-BiFe0.75Mn0.25O3 starting from about 600 K. Both AP and HP phases undergo an antiferromagnetic ordering at TN ≈ 485 and 520 K, respectively, and develop a weak net magnetic moment at low temperatures. Additionally, ceramic samples of AP-BiFe0.75Mn0.25O3 show a peculiar phenomenon of magnetization reversal.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000295897400015 Publication Date 2011-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 57 Open Access
Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:93581 Serial 151
Permanent link to this record
 

 
Author Verbeeck, J.; Schattschneider, P.; Lazar, S.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Van Tendeloo, G.
Title Atomic scale electron vortices for nanoresearch Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 99 Issue (down) 20 Pages 203109-203109,3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron vortex beams were only recently discovered and their potential as a probe for magnetism in materials was shown. Here we demonstrate a method to produce electron vortex beams with a diameter of less than 1.2 Å. This unique way to prepare free electrons to a state resembling atomic orbitals is fascinating from a fundamental physics point of view and opens the road for magnetic mapping with atomic resolution in an electron microscope.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000297786500058 Publication Date 2011-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 90 Open Access
Notes Hercules Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:93625UA @ admin @ c:irua:93625 Serial 184
Permanent link to this record
 

 
Author Poltavets, V.V.; Lokshin, K.A.; Nevidomskyy, A.H.; Croft, M.; Tyson, T.A.; Hadermann, J.; Van Tendeloo, G.; Egami, T.; Kotliar, G.; ApRoberts-Warren, N.; Dioguardi, A.P.; Curro, N.J.; Greenblatt, M.;
Title Bulk magnetic order in a two-dimensional Ni1+/Ni2+ (d9/d8) nickelate, isoelectronic with superconducting cuprates Type A1 Journal article
Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 104 Issue (down) 20 Pages 206403
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Ni(1+)/Ni(2+) states of nickelates have the identical (3d(9)/3d(8)) electronic configuration as Cu(2+)/Cu(3+) in the high temperature superconducting cuprates, and are expected to show interesting properties. An intriguing question is whether mimicking the electronic and structural features of cuprates would also result in superconductivity in nickelates. Here we report experimental evidence for a bulklike magnetic transition in La(4)Ni(3)O(8) at 105 K. Density functional theory calculations relate the transition to a spin density wave nesting instability of the Fermi surface.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000277945900033 Publication Date 2010-05-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 35 Open Access
Notes Approved Most recent IF: 8.462; 2010 IF: 7.622
Call Number UA @ lucian @ c:irua:95613 Serial 260
Permanent link to this record
 

 
Author da Pieve, F.; Hogan, C.; Lamoen, D.; Verbeeck, J.; Vanmeert, F.; Radepont, M.; Cotte, M.; Janssens, K.; Gonze, X.; Van Tendeloo, G.
Title Casting light on the darkening of colors in historical paintings Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue (down) 20 Pages 208302-208305
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The degradation of colors in historical paintings affects our cultural heritage in both museums and archeological sites. Despite intensive experimental studies, the origin of darkening of one of the most ancient pigments known to humankind, vermilion (α-HgS), remains unexplained. Here, by combining many-body theoretical spectroscopy and high-resolution microscopic x-ray diffraction, we clarify the composition of the damaged paint work and demonstrate possible physicochemical processes, induced by illumination and exposure to humidity and air, that cause photoactivation of the original pigment and the degradation of the secondary minerals. The results suggest a new path for the darkening process which was never considered by previous studies and prompt a critical examination of their findings.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000327244500003 Publication Date 2013-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 30 Open Access
Notes Vortex; ERC FP7; COUNTATOMS; ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:111396UA @ admin @ c:irua:111396 Serial 287
Permanent link to this record
 

 
Author Lepoittevin, C.; Malo, S.; Nguyen, N.; Hebert, S.; Van Tendeloo, G.; Hervieu, M.
Title A layered iron-rich 2234-type with a mixed valence of iron: the ferrimagnetic Tl-doped Fe2(Sr2-\varepsilonTl\varepsilon)Sr3Fe4O14.65 Type A1 Journal article
Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 20 Issue (down) 20 Pages 6468-6476
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new Tl-doped strontium ferrite Fe2(Sr2-Tl)Sr3Fe4O14.65, with an original structure, has been synthesized and structurally characterized by powder X-ray diffraction and transmission electron microscopy. The TGA and Mssbauer studies evidence a mixed valence of iron. The structure exhibits a commensurate modulation, with a F-type subcell a ≈ b ≈ 5.4 Å (≈ ap√2), c ≈ 42 Å with a modulation vector q = αa* with α = 0.4. The supercell parameters have been refined as a= 27.1101(8) Å, b= 5.5187(2) Å and c= 42.0513(9) Å, in the space group Fmmm. The electron diffraction and electron microscopy data of this novel ferrite show that it can be described as a FeTl-2234-type structure corresponding to the intergrowth of a quadruple perovskite slice [(SrFeO2.8)4], with a complex rock salt related slice [Fe2(Sr2-Tl)O3.4]∞, built up of one double iron layer [Fe2O2.4] sandwiched between two [SrO] layers. The HRTEM images show that the oxygen atoms and vacancies are randomly distributed in the perovskite layers while the HAADF STEM images evidence the absence of Tl segregation in the matrix. Fe2(Sr2-Tl)Sr3Fe4O14.65 exhibits a very large value of χ (11emu/mol) at 5 K, which remains large at 400 K; the M(H) loop presents a shape characteristic of ferrimagnetism, with a large coercive field of 0.3 T. The value of magnetization saturates at 400 K at 0.68 μB/Fe. At 10 K, the value of magnetization reaches a maximum of 2 μB/Fe. The resistivity presents a semiconducting-like behavior, with ρ 800 Ω·cm at 300 K.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000260254400030 Publication Date 2008-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 8 Open Access
Notes Approved Most recent IF: 9.466; 2008 IF: 5.046
Call Number UA @ lucian @ c:irua:76671 Serial 1804
Permanent link to this record
 

 
Author Van Daele, B.; Van Tendeloo, G.; Derluyn, J.; Shrivastava, P.; Lorenz, A.; Leys, M.R.; Germain, M.;
Title Mechanism for Ohmic contact formation on Si3N4 passivated AlGaN/GaN high-electron-mobility transistors Type A1 Journal article
Year 2006 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 89 Issue (down) 20 Pages Artn 201908
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000242100200030 Publication Date 2006-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 15 Open Access
Notes Iap V-1; Fwo Approved Most recent IF: 3.411; 2006 IF: 3.977
Call Number UA @ lucian @ c:irua:61919 Serial 1978
Permanent link to this record
 

 
Author Colomer, J.-F.; Marega, R.; Traboulsi, H.; Meneghetti, M.; Van Tendeloo, G.; Bonifazi, D.
Title Microwave-assisted bromination of double-walled carbon nanotubes Type A1 Journal article
Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 21 Issue (down) 20 Pages 4747-4749
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000270807800001 Publication Date 2009-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 46 Open Access
Notes Approved Most recent IF: 9.466; 2009 IF: 5.368
Call Number UA @ lucian @ c:irua:94504 Serial 2080
Permanent link to this record
 

 
Author Boschker, H.; Huijben, M.; Vailinois, A.; Verbeeck, J.; Van Aert, S.; Luysberg, M.; Bals, S.; Van Tendeloo, G.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G.
Title Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics Type A1 Journal article
Year 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 44 Issue (down) 20 Pages 205001-205001,9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper, an overview of the fabrication and properties of high-quality La0.67Sr0.33MnO3 (LSMO) thin films is given. A high-quality LSMO film combines a smooth surface morphology with a large magnetization and a small residual resistivity, while avoiding precipitates and surface segregation. In the literature, typically only a few of these issues are adressed. We therefore present a thorough characterization of our films, which were grown by pulsed laser deposition. The films were characterized with reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, magnetization and transport measurements, x-ray photoelectron spectroscopy and scanning transmission electron microscopy. The films have a saturation magnetization of 4.0 µB/Mn, a Curie temperature of 350 K and a residual resistivity of 60 µΩ cm. These results indicate that high-quality films, combining both large magnetization and small residual resistivity, were realized. A comparison between different samples presented in the literature shows that focussing on a single property is insufficient for the optimization of the deposition process. For high-quality films, all properties have to be adressed. For LSMO devices, the thin-film quality is crucial for the device performance. Therefore, this research is important for the application of LSMO in devices.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000290150900001 Publication Date 2011-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 99 Open Access
Notes This research was financially supported by the Dutch Science Foundation, by NanoNed, a nanotechnology program of the Dutch Ministry of Economic Affairs, and by the NanOxide program of the European Science Foundation. This work is supported in part by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515. Approved Most recent IF: 2.588; 2011 IF: 2.544
Call Number UA @ lucian @ c:irua:89557UA @ admin @ c:irua:89557 Serial 2491
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Batuk, M.; d' Hondt, H.; Tyablikov, O.A.; Rozova, M.G.; Pokholok, K.V.; Filimonov, D.S.; Sheptyakov, D.V.; Tsirlin, A.A.; Niermann, D.; Hemberger, J.; Van Tendeloo, G.; Antipov, E.V.
Title Slicing the Perovskite structure with crystallographic shear planes : the AnBnO3n-2 homologous series Type A1 Journal article
Year 2010 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 49 Issue (down) 20 Pages 9508-9516
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new AnBnO3n−2 homologous series of anion-deficient perovskites has been evidenced by preparation of the members with n = 5 (Pb2.9Ba2.1Fe4TiO13) and n = 6 (Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16) in a single phase form. The crystal structures of these compounds were determined using a combination of transmission electron microscopy and X-ray and neutron powder diffraction (S.G. Ammm, a = 5.74313(7), b = 3.98402(4), c = 26.8378(4) Å, RI = 0.035, RP = 0.042 for Pb2.9Ba2.1Fe4TiO13 and S.G. Imma, a = 5.7199(1), b = 3.97066(7), c = 32.5245(8) Å, RI = 0.032, RP = 0.037 for Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16). The crystal structures of the AnBnO3n−2 homologues are formed by slicing the perovskite structure with (01)p crystallographic shear (CS) planes. The shear planes remove a layer of oxygen atoms and displace the perovskite blocks with respect to each other by the 1/2[110]p vector. The CS planes introduce edge-sharing connections of the transition metal−oxygen polyhedra at the interface between the perovskite blocks. This results in intrinsically frustrated magnetic couplings between the perovskite blocks due to a competition of the exchange interactions between the edge- and the corner-sharing metal−oxygen polyhedra. Despite the magnetic frustration, neutron powder diffraction and Mssbauer spectroscopy reveal that Pb2.9Ba2.1Fe4TiO13 and Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16 are antiferromagnetically ordered below TN = 407 and 343 K, respectively. The Pb2.9Ba2.1Fe4TiO13 and Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16 compounds are in a paraelectric state in the 5−300 K temperature range.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000282783400051 Publication Date 2010-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 23 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 4.857; 2010 IF: 4.326
Call Number UA @ lucian @ c:irua:84963 Serial 3041
Permanent link to this record
 

 
Author Shenderova, O.; Koscheev, A.; Zaripov, N.; Petrov, I.; Skryabin, Y.; Detkov, P.; Turner, S.; Van Tendeloo, G.
Title Surface chemistry and properties of ozone-purified detonation nanodiamonds Type A1 Journal article
Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue (down) 20 Pages 9827-9837
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanodiamond from ozone purification (NDO) demonstrates very distinctive properties within the class of detonation nanodiamonds, namely very high acidity and high colloidal stability in a broad pH range. To understand the origin of these unusual properties of NDO, the nature of the surface functional groups formed during detonation soot oxidation by ozone needs to be revealed. In this work, thermal desorption mass spectrometry (TDMS) and IR spectroscopy were used for the identification of surface groups and it was concluded that carboxylic anhydride groups prevail on the NDO surface. On the basis of the temperature profiles of the desorbed volatile products and their mass balance, it is hypothesized that decomposition of carboxylic anhydride groups from NDO during heating proceeds by two different mechanisms. Other distinctive features of NDO in comparison with air-treated nanodiamond are also reported.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000290652200001 Publication Date 2011-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 105 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:89556 Serial 3394
Permanent link to this record
 

 
Author Kremer, S.P.B.; Kirschhock, C.E.A.; Aerts, A.; Villani, K.; Martens, J.A.; Lebedev, O.I.; Van Tendeloo, G.
Title Tiling silicalite-1 nanoslabs into 3D mosaics Type A1 Journal article
Year 2003 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 15 Issue (down) 20 Pages 1705-1707
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000186425600003 Publication Date 2003-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 82 Open Access
Notes Approved Most recent IF: 19.791; 2003 IF: NA
Call Number UA @ lucian @ c:irua:54810 Serial 3662
Permanent link to this record
 

 
Author Serrano-Sevillano, J.; Reynaud, M.; Saracibar, A.; Altantzis, T.; Bals, S.; van Tendeloo, G.; Casas-Cabanas, M.
Title Enhanced electrochemical performance of Li-rich cathode materials through microstructural control Type A1 Journal article
Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 20 Issue (down) 20 Pages 23112-23122
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microstructural complexity of Li-rich cathode materials has so far hampered understanding the critical link between size, morphology and structural defects with both capacity and voltage fadings that this family of materials exhibits. Li2MnO3 is used here as a model material to extract reliable structure–property

relationships that can be further exploited for the development of high-performing and long-lasting Li-rich oxides. A series of samples with microstructural variability have been prepared and thoroughly characterized using the FAULTS software, which allows quantification of planar defects and extraction of

average crystallite sizes. Together with transmission electron microscopy (TEM) and density functional theory (DFT) results, the successful application of FAULTS analysis to Li2MnO3 has allowed rationalizing the synthesis conditions and identifying the individual impact of concurrent microstructural features on

both voltage and capacity fadings, a necessary step for the development of high-capacity Li-ion cathode materials with enhanced cycle life.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000445220500071 Publication Date 2018-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 36 Open Access OpenAccess
Notes This work was supported by the Spanish Ministerio de la Economı´a y de la Competitividad through the project IONSTORE (MINECO ref. ENE2016-81020-R). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). JSS and AS are grateful for computing time provided by the Spanish i2Basque Centers. MR acknowledges the Spanish State for its financial support through her post-doctoral grant Juan de la Cierva – Formacio´n (MINECO ref. FJCI-2014-19990) and her international mobility grant Jose´ Castillejos (MECD ref. CAS15/00354). S. B. acknowledges funding from the European Research Council (ERC starting grant #335078 Colouratom) and T. A. a postdoctoral grant from the Research Foundation Flanders (FWO). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.123
Call Number EMAT @ emat @c:irua:154782UA @ admin @ c:irua:154782 Serial 5062
Permanent link to this record
 

 
Author Navío, C.; Vallejos, S.; Stoycheva, T.; Llobet, E.; Correig, X.; Snyders, R.; Blackman, C.; Umek, P.; Ke, X.; Van Tendeloo, G.; Bittencourt, C.;
Title Gold clusters on WO3 nanoneedles grown via AACVD : XPS and TEM studies Type A1 Journal article
Year 2012 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys
Volume 134 Issue (down) 2/3 Pages 809-813
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have prepared tungsten oxide films decorated with gold particles on Si substrates by aerosol assisted chemical vapor deposition (AACVD) and characterized them using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). SEM shows that the films are composed of needle-like structures and TEM shows that both the needles and the gold particles are crystalline. XPS indicates the presence of oxygen vacancies, i.e. the films are WO3−x, and hence the deposited material is composed of semiconducting nanostructures and that the interaction between the gold particles and the WO3 needles surface is weak. The synthesis of semiconducting tungsten oxide nanostructures decorated with metal particles represents an important step towards the development of sensing devices with optimal properties.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000305918200038 Publication Date 2012-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0254-0584; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.084 Times cited 52 Open Access
Notes Iap Approved Most recent IF: 2.084; 2012 IF: 2.072
Call Number UA @ lucian @ c:irua:97705 Serial 1356
Permanent link to this record
 

 
Author Lei, C.H.; Van Tendeloo, G.; Lisoni, J.G.; Siegert, M.; Schubert, J.
Title Growth kinetic of MgO film on r-plane of sapphire: microstructural study Type A1 Journal article
Year 2001 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth
Volume 226 Issue (down) 2/3 Pages 419-429
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000169535100029 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.751 Times cited 7 Open Access
Notes Approved Most recent IF: 1.751; 2001 IF: 1.283
Call Number UA @ lucian @ c:irua:54783 Serial 1391
Permanent link to this record
 

 
Author Lin, H.; Ohta, T.; Paul, A.; Hutchison, J.A.; Kirilenko, D.; Lebedev, O.; Van Tendeloo, G.; Hofkens, J.; Uji-i, H.
Title Light-assisted nucleation of silver nanowires during polyol synthesis Type A1 Journal article
Year 2011 Publication Journal of photochemistry and photobiology: A: chemistry Abbreviated Journal J Photoch Photobio A
Volume 221 Issue (down) 2/3 Pages 220-223
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This report describes the effect of light irradiation on the synthesis of silver nanowires by the well-known polyol method. High quality nanowires are produced in high yields when the reaction suspension is irradiated with 400500 nm light during the nucleation stage. These studies suggest that light accelerates the formation of the nanoparticle seeds most appropriate for nanowire growth.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000293813800018 Publication Date 2011-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1010-6030; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.625 Times cited 24 Open Access
Notes Fwo; Iap Approved Most recent IF: 2.625; 2011 IF: 2.421
Call Number UA @ lucian @ c:irua:91262 Serial 1818
Permanent link to this record
 

 
Author Lorenz, H.; Zhao, Q.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Klötzer, B.; Rameshan, C.; Penner, S.
Title Preparation and structural characterization of SnO2 and GeO2 methanol steam reforming thin film model catalysts by (HR)TEM Type A1 Journal article
Year 2010 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys
Volume 122 Issue (down) 2/3 Pages 623-629
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Structure, morphology and composition of different tin oxide and germanium oxide thin film catalysts for the methanol steam reforming (MSR) reaction have been studied by a combination of (high-resolution) transmission electron microscopy, selected area electron diffraction, dark-field imaging and electron energy-loss spectroscopy. Deposition of the thin films on NaCl(0 0 1) cleavage faces has been carried out by thermal evaporation of the respective SnO2 and GeO2 powders in varying oxygen partial pressures and at different substrate temperatures. Preparation of tin oxide films in high oxygen pressures (10−1 Pa) exclusively resulted in SnO phases, at and above 473 K substrate temperature epitaxial growth of SnO on NaCl(0 0 1) leads to well-ordered films. For lower oxygen partial pressures (10−3 to 10−2 Pa), mixtures of SnO and β-Sn are obtained. Well-ordered SnO2 films, as verified by electron diffraction patterns and energy-loss spectra, are only obtained after post-oxidation of SnO films at temperatures T ≥ 673 K in 105 Pa O2. Preparation of GeOx films inevitably results in amorphous films with a composition close to GeO2, which cannot be crystallized by annealing treatments in oxygen or hydrogen at temperatures comparable to SnO/SnO2. Similarities and differences to neighbouring oxides relevant for selective MSR in the third group of the periodic system (In2O3 and Ga2O3) are also discussed with the aim of cross-correlation in formation of nanomaterials, and ultimately, also catalytic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000278637900054 Publication Date 2010-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0254-0584; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.084 Times cited 15 Open Access
Notes Esteem 026019 Approved Most recent IF: 2.084; 2010 IF: 2.356
Call Number UA @ lucian @ c:irua:83099 Serial 2699
Permanent link to this record
 

 
Author Lioutas, C.B.; Manolikas, C.; Van Tendeloo, G.; van Landuyt, J.
Title A 2a2a3c superstructure in hexagonal Ni1-xS : a study by means of electron-diffraction and HRTEM Type A1 Journal article
Year 1993 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth
Volume 126 Issue (down) 2-3 Pages 457-465
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The high temperature phase of Ni1-xS has the NiAs-type structure. The coexistence of two superstructures, ''3a3a3c'' and ''2a2a3c'' with the basic phase is confirmed by means of electron diffraction. The 2a2a3c superstructure is studied by means of electron diffraction and high resolution electron microscopy. A structure model is proposed based on the periodic insertion of stacking faults in the NiAs-type basic structure and the ordering of vacancies in alternate metal-atom layers. Microtwinning in very narrow slabs is found to be a main feature of the 2a2a3c regions and two defect models are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1993KH92500029 Publication Date 2002-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.698 Times cited 4 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:103012 Serial 23
Permanent link to this record
 

 
Author Snoeck, E.; Van Tendeloo, G.
Title Networking strategies of the microscopy community for improved utilisation of advanced instruments : (3) two European initiatives to support TEM infrastructures and promote electron microscopy over Europe, ESTEEM (20062011) and ESTEEM 2 (20122016) Type A1 Journal article
Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys
Volume 15 Issue (down) 2-3 Pages 281-284
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The ESTEEM consortium of electron microscopy laboratories for materials science and solid-state physics has been created as an EU-supported delocalized infrastructure (I3) to bring together the major electron microscopy centres in Europe. Its main objectives were to develop networking, to offer transnational access to these centres with specialized and complementary techniques and skills and to upgrade in close collaboration different technical and methodological aspects such as tomography, spectroscopy, holography, detectors, and specimen holders. These efforts were aimed to strengthen the position of European microscopy and to generate new technologies potentially of high relevance in many domains identified as strategic. Following the success of the first program, ESTEEM has been reconducted in 2012 for four more years with an enlarged set of partners.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000334013600017 Publication Date 2014-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.048 Times cited Open Access
Notes Approved Most recent IF: 2.048; 2014 IF: 2.035
Call Number UA @ lucian @ c:irua:115550 Serial 2293
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; Altantzis, T.; Heidari, H.; Van Aert, S.; Van Tendeloo, G.
Title Seeing and measuring in 3D with electrons Type A1 Journal article
Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys
Volume 15 Issue (down) 2-3 Pages 140-150
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Modern TEM enables the investigation of nanostructures at the atomic scale. However, TEM images are only two-dimensional (2D) projections of a three-dimensional (3D) object. Electron tomography can overcome this limitation. The technique is increasingly focused towards quantitative measurements and reaching atomic resolution in 3D has been the ultimate goal for many years. Therefore, one needs to optimize the acquisition of the data, the 3D reconstruction techniques as well as the quantification methods. Here, we will review a broad range of methodologies and examples. Finally, we will provide an outlook and will describe future challenges in the field of electron tomography.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000334013600005 Publication Date 2014-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.048 Times cited 15 Open Access OpenAccess
Notes (FWO;Belgium); European Research Council under the 7th Framework Program (FP7); ERC grant No.246791 – COUNTATOMS; ERC grant No.335078 – COLOURATOMS; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.048; 2014 IF: 2.035
Call Number UA @ lucian @ c:irua:113855 Serial 2960
Permanent link to this record
 

 
Author Verbeeck, J.; Guzzinati, G.; Clark, L.; Juchtmans, R.; Van Boxem, R.; Tian, H.; Béché, A.; Lubk, A.; Van Tendeloo, G.
Title Shaping electron beams for the generation of innovative measurements in the (S)TEM Type A1 Journal article
Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys
Volume 15 Issue (down) 2-3 Pages 190-199
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In TEM, a typical goal consists of making a small electron probe in the sample plane in order to obtain high spatial resolution in scanning transmission electron microscopy. In order to do so, the phase of the electron wave is corrected to resemble a spherical wave compensating for aberrations in the magnetic lenses. In this contribution, we discuss the advantage of changing the phase of an electron wave in a specific way in order to obtain fundamentally different electron probes opening up new applications in the (S)TEM. We focus on electron vortex states as a specific family of waves with an azimuthal phase signature and discuss their properties, production and applications. The concepts presented here are rather general and also different classes of probes can be obtained in a similar fashion, showing that electron probes can be tuned to optimize a specific measurement or interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000334013600009 Publication Date 2014-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.048 Times cited 22 Open Access
Notes Vortex ECASJO_; Approved Most recent IF: 2.048; 2014 IF: 2.035
Call Number UA @ lucian @ c:irua:116946UA @ admin @ c:irua:116946 Serial 2992
Permanent link to this record
 

 
Author Vávra, O.; Gaži, S.; Golubović, D.S.; Vávra, I.; Dérer, J.; Verbeeck, J.; Van Tendeloo, G.; Moshchalkov, V.V.
Title 0 and π phase Josephson coupling through an insulating barrier with magnetic impurities Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue (down) 2 Pages 020502
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have studied the temperature and field dependencies of the critical current I(C) in the Nb-Fe(0.1)Si(0.9)-Nb Josephson junction with a tunneling barrier formed by a paramagnetic insulator. We demonstrate that in these junctions coexistence of both the 0 and the pi states within one tunnel junction occurs, and leads to the appearance of a sharp cusp in the temperature dependence I(C)(T), similar to the I(C)(T) cusp found for the 0-pi transition in metallic pi junctions. This cusp is not related to the 0-pi temperature-induced transition itself, but is caused by the different temperature dependencies of the opposing 0 and pi supercurrents through the barrier.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000239426600010 Publication Date 2006-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:60087 c:irua:60087 c:irua:60087 c:irua:60087UA @ admin @ c:irua:60087 Serial 1
Permanent link to this record
 

 
Author Abakumov, A.M.; Batuk, D.; Hadermann, J.; Rozova, M.G.; Sheptyakov, D.V.; Tsirlin, A.A.; Niermann, D.; Waschowski, F.; Hemberger, J.; Van Tendeloo, G.; Antipov, E.V.
Title Antiferroelectric (Pb,Bi)1-xFe1+xO3-y perovskites modulated by crystallographic shear planes Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue (down) 2 Pages 255-265
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate for the first time a possibility to vary the anion content in perovskites over a wide range through a long-range-ordered arrangement of crystallographic shear (CS) planes. Anion-deficient perovskites (Pb,Bi)1−xFe1+xO3−y with incommensurately modulated structures were prepared as single phases in the compositional range from Pb0.857Bi0.094Fe1.049O2.572 to Pb0.409Bi0.567Fe1.025O2.796. Using a combination of electron diffraction and high-resolution scanning transmission electron microscopy, we constructed a superspace model describing a periodic arrangement of the CS planes. The model was verified by refinement of the Pb0.64Bi0.32Fe1.04O2.675 crystal structure from neutron powder diffraction data ((3 + 1)D S.G. X2/m(α0γ), X = [1/2,1/2,1/2,1/2], a = 3.9082(1) Å, b = 3.90333(8) Å, c = 4.0900(1) Å, β = 91.936(2)°, q = 0.05013(4)a* + 0.09170(3)c* at T = 700 K, RP = 0.036, RwP = 0.048). The (Pb,Bi)1−xFe1+xO3−y structures consist of perovskite blocks separated by CS planes confined to nearly the (509)p perovskite plane. Along the CS planes, the perovskite blocks are shifted with respect to each other over the 1/2[110]p vector that transforms the corner-sharing connectivity of the FeO6 octahedra in the perovskite framework to an edge-sharing connectivity of the FeO5 pyramids at the CS plane, thus reducing the oxygen content. Variation of the chemical composition in the (Pb,Bi)1−xFe1+xO3−y series occurs mainly because of a changing thickness of the perovskite block between the interfaces, that can be expressed through the components of the q vector as Pb6γ+2αBi1−7γ−αFe1+γ−αO3−3γ−α. The Pb, Bi, and Fe atoms are subjected to strong displacements occurring in antiparallel directions on both sides of the perovskite blocks, resulting in an antiferroelectric-type structure. This is corroborated by the temperature-, frequency-, and field-dependent complex permittivity measurements. Pb0.64Bi0.32Fe1.04O2.675 demonstrates a remarkably high resistivity >0.1 T Ω cm at room temperature and orders antiferromagnetically below TN = 608(10) K.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000286160800018 Publication Date 2010-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 29 Open Access
Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:88651 Serial 136
Permanent link to this record
 

 
Author Turner, S.; Tavernier, S.M.F.; Huyberechts, G.; Bals, S.; Batenburg, K.J.; Van Tendeloo, G.
Title Assisted spray pyrolysis production and characterisation of ZnO nanoparticles with narrow size distribution Type A1 Journal article
Year 2010 Publication Journal of nanoparticle research Abbreviated Journal J Nanopart Res
Volume 12 Issue (down) 2 Pages 615-622
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Nano-sized ZnO particles with a narrow size distribution and high crystallinity were prepared from aqueous solutions with high concentrations of Zn2+ containing salts and citric acid in a conventional spray pyrolysis setup. Structure, morphology and size of the produced material were compared to ZnO material produced by simple spray pyrolysis of zinc nitrates in the same experimental setup. Using transmission electron microscopy and electron tomography it has been shown that citric acid-assisted spray pyrolysed material is made up of micron sized secondary particles comprising a shell of lightly agglomerated, monocrystalline primary ZnO nanoparticles with sizes in the 2030 nm range, separable by a simple ultrasonic treatment step.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000275318700025 Publication Date 2009-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1388-0764;1572-896X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.02 Times cited 27 Open Access
Notes Esteem 026019 Approved Most recent IF: 2.02; 2010 IF: 3.253
Call Number UA @ lucian @ c:irua:81771 Serial 156
Permanent link to this record
 

 
Author Corthals, S.; van Noyen, J.; Geboers, J.; Vosch, T.; Liang, D.; Ke, X.; Hofkens, J.; Van Tendeloo, G.; Jacobs, P.; Sels, B.
Title The beneficial effect of CO2 in the low temperature synthesis of high quality carbon nanofibers and thin multiwalled carbon nanotubes from CH_{4} over Ni catalysts Type A1 Journal article
Year 2012 Publication Carbon Abbreviated Journal Carbon
Volume 50 Issue (down) 2 Pages 372-384
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A low temperature chemical vapor deposition method is described for converting CH4 into high-quality carbon nanofibers (CNFs) using a Ni catalyst supported on either spinel or perovskite oxides in the presence of CO2. The addition of CO2 has a significant influence on CNF purity and stability, while the CNF diameter distribution is significantly narrowed. Ultimately, the addition of CO2 changes the CNF structure from fishbone fibers to thin multiwalled carbon nanotubes. A new in situ cooling principle taking into account dry reforming chemistry and thermodynamics is introduced to account for the structural effects of CO2.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000297397700004 Publication Date 2011-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 26 Open Access
Notes Iwt; Iap Approved Most recent IF: 6.337; 2012 IF: 5.868
Call Number UA @ lucian @ c:irua:93626 Serial 228
Permanent link to this record
 

 
Author Zhao, Q.; Lorenz, H.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Rameshan, C.; Klötzer, B.; Konzett, J.; Penner, S.
Title Catalytic characterization of pure SnO2 and GeO2 in methanol steam reforming Type A1 Journal article
Year 2010 Publication Applied catalysis : A : general Abbreviated Journal Appl Catal A-Gen
Volume 375 Issue (down) 2 Pages 188-195
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Structural changes of a variety of different SnO, SnO2 and GeO2 catalysts upon reduction in hydrogen were correlated with associated catalytic changes in methanol steam reforming. Studied systems include SnO, SnO2 and GeO2 thin film model catalysts prepared by vapour phase deposition and growth on polycrystalline NaCl surfaces and, for comparison, the corresponding pure oxide powder catalysts. Reduction of both the SnO2 thin film and powder at around 673 K in 1 bar hydrogen leads to a substantial reduction of the bulk structure and yields a mixture of SnO2 and metallic β-Sn. On the powder catalyst this transformation is fully reversible upon oxidation in 1 bar O2 at 673 K. Strongly reduced thin films, however, can only be re-transformed to SnO2 if the reduction temperature did not exceed 573 K. For GeO2, the situation is more complex due to its polymorphism. Whereas the tetragonal phase is structurally stable during reduction, oxidation or catalytic reaction, a small part of the hexagonal phase is always transformed into the tetragonal at 673 K independent of the gas phase used. SnO2 is highly active and CO2 selective in methanol steam reforming, but the initial high activity drops considerably upon reduction between 373 and 573 K and almost complete catalyst deactivation is observed after reduction at 673 K, which is associated with the parallel formation of β-Sn. In close correlation to the structural results, the catalytic activity and selectivity can be restored upon an oxidative catalyst regeneration at 673 K. Tetragonal GeO2 exhibits only a small activity and no pronounced selectivity to either CO or CO2, at least after reduction. In its fully oxidized state release of surface/lattice oxygen results in a non-catalytic formation of CO2 by oxidation of CO originating from catalytic dehydrogenation.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000275580600002 Publication Date 2010-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-860X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.339 Times cited 20 Open Access
Notes Esteem 026019 Approved Most recent IF: 4.339; 2010 IF: 3.384
Call Number UA @ lucian @ c:irua:81741 Serial 292
Permanent link to this record
 

 
Author Yan, L.; Niu, H.J.; Duong, G.V.; Suchomel, M.R.; Bacsa, J.; Chalker, P.R.; Hadermann, J.; Van Tendeloo, G.; Rosseinsky, M.J.
Title Cation ordering within the perovskite block of a six-layer Ruddlesden-Popper oxide from layer-by-layer growth artificial interfaces in complex unit cells Type A1 Journal article
Year 2011 Publication Chemical science Abbreviated Journal Chem Sci
Volume 2 Issue (down) 2 Pages 261-272
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The (AO)(ABO3)n Ruddlesden-Popper structure is an archetypal complex oxide consisting of two distinct structural units, an (AO) rock salt layer separating an n-octahedra thick perovskite block. Conventional high-temperature oxide synthesis methods cannot access members with n > 3, but low-temperature layer-by-layer thin film methods allow the preparation of materials with thicker perovskite blocks, exploiting high surface mobility and lattice matching with the substrate. This paper describes the growth of an n = 6 member CaO[(CSMO)2(LCMO)2 (CSMO)2] in which the six unit cell perovskite block is sub-divided into two central La0.67Ca0.33MnO3 (LCMO) and two terminal Ca0.85Sm0.15MnO3 (CSMO) layers to allow stabilization of the rock salt layer and variation of the transition metal charge.
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000286327600010 Publication Date 2010-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 16 Open Access
Notes Approved Most recent IF: 8.668; 2011 IF: 7.525
Call Number UA @ lucian @ c:irua:88652 Serial 300
Permanent link to this record