toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Monico, L.; Chieli, A.; De Meyer, S.; Cotte, M.; de Nolf, W.; Falkenberg, G.; Janssens, K.; Romani, A.; Miliani, C. pdf  url
doi  openurl
  Title Role of the relative humidity and the Cd/Zn stoichiometry in the photooxidation process of cadmium yellows (CdS/Cd1-xZnxS) in oil paintings Type A1 Journal article
  Year 2018 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 24 Issue (up) 45 Pages 11584-11593  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Cadmium yellows (CdYs) refer to a family of cadmium sulfide pigments, which have been widely used by artists since the late 19th century. Despite being considered stable, they are suffering from discoloration in iconic paintings, such as Joy of Life by Matisse, Flowers in a blue vase by Van Gogh, and The Scream by Munch, most likely due to the formation of CdSO4 center dot nH(2)O. The driving factors of the CdYs degradation and how these affect the overall process are still unknown. Here, we study a series of oil mock-up paints made of CdYs of different stoichiometry (CdS/Cd0.76Zn0.24S) and crystalline structure (hexagonal/ cubic) before and after aging at variable relative humidity under exposure to light and in darkness. Synchrotron radiation-based X-ray methods combined with UV-Vis and FTIR spectroscopy show that: 1) Cd0.76Zn0.24S is more susceptible to photooxidation than CdS; both compounds can act as photocatalysts for the oil oxidation. 2) The photooxidation of CdS/Cd0.76Zn0.24S to CdSO4 center dot nH(2)O is triggered by moisture. 3) The nature of alteration products depends on the aging conditions and the Cd/Zn stoichiometry. Based on our findings, we propose a scheme for the mechanism of the photocorrosion process and the photocatalytic activity of CdY pigments in the oil binder. Overall, our results form a reliable basis for understanding the degradation of CdS-based paints in artworks and contribute towards developing better ways of preserving them for future generations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441126900012 Publication Date 2018-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 5 Open Access  
  Notes ; The research was financially supported by the European research project IPERION-CH, funded by the European Commission, H2020-INFRAIA-2014-2015 (Grant agreement n. 654028) and by the BOF-GOA Project SOLARPaint (University of Antwerp Research Council). For the beamtime grants received, we thank the ESRF (experiments n. HG64, HG95 and in-house beamtimes) and PETRA III-DESY (experiments: I-20130221 EC, I-20160126 EC). We are also grateful to Dr. Jan Garrevoet for his contribution to set up the P06-beamline at PETRA III-DESY. ; Approved Most recent IF: 5.317  
  Call Number UA @ admin @ c:irua:153733 Serial 5821  
Permanent link to this record
 

 
Author dela Encarnacion, C.; Lenzi, E.; Henriksen-Lacey, M.; Molina, B.; Jenkinson, K.; Herrero, A.; Colas, L.; Ramos-Cabrer, P.; Toro-Mendoza, J.; Orue, I.; Langer, J.; Bals, S.; Jimenez de Aberasturi, D.; Liz-Marzan, L.M. pdf  doi
openurl 
  Title Hybrid magnetic-plasmonic nanoparticle probes for multimodal bioimaging Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 126 Issue (up) 45 Pages 19519-19531  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Multimodal contrast agents, which take advantage of different imaging modalities, have emerged as an interesting approach to overcome the technical limitations of individual techniques. We developed hybrid nanoparticles comprising an iron oxide core and an outer gold spiky layer, stabilized by a biocompatible polymeric shell. The combined magnetic and optical properties of the different components provide the required functionalities for magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS), and fluorescence imaging. The fabrication of such hybrid nanoprobes comprised the adsorption of small gold nanoparticles onto premade iron oxide cores, followed by controlled growth of spiky gold shells. The gold layer thickness and branching degree (tip sharpness) can be controlled by modifying both the density of Au nanoparticle seeds on the iron oxide cores and the subsequent nanostar growth conditions. We additionally demonstrated the performance of these hybrid multifunctional nanoparticles as multimodal contrast agents for correlative imaging of in vitro cell models and ex vivo tissues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000883021700001 Publication Date 2022-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 10 Open Access Not_Open_Access  
  Notes The authors acknowledge financial support from the European Research Council (ERC-AdG-2017, 787510) and MCIN/AEI/10.13039/501100011033 through grants PID2019-108854RA-I00 and Maria de Maeztu Unit of Excellence No. MDM-2017-0720. S.B. and K.J. acknowledge financial support from the European Commission under the Horizon 2020Programme by Grant No. 823717 (ESTEEM3) and ERC Consolidator Grant No. 815128 (REALNANO) . Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:192104 Serial 7311  
Permanent link to this record
 

 
Author Christiansen, T.; Cotte, M.; de Nolf, W.; Mouro, E.; Reyes-Herrera, J.; De Meyer, S.; Vanmeert, F.; Salvado, N.; Gonzalez, V.; Lindelof, P.E.; Mortensen, K.; Ryholt, K.; Janssens, K.; Larsen, S. url  doi
openurl 
  Title Insights into the composition of ancient Egyptian red and black inks on papyri achieved by synchrotron-based microanalyses Type A1 Journal article
  Year 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 117 Issue (up) 45 Pages 27825-27835  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A hitherto unknown composition is highlighted in the red and black inks preserved on ancient Egyptian papyri from the Roman period (circa 100 to 200 CE). Synchrotron-based macro-X-ray fluo-rescence (XRF) mapping brings to light the presence of iron (Fe) and lead (Pb) compounds in the majority of the red inks inscribed on 12 papyrus fragments from the Tebtunis temple library. The iron-based compounds in the inks can be assigned to ocher, notably due to the colocalization of Fe with aluminum, and the detection of hematite (Fe2O3) by micro-X-ray diffraction. Using the same techniques together with micro-Fourier transform infrared spectroscopy, Pb is shown to be associated with fatty acid phosphate, sulfate, chloride, and carboxylate ions. Moreover, microXRF maps reveal a peculiar distribution and colocalization of Pb, phosphorus (P), and sulfur (S), which are present at the micrometric scale resembling diffused “coffee rings” surrounding the ocher particles imbedded in the red letters, and at the submicrometric scale concentrated in the papyrus cell walls. A similar Pb, P, and S composition was found in three black inks, suggesting that the same lead components were employed in the manufacture of carbon-based inks. Bearing in mind that pigments such as red lead (Pb3O4) and lead white (hydrocerussite [Pb-3(CO3)(2)(OH)(2)] and/or cerussite [PbCO3]) were not detected, the results presented here suggest that the lead compound in the ink was used as a drier rather than as a pigment. Accordingly, the study calls for a reassessment of the composition of lead-based components in ancient Mediterranean pigments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000590753400016 Publication Date 2020-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access  
  Notes Approved Most recent IF: 11.1; 2020 IF: 9.661  
  Call Number UA @ admin @ c:irua:174323 Serial 8107  
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Peeters, F.M. doi  openurl
  Title Engineering electronic properties of metal-MoSe2 interfaces using self-assembled monolayers Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 2 Issue (up) 46 Pages 9842-9849  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Metallic contacts are critical components of electronic devices and the presence of a large Schottky barrier is detrimental for an optimal device operation. Here, we show by using first-principles calculations that a self-assembled monolayer (SAM) of polar molecules between the metal electrode and MoSe2 monolayer is able to convert the Schottky contact into an almost Ohmic contact. We choose -CH3 and -CF3 terminated short-chain alkylthiolate (i.e. SCH3 and fluorinated alkylthiolates (SCF3)) based SAMs to test our approach. We consider both high (Au) and low (Sc) work function metals in order to thoroughly elucidate the role of the metal work function. In the case of Sc, the Fermi level even moves into the conduction band of the MoSe2 monolayer upon SAM insertion between the metal surface and the MoSe2 monolayer, and hence possibly switches the contact type from Schottky to Ohmic. The usual Fermi level pinning at the metal-transition metal dichalcogenide (TMD) contact is shown to be completely removed upon the deposition of a SAM. Systematic analysis indicates that the work function of the metal surface and the energy level alignment between the metal electrode and the TMD monolayer can be tuned significantly by using SAMs as a buffer layer. These results clearly indicate the vast potential of the proposed interface engineering to modify the physical and chemical properties of MoSe2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344998700007 Publication Date 2014-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 22 Open Access  
  Notes ; Part of this work is supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish Government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). D. C. is supported by a FWO Pegasus-short Marie Curie Fellowship. C. S. acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK 113F096), Anadolu University (BAP-1306F281, -1404F158) and Turkish Academy of Science (TUBA). ; Approved Most recent IF: 5.256; 2014 IF: 4.696  
  Call Number UA @ lucian @ c:irua:122157 Serial 1046  
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M. pdf  doi
openurl 
  Title Giant magnetoresistance in a two-dimensional electron gas modulated by magnetic barriers Type A1 Journal article
  Year 2004 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 16 Issue (up) 46 Pages 8275-8283  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The temperature-dependent giant magnetoresistance effect is investigated in a magnetically modulated two-dimensional electron gas, which can be realized by depositing two parallel ferromagnets on the top and bottom of a heterostructure. The effective potential for electrons arising for parallel magnetization allows the electrons to resonantly tunnel through the magnetic barriers, while this is excluded in the anti-parallel situation. Such a discrepancy results in a giant magnetoresistance ratio (MRR), which can be up to 10(31)%. The MRR shows a strong dependence on temperature, but our study indicates that for realistic parameters for a GaAs heterostructure the effect can be as high as 10(4)% at 4 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000225706000017 Publication Date 2004-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 69 Open Access  
  Notes Approved Most recent IF: 2.649; 2004 IF: 2.049  
  Call Number UA @ lucian @ c:irua:103718 Serial 1338  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M. pdf  doi
openurl 
  Title Kronig-Penney model of scalar and vector potentials in graphene Type A1 Journal article
  Year 2010 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 22 Issue (up) 46 Pages 465302,1-465302,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider a one-dimensional (1D) superlattice (SL) on graphene consisting of very high and very thin (δ-function) magnetic and potential barriers with zero average potential and zero magnetic field. We calculate the energy spectrum analytically, study it in different limiting cases, and determine the condition under which an electron beam incident on an SL is highly collimated along its direction. In the absence of the magnetic SL the collimation is very sensitive to the value of W/Ws and is optimal for W/Ws = 1, where W is the distance between the positive and negative barriers and L = W + Ws is the size of the unit cell. In the presence of only the magnetic SL the collimation decreases and the symmetry of the spectrum around ky is broken for W/Ws\neq 1 . In addition, a gap opens which depends on the strength of the magnetic field. We also investigate the effect of spatially separated potential and magnetic δ-function barriers and predict a better collimation in specific cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000283838800004 Publication Date 2010-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 41 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 2.649; 2010 IF: 2.332  
  Call Number UA @ lucian @ c:irua:85807 Serial 1767  
Permanent link to this record
 

 
Author Filippousi, M.; Altantzis, T.; Stefanou, G.; Betsiou, M.; Bikiaris, D.N.; Angelakeris, M.; Pavlidou, E.; Zamboulis, D.; Van Tendeloo, G. pdf  doi
openurl 
  Title Polyhedral iron oxide coreshell nanoparticles in a biodegradable polymeric matrix : preparation, characterization and application in magnetic particle hyperthermia and drug delivery Type A1 Journal article
  Year 2013 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 3 Issue (up) 46 Pages 24367-24377  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polyhedral magnetic iron oxide nanocrystals with multiple facets have been embedded in biocompatible and biodegradable polymeric matrices in order to study their structural, magnetic features and alternating-current (AC) magnetic heating efficiency. The encapsulation of iron oxide nanoparticles into a polymer matrix was confirmed by transmission electron microscopy and further corroborated by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). HAADF-STEM tomography proved that the iron oxide nanocrystals consist of well-defined polyhedral structures with multiple facets. The magnetic features were found to be in good agreement with the structural and morphological features and are maintained even after encapsulation. Furthermore, the magnetic nanoparticles inside these matrices may be considered as good candidates for biomedical applications in hyperthermia treatments because of their high heating capacity exhibited under an alternating magnetic field. The anticancer Taxol drug was encapsulated in these nanoparticles and its physical state and release rate at 37 and 42 °C was studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326745100068 Publication Date 2013-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 19 Open Access  
  Notes Countatoms; IAP Approved Most recent IF: 3.108; 2013 IF: 3.708  
  Call Number UA @ lucian @ c:irua:111395 Serial 2671  
Permanent link to this record
 

 
Author Abakumov, A.M.; Rossell, M.D.; Seryakov, S.A.; Rozova, M.G.; Markina, M.M.; Van Tendeloo, G.; Antipov, E.V. pdf  doi
openurl 
  Title Synthesis and crystal structure of novel CaRMnSnO6(R = La, Pr, Nd, Sm-Dy) double perovskites Type A1 Journal article
  Year 2005 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 15 Issue (up) 46 Pages 4899-4905  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000233439300005 Publication Date 2005-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 8 Open Access  
  Notes Iap V-1 Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:56069 Serial 3424  
Permanent link to this record
 

 
Author Bottari, F.; Daems, E.; de Vries, A.-M.; Van Wielendaele, P.; Trashin, S.; Blust, R.; Sobott, F.; Madder, A.; Martins, J.C.; De Wael, K. pdf  doi
openurl 
  Title Do aptamers always bind? The need for a multifaceted analytical approach when demonstrating binding affinity between aptamer and low molecular weight compounds Type A1 Journal article
  Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 142 Issue (up) 46 Pages jacs.0c08691-19630  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Medical Biochemistry  
  Abstract In this manuscript, we compare different analytical methodologies to validate or disprove the binding capabilities of aptamer sequences. This was prompted by the lack of a universally accepted and robust quality control protocol for the characterization of aptamer performances coupled with the observation of independent yet inconsistent data sets in the literature. As an example, we chose three aptamers with a reported affinity in the nanomolar range for ampicillin, a β-lactam antibiotic, used as biorecognition elements in several detection strategies described in the literature. Application of a well-known colorimetric assay based on aggregation of gold nanoparticles (AuNPs) yielded conflicting results with respect to the original report. Therefore, ampicillin binding was evaluated in solution using isothermal titration calorimetry (ITC), native nano-electrospray ionization mass spectrometry (native nESI-MS), and 1H-nuclear magnetic resonance spectroscopy (1H NMR). By coupling the thermodynamic data obtained with ITC with the structural information on the binding event given by native nESI-MS and 1H NMR we could verify that none of the ampicillin aptamers show any specific binding with their intended target. The effect of AuNPs on the binding event was studied by both ITC and 1H NMR, again without providing positive evidence of ampicillin binding. To validate the performance of our analytical approach, we investigated two well-characterized aptamers for cocaine/quinine (MN4), chosen for its nanomolar range affinity, and l-argininamide (1OLD) to show the versatility of our approach. The results clearly indicate the need for a multifaceted analytical approach, to unequivocally establish the actual detection potential and performance of aptamers aimed at small organic molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000592911000024 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access  
  Notes Approved Most recent IF: 15; 2020 IF: 13.858  
  Call Number UA @ admin @ c:irua:173136 Serial 6488  
Permanent link to this record
 

 
Author Bafekry, A.; Nguyen, C., V; Goudarzi, A.; Ghergherehchi, M.; Shafieirad, M. url  doi
openurl 
  Title Investigation of strain and doping on the electronic properties of single layers of C₆N₆ and C₆N₈: a first principles study Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue (up) 46 Pages 27743-27751  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, by performing first-principles calculations, we explore the effects of various atom impurities on the electronic and magnetic properties of single layers of C(6)N(6)and C6N8. Our results indicate that atom doping may significantly modify the electronic properties. Surprisingly, doping Cr into a holey site of C(6)N(6)monolayer was found to exhibit a narrow band gap of 125 meV upon compression strain, considering the spin-orbit coupling effect. Also, a C atom doped in C(6)N(8)monolayer shows semi-metal nature under compression strains larger than -2%. Our results propose that Mg or Ca doped into strained C(6)N(6)may exhibit small band gaps in the range of 10-30 meV. In addition, a magnetic-to-nonmagnetic phase transition can occur under large tensile strains in the Ca doped C(6)N(8)monolayer. Our results highlight the electronic properties and magnetism of C(6)N(6)and C(6)N(8)monolayers. Our results show that the electronic properties can be effectively modified by atom doping and mechanical strain, thereby offering new possibilities to tailor the electronic and magnetic properties of C(6)N(6)and C(6)N(8)carbon nitride monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000553911800053 Publication Date 2020-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 11 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number UA @ admin @ c:irua:172111 Serial 6553  
Permanent link to this record
 

 
Author Canossa, S.; Ferrari, E.; Sippel, P.; Fischer, J.K.H.; Pfattner, R.; Frison, R.; Masino, M.; Mas-Torrent, M.; Lunkenheimer, P.; Rovira, C.; Girlando, A. pdf  doi
openurl 
  Title Tetramethylbenzidine-TetrafluoroTCNQ (TMB-TCNQF(4)) : a narrow-gap semiconducting salt with room-temperature relaxor ferroelectric behavior Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue (up) 46 Pages 25816-25824  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We present an extension and revision of the spectroscopic and structural data of the mixed-stack charge-transfer (CT) crystal 3,3 ',5,5 '-tetramethylbenzidine-tetrafluorotetracyano-quinodimethane (TMB-TCNQF4), associated with new electric and dielectric measurements. Refinement of synchrotron structural data at low temperature has led to revise the previously reported C2/m structure. The revised structure is P2(1)/m, with two dimerized stacks per unit cell, and is consistent with the low temperature vibrational data. However, polarized Raman data in the low-frequency region also indicate that by increasing temperature above 200 K, the structure presents an increasing degree of disorder, mainly along the stack axis. X-ray diffraction data at room temperature have confirmed that the correct structure is P2(1)/ m -no phase transitions -but did not allow substantiating the presence of disorder. On the other hand, dielectric measurements have evidenced a typical relaxor ferroelectric behavior already at room temperature, with a peak in the real part of dielectric constant epsilon'(T,v) around 200 K and 0.1 Hz. The relaxor behavior is explained in terms of the presence of spin solitons separating domains of opposite polarity that yield to ferroelectric nanodomains. TMB-TCNQF(4) is confirmed to be a narrow-gap band semiconductor (Ea similar to 0.3 eV) with a room-temperature conductivity of similar to 10(-4) Omega(-1) cm(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000731170500008 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access Not_Open_Access  
  Notes A.G. thanks Prof. Pascale Foury-Leylekian for very helpful discussions about the crystallographic issues. R.F. thanks Prof. Anthony Linden for his help in the X-ray diffraction data collection. J.K.H.F. and P.L. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via the Transregional Collaborative Research Center TRR80 (Augsburg, Munich). R.P. and M.M.-T. acknowledge support from the Marie Curie Cofund, Beatriu de Pinós Fellowships (Grant nos. AGAUR 2017 BP 00064). This work was also supported by the Spanish Ministry project GENESIS PID2019-111682RBI00, the “Severo Ochoa” Programme for Centers of Excellence in R&D (FUNFUTURE, CEX2019-000917-S), and the Generalitat de Catalunya (2017-SGR-918). The Elettra Synchrotron (CNR Trieste) is acknowledged for granting the beamtime at the single-crystal diffraction beamline XRD1 (Proposal ID 20185483). In Parma, the work has benefited from the equipment and support of the COMP-HUB Initiative, funded by the “Departments of Excellence” program of the Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:184866 Serial 7066  
Permanent link to this record
 

 
Author Buffière, M.; Zaghi, A.E.; Lenaers, N.; Batuk, M.; Khelifi, S.; Drijkoningen, J.; Hamon, J.; Stesmans, A.; Kepa, J.; Afanas’ev, V.V.; Hadermann, J.; D’Haen, J.; Manca, J.; Vleugels, J.; Meuris, M.; Poortmans, J.; pdf  url
doi  openurl
  Title Effect of binder content in Cu-In-Se precursor ink on the physical and electrical properties of printed CuInSe2 solar cells Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue (up) 47 Pages 27201-27209  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Printed chalcopyrite thin films have attracted considerable attention in recent years due to their potential in the high-throughput production of photovoltaic devices. To improve the homogeneity of printed CuInSe2 (CISe) layers, chemical additives such as binder can be added to the precursor ink. In this contribution, we investigate the influence of the dicyandiamide (DCDA) content, used as a binder in the precursor ink, on the physical and electrical properties of printed CISe solar cells. It is shown that the use of the binder leads to a dense absorber, composed of large CISe grains close to the surface, while the bulk of the layer consists of CISe crystallites embedded in a CuxS particle based matrix, resulting from the limited sintering of the precursor in this region. The expected additional carbon contamination of the CISe layer due to the addition of the binder appears to be limited, and the optical properties of the CISe layer are similar to the reference sample without additive. The electrical characterization of the corresponding CISe/CdS solar cells shows a degradation of the efficiency of the devices, due to a modification in the predominant recombination mechanisms and a limitation of the space charge region width when using the binder; both effects could be explained by the inhomogeneity of the bulk of the CISe absorber and high defect density at the CISe/CuxS-based matrix interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000345722400003 Publication Date 2014-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 4 Open Access  
  Notes Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:121332 Serial 801  
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Exciton states and oscillator strength in two vertically coupled InP/InGaP quantum discs Type A1 Journal article
  Year 2004 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 16 Issue (up) 47 Pages 8633-8652  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum mechanical coupling and strain in two vertically arranged InP/InGaP quantum dots is studied as a function of the size of the dots and the spacer thickness. The strain distribution is determined by the continuum mechanical model, while the single-band effective-mass equation and the multiband k (.) p theory are employed to compute the conduction and valence band energy levels, respectively. The exciton states are obtained from an exact diagonalization approach, and we also compute the oscillator strength for recombination. We found that the light holes are confined by strain to the spacer, which is the reason that the hole states exhibit coupling at much larger distances as compared with the electrons. At small d, the doublet structure of the hole energy levels arises as a consequence of the relocation of the light hole from the matrix to the regions located-outside the stack, close to the dot-matrix interface. When d varies, the exciton ground state exhibits numerous anticrossings with other states, which are related to the changing spatial localization of the hole as a function of d. The oscillator strength of the exciton recombination is strongly reduced in a certain range of spacer thicknesses, which effectively turns a bright exciton state into a dark one. This effect is associated with anticrossings between exciton energy levels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000225796800016 Publication Date 2004-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.649; 2004 IF: 2.049  
  Call Number UA @ lucian @ c:irua:99315 Serial 1116  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Hendriks, E.; Vanmeert, F.; van der Snickt, G.; Cotte, M.; Falkenberg, G.; Brunetti, B.G.; Miliani, C. pdf  doi
openurl 
  Title Evidence for degradation of the chrome yellows in Van Gogh's sunflowers : a study using noninvasive in situ methods and synchrotron-radiation-based x-ray techniques Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue (up) 47 Pages 13923-13927  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This paper presents firm evidence for the chemical alteration of chrome yellow pigments in Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam). Noninvasive in situ spectroscopic analysis at several spots on the painting, combined with synchrotron-radiation-based X-ray investigations of two microsamples, revealed the presence of different types of chrome yellow used by Van Gogh, including the lightfast PbCrO4 and the sulfur-rich PbCr1-xSxO4 (x approximate to 0.5) variety that is known for its high propensity to undergo photoinduced reduction. The products of this degradation process, i.e., Cr-III compounds, were found at the interface between the paint and the varnish. Selected locations of the painting with the highest risk of color modification by chemical deterioration of chrome yellow are identified, thus calling for careful monitoring in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367722500009 Publication Date 2015-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 24 Open Access  
  Notes ; We acknowledge financial support from the Italian MIUR project SICH-PRIN (2010329WPF_001) and BELSPO (Brussels) Project S2-ART (SD04A), GOA “SOLARPAINT” (Research Fund Antwerp University, BOF-2015), and FWO (Brussels) projects G.0C12.13, G.0704.08, G.01769.09. We thank ESRF (EC-1051, HG-26) and DESY (I-20120312 EC) for beamtime grants received. Noninvasive analysis of Sunflowers were supported by the EU FP7 programme CHARISMA (Grant 228330) and the Fund Inbev-Baillet Latour (Brussels). L.M. acknowledges financial support from the CNR Short Term Mobility Programme-2013. We thank Muriel Geldof, Luc Megens, Suzan de Groot (The Netherlands Cultural Heritage Agency, RCE), Chiara Grazia, David Buti (CNR-ISTM and SMAArt Centre), and the staff of the Van Gogh Museum for their collaboration. ; Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ admin @ c:irua:131110 Serial 5617  
Permanent link to this record
 

 
Author Yuan, Y.; Wu, F.-J.; Xiao, S.-T.; Wang, Y.-T.; Yin, Z.-W.; Van Tendeloo, G.; Chang, G.-G.; Tian, G.; Hu, Z.-Y.; Wu, S.-M.; Yang, X.-Y. url  doi
openurl 
  Title Hierarchical zeolites containing embedded Cd0.2Zn0.8S as a photocatalyst for hydrogen production from seawater Type A1 Journal article
  Year 2023 Publication Chemical communications Abbreviated Journal  
  Volume 59 Issue (up) 47 Pages 7275-7278  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Uncovering an efficient and stable photocatalytic system for seawater splitting is a highly desirable but challenging goal. Herein, Cd0.2Zn0.8S@Silicalite-1 (CZS@S-1) composites, in which CZS is embedded in the hierarchical zeolite S-1, were prepared and show remarkably high activity, stability and salt resistance in seawater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000994367000001 Publication Date 2023-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.9; 2023 IF: 6.319  
  Call Number UA @ admin @ c:irua:197291 Serial 8878  
Permanent link to this record
 

 
Author Delfino, C.L.; Hao, Y.; Martin, C.; Minoia, A.; Gopi, E.; Mali, K.S.; Van der Auweraer, M.; Geerts, Y.H.; Van Aert, S.; Lazzaroni, R.; De Feyter, S. pdf  url
doi  openurl
  Title Conformation-Dependent Monolayer and Bilayer Structures of an Alkylated TTF Derivative Revealed using STM and Molecular Modeling Type A1 Journal Article
  Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume 127 Issue (up) 47 Pages 23023-23033  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract In this study, the multi-layer self-assembled molecular network formation of an alkylated tetrathiafulvalene compound is studied at the liquid-solid interface between 1-phenyloctane and graphite. A combined theoretical/experimental approach associating force-field and quantum-chemical calculations with scanning tunnelling microscopy is used to determine the two-dimensional self-assembly beyond the monolayer, but also to further the understanding of the molecular adsorption conformation and its impact on the molecular packing within the assemblies at the monolayer and bilayer level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001111637100001 Publication Date 2023-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Financial support from the Research Foundation-Flanders (FWO G081518N, G0A3220N) and KU Leuven–Internal Funds (C14/19/079) is acknowledged. This work was in part supported by FWO and F. R. S.-FNRS under the Excellence of Science EOS program (project 30489208 and 40007495). C.M. acknowledges the financial support: Grants PID2021-128761OA-C22 and CNS2022-136052 funded by MCIN/AEI/10.13039/501100011033 by the “European Union” and SBPLY/21/180501/000127 funded by JCCM and by the EU through “Fondo Europeo de Desarollo Regional” (FEDER). Research in Mons is also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif – CÉCI, under Grant 2.5020.11, and by the Walloon Region (ZENOBE Tier-1 supercomputer, under grant 1117545). Approved Most recent IF: 3.7; 2023 IF: 4.536  
  Call Number EMAT @ emat @c:irua:201671 Serial 8974  
Permanent link to this record
 

 
Author Watson, G.; Kummamuru, N.B.; Verbruggen, S.W.; Perreault, P.; Houlleberghs, M.; Martens, J.; Breynaert, E.; Van Der Voort, P. url  doi
openurl 
  Title Engineering of hollow periodic mesoporous organosilica nanorods for augmented hydrogen clathrate formation Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal  
  Volume 11 Issue (up) 47 Pages 26265-26276  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract Hydrogen (H2) storage, in the form of clathrate hydrates, has emerged as an attractive alternative to classical storage methods like compression or liquefaction. Nevertheless, the sluggish enclathration kinetics along with low gas storage capacities in bulk systems is currently impeding the progress of this technology. To this end, unstirred systems coupled with porous materials have been shown to tackle the aforementioned drawbacks. In line with this approach, the present study explores the use of hydrophobic periodic organosilica nanoparticles, later denoted as hollow ring-PMO (HRPMO), for H2 storage as clathrate hydrates under mild operating conditions (5.56 mol% THF, 7 MPa, and 265–273 K). The surface of the HRPMO nanoparticles was carefully decorated/functionalized with THF-like moieties, which are well-known promoter agents in clathrate formation when applied in classical, homogeneous systems. The study showed that, while the non-functionalized HRPMO can facilitate the formation of binary H2-THF clathrates, the incorporation of surface-bound promotor structures enhances this process. More intriguingly, tuning the concentration of these surface-bound promotor agents on the HRPMO led to a notable effect on solid-state H2 storage capacities. An increase of 3% in H2 storage capacity, equivalent to 0.26 wt%, along with a substantial increase of up to 28% in clathrate growth kinetics, was observed when an optimal loading of 0.14 mmol g−1 of promoter agent was integrated into the HRPMO framework. Overall, the findings from this study highlight that such tuning effects in the solid-state have the potential to significantly boost hydrate formation/growth kinetics and H2 storage capacities, thereby opening new avenues for the ongoing development of H2 clathrates in industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001108752600001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited Open Access  
  Notes Approved Most recent IF: 11.9; 2023 IF: 8.867  
  Call Number UA @ admin @ c:irua:201007 Serial 9031  
Permanent link to this record
 

 
Author Ulu Okudur, F.; Batuk, M.; Hadermann, J.; Safari, M.; De Sloovere, D.; Kumar Mylavarapu, S.; Joos, B.; D'Haen, J.; Van Bael, M.K.; Hardy, A. url  doi
openurl 
  Title Solution-gel-based surface modification of LiNi0.5Mn1.5O4-δ with amorphous Li-Ti-O coating Type A1 Journal article
  Year 2023 Publication RSC advances Abbreviated Journal  
  Volume 13 Issue (up) 47 Pages 33146-33158  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract LNMO (LiNi0.5Mn1.5O4-delta) is a high-energy density positive electrode material for lithium ion batteries. Unfortunately, it suffers from capacity loss and impedance rise during cycling due to electrolyte oxidation and electrode/electrolyte interface instabilities at high operating voltages. Here, a solution-gel synthesis route was used to coat 0.5-2.5 mu m LNMO particles with amorphous Li-Ti-O (LTO) for improved Li conduction, surface structural stability and cyclability. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analysis coupled with energy dispersive X-ray (EDX) showed Ti-rich amorphous coatings/islands or Ti-rich spinel layers on many of the LTO-modified LNMO facets, with a thickness varying from about 1 to 10 nm. The surface modification in the form of amorphous islands was mostly possible on high-energy crystal facets. Physicochemical observations were used to propose a molecular mechanism for the surface modification, combining insights from metalorganic chemistry with the crystallographic properties of LNMO. The improvements in functional properties were investigated in half cells. The cell impedance increased faster for the bare LNMO compared to amorphous LTO modified LNMO, resulting in R-ct values as high as 1247 Omega (after 1000 cycles) for bare LNMO, against 216 Omega for the modified material. At 10C, the modified material boosted a 15% increase in average discharge capacity. The improvements in electrochemical performance were attributed to the increase in electrochemically active surface area, as well as to improved HF-scavenging, resulting in the formation of protective byproducts, generating a more stable interface during prolonged cycling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001102666700001 Publication Date 2023-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access  
  Notes Approved Most recent IF: 3.9; 2023 IF: 3.108  
  Call Number UA @ admin @ c:irua:202091 Serial 9096  
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Magnus, W.; Sorée, B. doi  openurl
  Title An envelope function formalism for lattice-matched heterostructures Type A1 Journal article
  Year 2015 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume 470-471 Issue (up) 470-471 Pages 69-75  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The envelope function method traditionally employs a single basis set which, in practice, relates to a single material because the k.p matrix elements are generally only known in a particular basis. In this work, we defined a basis function transformation to alleviate this restriction. The transformation is completely described by the known inter-band momentum matrix elements. The resulting envelope function equation can solve the electronic structure in lattice matched heterostructures without resorting to boundary conditions at the interface between materials, while all unit-cell averaged observables can be calculated as with the standard envelope function formalism. In the case of two coupled bands, this heterostructure formalism is equivalent to the standard formalism while taking position dependent matrix elements. (C) 2015 Elsevier B.V. All rights reserved  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000355149600011 Publication Date 2015-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.386 Times cited 5 Open Access  
  Notes ; ; Approved Most recent IF: 1.386; 2015 IF: 1.319  
  Call Number c:irua:126397 Serial 95  
Permanent link to this record
 

 
Author Andreae, M.O.; Charlson, R.J.; Bruynseels, F.; Storms, H.; Van Grieken, R.; Maenhaut, W. doi  openurl
  Title Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols Type A1 Journal article
  Year 1986 Publication Science Abbreviated Journal  
  Volume 232 Issue (up) 4758 Pages 1620-1623  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Individual aerosol particles from the remote marine atmosphere were investigated by scanning electron microscopy and electron microprobe analysis. A large fraction of the silicate mineral component of the aerosol was found to be internally mixed with sea-salt aerosol particles. This observation explains the unexpected similarity in the size distributions of silicates and sea salt that has been observed in remote marine aerosols. Reentrainment of dust particles previously deposited onto the sea surface and collision between aerosol particles can be excluded as possible source mechanisms for these internally mixed aerosols. The internal mixing could be produced by processes within clouds, including droplet coalescence. Cloud processes may also be responsible for the observed enrichment of excess (nonsea-salt) sulfate on sea-salt particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1986C826900027 Publication Date 2006-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:113613 Serial 8116  
Permanent link to this record
 

 
Author Graham, B.; Guyon, P.; Maenhaut, W.; Taylor, P.E.; Ebert, M.; Matthias-Maser, S.; Mayol-Bracero, O.L.; Godoi, R.H.M.; Artaxo, P.; Meixner, F.X.; Lima Moura, M.A.; d'Almeida Rocha, C.H.E.; Van Grieken, R.; Glovsky, M.M.; Flagan, R.C.; Andreae, M.O. doi  openurl
  Title Composition and diurnal variability of the natural Amazonian aerosol Type A1 Journal article
  Year 2003 Publication Journal of geophysical research Abbreviated Journal  
  Volume 24 Issue (up) 4765 Pages 5,1-16  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000187858400009 Publication Date 2003-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227; 2156-2202; 0022-1406; 0196-6928; 0196-6936; 0885-3401; 8755-8556; 0196-2256; 0747-7309; 1 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:43523 Serial 7700  
Permanent link to this record
 

 
Author Zaikina, J.V.; Batuk, M.; Abakumov, A.M.; Navrotsky, A.; Kauziarich, S.M. pdf  url
doi  openurl
  Title Facile synthesis of Ba1-xKxFe2As2 superconductors via hydride route Type A1 Journal article
  Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 136 Issue (up) 48 Pages 16932-16939  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have developed a fast, easy, and scalable synthesis method for Ba1xKxFe2As2 (0 ≤ x ≤ 1) superconductors using hydrides BaH2 and KH as a source of barium and potassium metals. Synthesis from hydrides provides better mixing and easier handling of the starting materials, consequently leading to faster reactions and/or lower synthesis temperatures. The reducing atmosphere provided by the evolved hydrogen facilitates preparation of oxygen-free powders. By a combination of methods we have shown that Ba1xKxFe2As2 obtained via hydride route has the same characteristics as when it is prepared by traditional solid-state synthesis. Refinement from synchrotron powder X-ray diffraction data confirms a linear dependence of unit cell parameters upon K content as well as the tetragonal to orthorhombic transition at low temperatures for compositions with x < 0.2. Magnetic measurements revealed dome-like dependence of superconducting transition temperature Tc upon K content with a maximum of 38 K for x close to 0.4. Electron diffraction and high-resolution high-angle annular dark-field scanning transmission electron microscopy indicates an absence of Ba/K ordering, while local inhomogeneity in the Ba/K distribution takes place at a scale of several angstroms along [110] crystallographic direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000345883900040 Publication Date 2014-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 13 Open Access  
  Notes Approved Most recent IF: 13.858; 2014 IF: 12.113  
  Call Number UA @ lucian @ c:irua:121331 Serial 1169  
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Karkin, A.E.; Morozova, N.V.; Shchennikov, V.V.; Bykova, E.; Abakumov, A.M.; Tsirlin, A.A.; Glazyrin, K.V.; Dubrovinsky, L. pdf  url
doi  openurl
  Title A hard oxide semiconductor with a direct and narrow bandgap and switchable pn electrical conduction Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue (up) 48 Pages 8185-8191  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract An oxide semiconductor (perovskite-type Mn2O3) is reported which has a narrow and direct bandgap of 0.45 eV and a high Vickers hardness of 15 GPa. All the known materials with similar electronic band structures (e.g., InSb, PbTe, PbSe, PbS, and InAs) play crucial roles in the semiconductor industry. The perovskite-type Mn2O3 described is much stronger than the above semiconductors and may find useful applications in different semiconductor devices, e.g., in IR detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000346480800016 Publication Date 2014-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 27 Open Access  
  Notes Approved Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:122230 Serial 1408  
Permanent link to this record
 

 
Author Van der Paal, J.; Verlackt, C.C.; Yusupov, M.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Structural modification of the skin barrier by OH radicals : a reactive molecular dynamics study for plasma medicine Type A1 Journal article
  Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 48 Issue (up) 48 Pages 155202  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000351856600007 Publication Date 2015-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 20 Open Access  
  Notes Approved Most recent IF: 2.588; 2015 IF: 2.721  
  Call Number c:irua:124230 Serial 3242  
Permanent link to this record
 

 
Author Wang, Y.-L.; Glatz, A.; Kimmel, G.J.; Aranson, I.S.; Thoutam, L.R.; Xiao, Z.-L.; Berdiyorov, G.R.; Peeters, F.M.; Crabtree, G.W.; Kwok, W.-K. pdf  doi
openurl 
  Title Parallel magnetic field suppresses dissipation in superconducting nanostrips Type A1 Journal article
  Year 2017 Publication America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 114 Issue (up) 48 Pages E10274-E10280  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the \u0022holy grail\u0022 of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000416891600007 Publication Date 2017-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 18 Open Access  
  Notes ; This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The simulation was supported by the Scientific Discovery through Advanced Computing program funded by US DOE, Office of Science, Advanced Scientific Computing Research and Basic Energy Science, Division of Materials Science and Engineering. L.R.T. and Z.-L.X. acknowledge support through National Science Foundation Grant DMR-1407175. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. ; Approved Most recent IF: 9.661  
  Call Number UA @ lucian @ c:irua:147697 Serial 4889  
Permanent link to this record
 

 
Author Yorulmaz, U.; Šabani, D.; Yagmurcukardes, M.; Sevik, C.; Milošević, M.V. pdf  doi
openurl 
  Title High-throughput analysis of tetragonal transition metal Xenes Type A1 Journal article
  Year 2022 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 24 Issue (up) 48 Pages 29406-29412  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report a high-throughput first-principles characterization of the structural, mechanical, electronic, and vibrational properties of tetragonal single-layer transition metal Xenes (t-TMXs). Our calculations revealed 22 dynamically, mechanically and chemically stable structures among the 96 possible free-standing layers present in the t-TMX family. As a fingerprint for their structural identification, we identified four characteristic Raman active phonon modes, namely three in-plane and one out-of-plane optical branches, with various intensities and frequencies depending on the material in question. Spin-polarized electronic calculations demonstrated that anti-ferromagnetic (AFM) metals, ferromagnetic (FM) metals, AFM semiconductors, and non-magnetic semiconductor materials exist within this family, evidencing the potential of t-TMXs for further use in multifunctional heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000892446100001 Publication Date 2022-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.3  
  Call Number UA @ admin @ c:irua:192762 Serial 7310  
Permanent link to this record
 

 
Author Teunissen, J.L.; Braeckevelt, T.; Skvortsova, I.; Guo, J.; Pradhan, B.; Debroye, E.; Roeffaers, M.B.J.; Hofkens, J.; Van Aert, S.; Bals, S.; Rogge, S.M.J.; Van Speybroeck, V. pdf  url
doi  openurl
  Title Additivity of Atomic Strain Fields as a Tool to Strain-Engineering Phase-Stabilized CsPbI3Perovskites Type A1 Journal Article
  Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume 127 Issue (up) 48 Pages 23400-23411  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract CsPbI3 is a promising perovskite material for photovoltaic applications in its photoactive perovskite or black phase. However, the material degrades to a photovoltaically inactive or yellow phase at room temperature. Various mitigation strategies are currently being developed to increase the lifetime of the black phase, many of which rely on inducing strains in the material that hinder the black-to-yellow phase transition. Physical insight into how these strategies exactly induce strain as well as knowledge of the spatial extent over which these strains impact the material is crucial to optimize these approaches but is still lacking. Herein, we combine machine learning potential-based molecular dynamics simulations with our in silico strain engineering approach to accurately quantify strained large-scale atomic structures on a nanosecond time scale. To this end, we first model the strain fields introduced by atomic substitutions as they form the most elementary strain sources. We demonstrate that the magnitude of the induced strain fields decays exponentially with the distance from the strain source, following a decay rate that is largely independent of the specific substitution. Second, we show that the total strain field induced by multiple strain sources can be predicted to an excellent approximation by summing the strain fields of each individual source. Finally, through a case study, we illustrate how this additive character allows us to explain how complex strain fields, induced by spatially extended strain sources, can be predicted by adequately combining the strain fields caused by local strain sources. Hence, the strain additivity proposed here can be adopted to further our insight into the complex strain behavior in perovskites and to design strain from the atomic level onward to enhance their sought-after phase stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001116862000001 Publication Date 2023-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes This work was supported by iBOF-21-085 PERsist (Special Research Fund of Ghent University, KU Leuven Research Fund, and the Research Fund of the University of Antwerp). S.M.J.R., T.B., and B.P. acknowledge financial support from the Research Foundation-Flanders (FWO) through two postdoctoral fellow- ships [grant nos. 12T3522N (S.M.J.R.) and 1275521N (B.P.)] and an SB-FWO fellowship [grant no. 1SC1319 (T.B.)]. E.D., M.B.J.R., and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grant nos. G.0B39.15, G.0B49.15, G098319N, S002019N, S004322N, and ZW15_09- GOH6316). J.H. acknowledges support from the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) and the MPI as an MPI fellow. S.V.A. and S.B. acknowledge financial support from the Research Foundation-Flanders (FWO, grant no. G0A7723N). S.M.J.R. and V.V.S. acknowledge funding from the Research Board of Ghent University (BOF). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation- Flanders (FWO) and the Flemish Government�department EWI.; KU Leuven, iBOF-21-085 PERsist ; Universiteit Antwerpen, iBOF-21-085 PERsist ; Universiteit Gent, iBOF-21-085 PERsist ; Vlaamse regering, CASAS2, Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, G.0B39.15 G098319N G.0B49.15 1SC1319 12T3522N ZW15 09-GOH6316 G0A7723N 1275521N S004322N S002019N ; Approved Most recent IF: 3.7; 2023 IF: 4.536  
  Call Number EMAT @ emat @c:irua:202124 Serial 8985  
Permanent link to this record
 

 
Author Zhang, C.; Ren, K.; Wang, S.; Luo, Y.; Tang, W.; Sun, M. pdf  doi
openurl 
  Title Recent progress on two-dimensional van der Waals heterostructures for photocatalytic water splitting : a selective review Type A1 Journal article
  Year 2023 Publication Journal of physics: D: applied physics Abbreviated Journal  
  Volume 56 Issue (up) 48 Pages 483001-483024  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hydrogen production through photocatalytic water splitting is being developed swiftly to address the ongoing energy crisis. Over the past decade, with the rise of graphene and other two-dimensional (2D) materials, an increasing number of computational and experimental studies have focused on relevant van der Waals (vdW) semiconductor heterostructures for photocatalytic water splitting. In this review, the fundamental mechanism and distinctive performance of type-II and Z-scheme vdW heterostructure photocatalysts are presented. Accordingly, we have conducted a systematic review of recent studies focusing on candidates for photocatalysts, specifically vdW heterostructures involving 2D transition metal disulfides (TMDs), 2D Janus TMDs, and phosphorenes. The photocatalytic performance of these heterostructures and their suitability in theoretical scenarios are discussed based on their electronic and optoelectronic properties, particularly in terms of band structures, photoexcited carrier dynamics, and light absorption. In addition, various approaches for tuning the performance of these potential photocatalysts are illustrated. This strategic framework for constructing and modulating 2D heterostructure photocatalysts is expected to provide inspiration for addressing possible challenges in future studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001076327300001 Publication Date 2023-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2023 IF: 2.588  
  Call Number UA @ admin @ c:irua:200353 Serial 9081  
Permanent link to this record
 

 
Author Van Tendeloo, L.; Wangermez, W.; Kurttepeli, M.; de Blochouse, B.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Maes, A.; Kirschhock, C.E.A.; Breynaert, E. pdf  url
doi  openurl
  Title Chabazite : stable cation-exchanger in hyper alkaline concrete pore water Type A1 Journal article
  Year 2015 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol  
  Volume 49 Issue (up) 49 Pages 2358-2365  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract To avoid impact on the environment, facilities for permanent disposal of hazardous waste adopt multibarrier design schemes. As the primary barrier very often consists of cement-based materials, two distinct aspects are essential for the selection of suitable complementary barriers: (1) selective sorption of the contaminants in the repository and (2) long-term chemical stability in hyperalkaline concrete-derived media. A multidisciplinary approach combining experimental strategies from environmental chemistry and materials science is therefore essential to provide a reliable assessment of potential candidate materials. Chabazite is typically synthesized in 1 M KOH solutions but also crystallizes in simulated young cement pore water, a pH 13 aqueous solution mainly containing K+ and Na+ cations. Its formation and stability in this medium was evaluated as a function of temperature (60 and 85 °C) over a timeframe of more than 2 years and was also asessed from a mechanistic point of view. Chabazite demonstrates excellent cation-exchange properties in simulated young cement pore water. Comparison of its Cs+ cation exchange properties at pH 8 and pH 13 unexpectedly demonstrated an increase of the KD with increasing pH. The combined results identify chabazite as a valid candidate for inclusion in engineered barriers for concrete-based waste disposal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000349806400047 Publication Date 2015-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited 13 Open Access OpenAccess  
  Notes This work was supported by long-term structural funding by the Flemish Government (Methusalem) and by ONDRAF/ NIRAS, the Belgian Agency for Radioactive Waste and Fissile Materials, as part of the program on surface disposal of Belgian Category A waste. The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI). G.V.T. and S.B. acknowledge financial support from European Research Council (ERC Advanced Grant no. 24691-COUNTATOMS, ERC Starting Grant no. 335078-COLOURATOMS).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 6.198; 2015 IF: 5.330  
  Call Number c:irua:127695 Serial 307  
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M.; Chaves, A.; Farias, G.A. pdf  doi
openurl 
  Title Conductance maps of quantum rings due to a local potential perturbation Type A1 Journal article
  Year 2013 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 25 Issue (up) 49 Pages 495301-495309  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We performed a numerical simulation of the dynamics of a Gaussian shaped wavepacket inside a small sized quantum ring, smoothly connected to two leads and exposed to a perturbing potential of a biased atomic force microscope tip. Using the Landauer formalism, we calculated conductance maps of this system in the case of single and two subband transport. We explain the main features in the conductance maps as due to the AFM tip influence on the wavepacket phase and amplitude. In the presence of an external magnetic field, the tip modifies the phi(0) periodic Aharonov-Bohm oscillation pattern into a phi(0)/2 periodic Al'tshuler-Aronov-Spivak oscillation pattern. Our results in the case of multiband transport suggest tip selectivity to higher subbands, making them more observable in the total  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000327181400002 Publication Date 2013-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 12 Open Access  
  Notes ; This work was supported by the Methusalem programme of the Flemish government, the CNPq-FWO bilateral programme and PNPD and FUNCAP/PRONEX grants. ; Approved Most recent IF: 2.649; 2013 IF: 2.223  
  Call Number UA @ lucian @ c:irua:112694 Serial 478  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: