toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vanderkerckhove, T.G.L.; Kerckhof, F.-M.; De Mulder, C.; Vlaeminck, S.E.; Boon, N. pdf  url
doi  openurl
  Title Determining stoichiometry and kinetics of two thermophilic nitrifying communities as a crucial step in the development of thermophilic nitrogen removal Type A1 Journal article
  Year 2019 Publication Water research Abbreviated Journal  
  Volume 156 Issue (up) Pages 34-45  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrification and denitrification, the key biological processes for thermophilic nitrogen removal, have separately been established in bioreactors at 50 °C. A well-characterized set of kinetic parameters is essential to integrate these processes while safeguarding the autotrophs performing nitrification. Knowledge on thermophilic nitrifying kinetics is restricted to isolated or highly enriched batch cultures, which do not represent bioreactor conditions. This study characterized the stoichiometry and kinetics of two thermophilic (50 °C) nitrifying communities. The most abundant ammonia oxidizing archaea (AOA) were related to the Nitrososphaera genus, clustering relatively far from known species Nitrososphaera gargensis (95.5% 16S rRNA gene sequence identity). The most abundant nitrite oxidizing bacteria (NOB) were related to Nitrospira calida (97% 16S rRNA gene sequence identity). The nitrification biomass yield was 0.200.24 g VSS g−1 N, resulting mainly from a high AOA yield (0.160.20 g VSS g−1 N), which was reflected in a high AOA abundance in the community (5776%) compared to NOB (511%). Batch-wise determination of decay rates (AOA: 0.230.29 d−1; NOB: 0.320.43 d−1) rendered an overestimation compared to in situ estimations of overall decay rate (0.0260.078 d−1). Possibly, the inactivation rate rather than the actual decay rate was determined in batch experiments. Maximum growth rates of AOA and NOB were 0.120.15 d−1 and 0.130.33 d−1 respectively. NOB were susceptible to nitrite, opening up opportunities for shortcut nitrogen removal. However, NOB had a similar growth rate and oxygen affinity (0.150.55 mg O2 L−1) as AOA and were resilient towards free ammonia (IC50 > 16 mg NH3-N L−1). This might complicate NOB outselection using common practices to establish shortcut nitrogen removal (SRT control; aeration control; free ammonia shocks). Overall, the obtained insights can assist in integrating thermophilic conversions and facilitate single-sludge nitrification/denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466618400004 Publication Date 2019-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:158226 Serial 7798  
Permanent link to this record
 

 
Author Courtens, E.N.P.; Vandekerckhove, T.; Prat, D.; Vilchez-Vargas, R.; Vital, M.; Pieper, D.H.; Meerbergen, K.; Lievens, B.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Empowering a mesophilic inoculum for thermophilic nitrification : growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers Type A1 Journal article
  Year 2016 Publication Water research Abbreviated Journal  
  Volume 92 Issue (up) Pages 94-103  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Cost-efficient biological treatment of warm nitrogenous wastewaters requires the development of thermophilic nitrogen removal processes. Only one thermophilic nitrifying bioreactor was described so far, achieving 200 mg N L-1 d-1 after more than 300 days of enrichment from compost samples. From the practical point of view in which existing plants would be upgraded, however, a more time-efficient development strategy based on mesophilic nitrifying sludge is preferred. This study evaluated the adaptive capacities of mesophilic nitrifying sludge for two linear temperature increase patterns (non-oscillating vs. oscillating), two different slopes (0.25 vs. 0.08 °C d-1) and two different reactor types (floc vs. biofilm growth). The oscillating temperature pattern (0.25 °C d-1) and the moving bed biofilm reactor (0.08 °C d-1) could not reach nitrification at temperatures higher than 46°C. However, nitrification rates up to 800 mg N L-1 d-1 and 150 mg N g-1 volatile suspended solids d-1 were achieved at a temperature as high as 49°C by imposing the slowest linear temperature increase to floccular sludge. Microbial community analysis revealed that this successful transition was related with a shift in ammonium oxidizing archaea dominating ammonia oxidizing bacteria, while for nitrite oxidation Nitrospira spp. was constantly more abundant than Nitrobacter spp.. This observation was accompanied with an increase in observed sludge yield and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity measurements, predicting an upcoming reactor failure at higher temperature. Overall, this study achieved nitrification at 49°C within 150 days by gradual adaptation of mesophilic sludge, and showed that ex-situ temperature sensitivity screening can be used to monitor and steer the transition process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371555200011 Publication Date 2016-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:130444 Serial 7900  
Permanent link to this record
 

 
Author Seuntjens, D.; Carvajal Arroyo, J.M.; Molina, J.; Boon, N.; Vlaeminck, S.E. pdf  openurl
  Title Enabling partial nitritation/anammox on pre-treated sewage with IFAS : aeration and floc SRT control strategies limit nitrate production Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue (up) Pages 3 p. T2 - 5th IWA Benelux Young Water Professional  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151116 Serial 7901  
Permanent link to this record
 

 
Author Seuntjens, D.; Bundervoet, B.L.M.; Mollen, H.; De Mulder, C.; Wypkema, E.; Verliefde, A.; Nopens, I.; Colsen, J.G.M.; Vlaeminck, S.E. openurl 
  Title Energy efficient treatment of A-stage effluent : pilot-scale experiences with short-cut nitrogen removal Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue (up) Pages 10 p. T2 - IWA Nutrient Removal and Recovery 2015:  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151146 Serial 7909  
Permanent link to this record
 

 
Author Sui, Y.; Muys, M.; Van de Waal, D.; D'Adamo, S.; Vermeir, P.; Fernandes, T.V.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 287 Issue (up) Pages 121398  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Microalga Dunaliella salina is known for its carotenogenesis. At the same time, it can also produce high-quality protein. The optimal conditions for D. salina to co-produce intracellular pools of both compounds, however, are yet unknown. This study investigated a two-phase cultivation strategy to optimize combined high-quality protein and carotenoid production of D. salina. In phase-one, a gradient of nitrogen concentrations was tested. In phase-two, effects of nitrogen pulse and high illumination were tested. Results reveal optimized protein quantity, quality (expressed as essential amino acid index EAAI) and carotenoids content in a two-phase cultivation, where short nitrogen starvation in phase-one was followed by high illumination during phase-two. Adopting this strategy, productivities of protein, EAA and carotenoids reached 22, 7 and 3 mg/L/d, respectively, with an EAAI of 1.1. The quality of this biomass surpasses FAO/WHO standard for human nutrition, and the observed level of β-carotene presents high antioxidant pro-vitamin A activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469414500008 Publication Date 2019-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:159661 Serial 7916  
Permanent link to this record
 

 
Author De Cocker, P.; Bessiere, Y.; Hernandez-Raquet, G.; Dubos, S.; Mozo, I.; Gaval, G.; Caligaris, M.; Barillon, B.; Vlaeminck, S.E.; Sperandio, M. pdf  url
doi  openurl
  Title Enrichment and adaptation yield high anammox conversion rates under low temperatures Type A1 Journal article
  Year 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 250 Issue (up) Pages 505-512  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study compared two anammox sequencing batch reactors (SBR) for one year. SBRconstantT was kept at 30 °C while temperature in SBRloweringT was decreased step-wise from 30 °C to 20 °C and 15 °C followed by over 140 days at 12.5 °C and 10 °C. High retention of anammox bacteria (AnAOB) and minimization of competition with AnAOB were key. 5-L anoxic reactors with the same inoculum were fed synthetic influent containing 25.9 mg NH4+-N/L and 34.1 mg NO2−-N/L (no COD). Specific ammonium removal rates continuously increased in SBRconstantT, reaching 785 mg NH4+-N/gVSS/d, and were maintained in SBRloweringT, reaching 82.2 and 91.8 mg NH4+-N/gVSS/d at 12.5 and 10 °C respectively. AnAOB enrichment (increasing hzsA and 16S rDNA gene concentrations) and adaptation (shift from Ca. Brocadia to Ca. Kuenenia in SBRloweringT) contributed to these high rates. Rapidly settling granules developed, with average diameters of 1.2 (SBRconstantT) and 1.6 mm (SBRloweringT). Results reinforce the potential of anammox for mainstream applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430740000062 Publication Date 2017-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:148998 Serial 7920  
Permanent link to this record
 

 
Author Cerruti, M.; Stevens, B.; Ebrahimi, S.; Alloul, A.; Vlaeminck, S.E.; Weissbrodt, D.G. url  doi
openurl 
  Title Enrichment and aggregation of purple non-sulfur bacteria in a mixed-culture sequencing-batch photobioreactor for biological nutrient removal from wastewater Type A1 Journal article
  Year 2020 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal  
  Volume 8 Issue (up) Pages 557234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mixed-culture biotechnologies are widely used to capture nutrients from wastewater. Purple non-sulfur bacteria (PNSB), a guild of anoxygenic photomixotrophic organisms, rise interest for their ability to directly assimilate nutrients in the biomass. One challenge targets the aggregation and accumulation of PNSB biomass to separate it from the treated water. Our aim was to enrich and produce a concentrated, fast-settling PNSB biomass with high nutrient removal capacity in a 1.5-L, stirred-tank, anaerobic sequencing-batch photobioreactor (SBR). PNSB were rapidly enriched after inoculation with activated sludge at 0.1 gVSS L–1 in a first batch of 24 h under continuous irradiance of infrared (IR) light (>700 nm) at 375 W m–2, with Rhodobacter reaching 54% of amplicon sequencing read counts. SBR operations with decreasing hydraulic retention times (48 to 16 h, i.e., 1–3 cycles d–1) and increasing volumetric organic loading rates (0.2–1.3 kg COD d–1 m–3) stimulated biomass aggregation, settling, and accumulation in the system, reaching as high as 3.8 g VSS L–1. The sludge retention time (SRT) increased freely from 2.5 to 11 days. Acetate, ammonium, and orthophosphate were removed up to 96% at a rate of 1.1 kg COD d–1 m–3, 77% at 113 g N d–1 m–3, and 73% at 15 g P d–1 m–3, respectively, with COD:N:P assimilation ratio of 100:6.7:0.9 m/m/m. SBR regime shifts sequentially selected for Rhodobacter (90%) under shorter SRT and non-limiting concentration of acetate during reaction phases, for Rhodopseudomonas (70%) under longer SRT and acetate limitation during reaction, and Blastochloris (10%) under higher biomass concentrations, underlying competition for substrate and photons in the PNSB guild. With SBR operations we produced a fast-settling biomass, highly (>90%) enriched in PNSB. A high nutrient removal was achieved by biomass assimilation, reaching the European nutrient discharge limits. We opened further insights on the microbial ecology of PNSB-based processes for water resource recovery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603626100001 Publication Date 2021-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited Open Access  
  Notes Approved Most recent IF: 5.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:174085 Serial 7921  
Permanent link to this record
 

 
Author Ngo, N.; Liu, X.; Van Winckel, T.; Massoudieh, A.; Kjellerup, B.V.; Takács, I.; Wett, B.; Mancell-Egala, M.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S.; De Clippeleir, H. openurl 
  Title Experimental metrics to predict the flocculent settling coefficient in a 1D settler model Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue (up) Pages 5 p. T2 - WEFTEC.17, 30 September 4 October 2017,  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151111 Serial 7948  
Permanent link to this record
 

 
Author Meerburg, F.A.; Rahman, A.; Van Winckel, T.; Pauwels, K.; De Clippeleir, H.; Al-Omari, A.; Murthy, S.; Boon, N.; Vlaeminck, S.E. openurl 
  Title Fast and furious : optimization and validation of high-rate contact stabilization (HiCS) for recovery of organics from sewage Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue (up) Pages 3 p. T2 - WEF/IWA Nutrient Removal and Recovery Co  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151132 Serial 7958  
Permanent link to this record
 

 
Author Coppens, J.; Meers, E.; Boon, N.; Buysse, J.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Follow the N and P road : high-resolution nutrient flow analysis of the Flanders region as precursor for sustainable resource management Type A1 Journal article
  Year 2016 Publication Resources, conservation and recycling Abbreviated Journal  
  Volume 115 Issue (up) Pages 9-21  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource-efficient nutrient management is key to secure food production in the context of a growing global population, rising resource scarcity and increasing pressure on the environment. To map the potential towards increasing nutrient use efficiencies and reduce environmental losses, a high-resolution insight of the nitrogen (N) and phosphorus (P) nutrient streams is pivotal. In this study, a substance flow analysis for N and P is presented for the nutrient intensive region of Flanders (6,211,065 inhabitants) in Belgium for the year 2009. A set of 160 nutrient fluxes was quantified throughout 21 economic and environmental compartments, with a particular focus on 10 waste management processes. A total nutrient load of 20 kg N cap(-1) yr(-1) (ca. 73% to the air and 28% to surface waters) and 0.53 kg P cap(-1) yr(-1) (to surface waters) is emitted to the environment; with crop and livestock production as the main contributors (49% of N and 36% of P). The food supply chain revealed a fertilizer-to-consumer efficiency of 14% for N as well as for P, with important losses embedded in waste streams such as excess manure. Advanced manure and waste processing facilities nevertheless offer the opportunity for enhanced nutrient recycling to increase the nutrient use efficiencies and reduce the dependency of inorganic fertilizers. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384852500002 Publication Date 2016-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:137229 Serial 7977  
Permanent link to this record
 

 
Author Han, M.; De Clippeleir, H.; Al-Omari, A.; Vlaeminck, S.E.; Wett, B.; Murthy, S. openurl 
  Title Free ammonia and/or temperature impact study on temperature-acclimated mainstream nitrification sludge Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue (up) Pages 3 p. T2 - WEF/IWA Nutrient Removal and Recovery Co  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151134 Serial 7984  
Permanent link to this record
 

 
Author Kerckhof, F.-M.; Sakarika, M.; Van Giel, M.; Muys, M.; Vermeir, P.; De Vrieze, J.; Vlaeminck, S.E.; Rabaey, K.; Boon, N. url  doi
openurl 
  Title From biogas and hydrogen to microbial protein through co-cultivation of methane and hydrogen oxidizing bacteria Type A1 Journal article
  Year 2021 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal  
  Volume 9 Issue (up) Pages 733753  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Increasing efforts are directed towards the development of sustainable alternative protein sources among which microbial protein (MP) is one of the most promising. Especially when waste streams are used as substrates, the case for MP could become environmentally favorable. The risks of using organic waste streams for MP production–the presence of pathogens or toxicants–can be mitigated by their anaerobic digestion and subsequent aerobic assimilation of the (filter-sterilized) biogas. Even though methane and hydrogen oxidizing bacteria (MOB and HOB) have been intensively studied for MP production, the potential benefits of their co-cultivation remain elusive. Here, we isolated a diverse group of novel HOB (that were capable of autotrophic metabolism), and co-cultured them with a defined set of MOB, which could be grown on a mixture of biogas and H2/O2. The combination of MOB and HOB, apart from the CH4 and CO2 contained in biogas, can also enable the valorization of the CO2 that results from the oxidation of methane by the MOB. Different MOB and HOB combinations were grown in serum vials to identify the best-performing ones. We observed synergistic effects on growth for several combinations, and in all combinations a co-culture consisting out of both HOB and MOB could be maintained during five days of cultivation. Relative to the axenic growth, five out of the ten co-cultures exhibited 1.1–3.8 times higher protein concentration and two combinations presented 2.4–6.1 times higher essential amino acid content. The MP produced in this study generally contained lower amounts of the essential amino acids histidine, lysine and threonine, compared to tofu and fishmeal. The most promising combination in terms of protein concentration and essential amino acid profile was Methyloparacoccus murrelli LMG 27482 with Cupriavidus necator LMG 1201. Microbial protein from M. murrelli and C. necator requires 27–67% less quantity than chicken, whole egg and tofu, while it only requires 15% more quantity than the amino acid-dense soybean to cover the needs of an average adult. In conclusion, while limitations still exist, the co-cultivation of MOB and HOB creates an alternative route for MP production leveraging safe and sustainably-produced gaseous substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000697897900001 Publication Date 2021-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180591 Serial 7985  
Permanent link to this record
 

 
Author Meerburg, F.A.; Vlaeminck, S.E.; Roume, H.; Seuntjens, D.; Pieper, D.H.; Jauregui, R.; Vilchez-Vargas, R.; Boon, N. pdf  url
doi  openurl
  Title High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables Type A1 Journal article
  Year 2016 Publication Water research Abbreviated Journal  
  Volume 100 Issue (up) Pages 137-145  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge processes allow for the recovery of organics and energy from wastewaters. These systems are operated at a short sludge retention time and high sludge-specific loading rates, which results in a higher sludge yield and better digestibility than conventional, low-rate activated sludge. Little is known about the microbial ecology of high-rate systems. In this work, we address the need for a fundamental understanding of how high-rate microbial communities differ from low-rate communities. We investigated the high-rate and low-rate communities in a sewage treatment plant in relation to environmental and operational variables over a period of ten months. We demonstrated that (1) high-rate and low-rate communities are distinctly different in terms of richness, evenness and composition, (2) high-rate community dynamics are more variable and less shaped by deterministic factors compared to low-rate communities, (3) sub-communities of continuously core and transitional members are more shaped by deterministic factors than the continuously rare members, both in high-rate and low-rate communities, and (4) high-rate community members showed a co-occurrence pattern similar to that of low-rate community members, but were less likely to be correlated to environmental and operational variables. These findings provide a basis for further optimization of high-rate systems, in order to facilitate resource recovery from wastewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378448800014 Publication Date 2016-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139914 Serial 8035  
Permanent link to this record
 

 
Author Cagnetta, C.; Saerens, B.; Meerburg, F.A.; Decru, S.O.; Broeders, E.; Menkveld, W.; Vandekerckhove, T.G.L.; De Vrieze, J.; Vlaeminck, S.E.; Verliefde, A.R.D.; De Gusseme, B.; Weemaes, M.; Rabaey, K. pdf  url
doi  openurl
  Title High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 291 Issue (up) Pages 121833  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) systems typically generate diluted sludge which requires further thickening prior to anaerobic digestion (AD), besides the need to add considerable coagulant and flocculant for the solids separation. As an alternative to conventional gravitational settling, a dissolved air flotation (DAF) unit was coupled to a HRAS system or a high-rate contact stabilization (HiCS) system. The HRAS-DAF system allowed up to 78% removal of the influent solids, and the HiCS-DAF 67%. Both were within the range of values typically obtained for HRAS-settler systems, albeit at a lower chemical requirement. The separated sludge had a high concentration of up to 47 g COD L−1, suppressing the need of further thickening before AD. Methanation tests showed a biogas yield of up to 68% on a COD basis. The use of a DAF separation system can thus enable direct organics removal at high sludge concentration and with low chemical needs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480326200048 Publication Date 2019-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:161098 Serial 8036  
Permanent link to this record
 

 
Author Seuntjens, D.; Carvajal-Arroyo, J.M.; Ruopp, M.; Bunse, P.; De Mulder, C.P.; Lochmatter, S.; Agrawal, S.; Boon, N.; Lackner, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title High-resolution mapping and modeling of anammox recovery from recurrent oxygen exposure Type A1 Journal article
  Year 2018 Publication Water research Abbreviated Journal  
  Volume 144 Issue (up) Pages 522-531  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Oxygen inhibits anammox, a bioconversion executed by anoxic ammonium oxidizing bacteria (AnAOB). Nonetheless, oxygen is mostly found in the proximity of AnAOB in nitrogen removal applications, being a substrate for nitritation. The experiments performed to date were mostly limited to batch activity tests where AnAOB activity is estimated during oxygen exposure. However, little attention has been paid to the recovery and reversibility of activity following aerobic conditions, of direct relevance for bioreactor operation. In this work, anoxic and autotrophic reactor cultivation at 20 degrees C yielded an enriched microbial community in AnAOB, consisting for 75% of a member of the genus Brocadia. High-resolution kinetic data were obtained with online ammonium measurements and further processed with a newly developed Python data pipeline. The experimentally obtained AnAOB response showed complete inhibition until micro-aerobic conditions were reached again (<0.02 mg O-2 L-1). After oxygen inhibition, AnAOB recovered gradually, with recovery times of 5-37 h to reach a steady-state activity, dependent on the perceived inhibition. The recovery immediately after inhibition was lowest when exposed to higher oxygen concentrations (range: 0.5-8 mg O-2 L-1) with long contact times (range: 9-24 h). The experimental data did not fit well with a conventional 'instant recovery' Monod-type inhibition model. Yet, the fit greatly improved by incorporating a dynamic growth rate formula accurately describing gradual activity recovery. With the upgraded model, long-term kinetic simulations for partial nitritation/anammox (PN/A) with intermittent aeration showed a decrease in growth rate compared to the instant recovery mode. These results indicate that recovery of AnAOB after oxygen exposure was previously overlooked. It is recommended to account for this effect in the intensification of partial nitritation/anammox. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447569300051 Publication Date 2018-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152910 Serial 8037  
Permanent link to this record
 

 
Author Muys, M.; Sui, Y.; Schwaiger, B.; Lesueur, C.; Vandenheuvel, D.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 275 Issue (up) Pages 247-257  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Microalgal biomass production is a resource-efficient answer to the exponentially increasing demand for protein, yet variability in biomass quality is largely unexplored. Nutritional value and safety were determined for Chlorella and Spirulina biomass from different producers, production batches and the same production batch. Chlorella presented a similar protein content (47 ± 8%) compared to Spirulina (48 ± 4%). However, protein quality, expressed as essential amino acid index, and digestibility were lower for Chlorella (1.1 ± 0.1 and 51 ± 9%, respectively) compared to Spirulina (1.3 ± 0.1 and 61 ± 4%, respectively). Generally, variability was lower between batches and within a batch. Heavy metals, pesticides, mycotoxins, antibiotics and nitrate did not violate regulatory limits, while polycyclic aromatic hydrocarbon levels exceeded the norm for some samples, indicating the need for continuous monitoring. This first systematic screening of commercial microalgal biomass revealed a high nutritional variability, necessitating further optimization of cultivation and post-processing conditions. Based on price and quality, Spirulina was preferred above Chlorella.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456405000030 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155979 Serial 8040  
Permanent link to this record
 

 
Author Mozo, I.; Lacoste, L.; De Cocker, P.; Vlaeminck, S.E.; Sperandio, M.; Bessiere, Y.; Hernandez-Raquet, G.; Caligaris, M.; Barillon, B.; Martin Ruel, S. openurl 
  Title Impact of temperature on mainstream deammonification performance and microbial community Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue (up) Pages 3 p. T2 - IWA World Water Congress & Exhibition (W  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151121 Serial 8065  
Permanent link to this record
 

 
Author Schaubroeck, T.; De Clippeleir, H.; Weissenbacher, N.; Dewulf, J.; Boeckx, P.; Vlaeminck, S.E.; Wett, B. pdf  openurl
  Title The importance of resource recovery for the environmental sustainability of an energy self-sufficient sewage treatment plant Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue (up) Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151141 Serial 8068  
Permanent link to this record
 

 
Author Sfez, S.; De Meester, S.; Vlaeminck, S.E.; Dewulf, J. pdf  url
doi  openurl
  Title Improving the resource footprint evaluation of products recovered from wastewater : a discussion on appropriate allocation in the context of circular economy Type A1 Journal article
  Year 2019 Publication Resources, conservation and recycling Abbreviated Journal  
  Volume 148 Issue (up) Pages 132-144  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Shifting from a linear to a circular economy has consequences on how the sustainability of products is assessed. This is the case for products recovered from resources such as sewage sludge. The “zero-burden” assumption is commonly used in Life Cycle Assessment and considers that waste streams are burden-free, which becomes debatable when comparing waste-based with virgin material-based products in the context of the growing circular economy. If waste streams are considered as resources rather than waste, upstream burdens should be partly allocated to all products to allow a fair comparison with their virgin material-based equivalents. In this paper, five allocation approaches are applied to allocate the resource use of upstream processes (consumer goods production) to products recovered from the processing of sewage sludge in the Netherlands, which produces biogas, (phosphorus-based) chemicals and building materials. Except for the approach which allocates 100% of the impact from resource recovery processes to the preceding consumer goods, the allocation approaches show a resource use 27 to 80% higher than with the “zero-burden” assumption. In this particular case, using these allocation approaches is likely to find little support from recyclers. The producers of household products, recyclers and policy makers should find a consensus to consider the shift from a linear to a circular economy in sustainability assessment studies while avoiding discouraging the implementation of recovery technologies. This paper suggests starting the discussion with the approach which allocates the impacts from upstream processes degressively to the downstream products as it best translates the industrial ecology principles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472242800012 Publication Date 2019-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:159887 Serial 8072  
Permanent link to this record
 

 
Author Zhang, Q.; De Clippeleir, H.; DeBarbadillo, C.; Su, C.; Al-Omari, A.; Wett, B.; Chandran, K.; Vlaeminck, S.E.; Murthy, S. openurl 
  Title Inhibition mechanisms affecting deammonification of dewatering filtrate from thermally hydrolyzed digested solid Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue (up) Pages 9 p. T2 - WEFTEC.16, 24 - 28 September 2016, New O  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151123 Serial 8102  
Permanent link to this record
 

 
Author Sui, Y.; Alloul, A.; Muys, M.; Makyeme, M.; Coppens, J.; Verstraete, W.; Vlaeminck, S.E. openurl 
  Title Invigorating the renaissance of single cell protein : safe opportunities for nutrient recovery and reuse as feed ingredient Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue (up) Pages 12 p. T2 - WEF/IWA Nutrient Removal and Recovery C  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151128 Serial 8130  
Permanent link to this record
 

 
Author Van Winckel, T.; Yapuwa, H.; Wett, B.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S.; De Clippeleir, H. openurl 
  Title Its time to harvest : combining internal selection and flocculent external selection to maximize carbon capture efficiency Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue (up) Pages 3 p. T2 - WEFTEC.17, 30 September 4 October 2017,  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151112 Serial 8133  
Permanent link to this record
 

 
Author Van Winckel, T.; De Clippeleir, H.; Yapuwa, H.; Wett, B.; Bott, C.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S. openurl 
  Title Lets settle together? Extending external selection from mainstream deammonification to high-rate activated sludge Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue (up) Pages 13 p. T2 - WEF/IWA Nutrient Removal and Recovery C  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151131 Serial 8171  
Permanent link to this record
 

 
Author Sui, Y.; Muys, M.; Vermeir, P.; D'Adamo, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 275 Issue (up) Pages 145-152  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The microalga Dunaliella salina has been widely studied for carotenogenesis, yet its protein production for human nutrition has rarely been reported. This study unveils the effects of growth phase and light regime on protein and essential amino acid (EAA) levels in D. salina. Cultivation under 24-h continuous light was compared to 12-h/12-h light/dark cycle. The essential amino acid index (EAAI) of D. salina showed accumulating trends up to 1.53 in the stationary phase, surpassing FAO/WHO standard for human nutrition. Light/dark conditions inferred a higher light-usage efficiency, yielding 597% higher protein and 1828% higher EAA mass on light energy throughout the growth, accompanied by 138% faster growth during the light phase of the light/dark cycle, compared to continuous light. The findings revealed D. salina to be especially suitable for high-quality protein production, particularly grown under light/dark conditions, with nitrogen limitation as possible trigger, and harvested in the stationary phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456405000018 Publication Date 2018-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155981 Serial 8173  
Permanent link to this record
 

 
Author Pintucci, C.; Peng, L.; Prat, D.; Colica, G.; Merijn, P.; Colsen, J.; Varga, S.; Sarli, J.; Benito, O.; Vlaeminck, S.E. openurl 
  Title The ManureEcoMine Pilot Plant : towards advanced nutrient management in livestock waste treatment Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue (up) Pages 13 p. T2 - WEF/IWA Nutrient Removal and Recovery C  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151130 Serial 8201  
Permanent link to this record
 

 
Author Zhang, Q.; De Clippeleir, H.; Shaw, A.; DeBarbadillo, C.; Su, C.; Al-Omari, A.; Wett, B.; Chandran, K.; Vlaeminck, S.E.; Murthy, S. openurl 
  Title Mechanistic understanding of microbial activity inhibition : case study on sidestream deammonification for digester supernatant pretreated by thermal hydrolysis Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue (up) Pages 5 p. T2 - WEF/IWA Nutrient Removal and Recovery Co  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151133 Serial 8214  
Permanent link to this record
 

 
Author Ilgrande, C.; Leroy, B.; Wattiez, R.; Vlaeminck, S.E.; Boon, N.; Clauwaert, P. url  doi
openurl 
  Title Metabolic and proteomic responses to salinity in synthetic nitrifying communities of Nitrosomonas spp. and Nitrobacter spp Type A1 Journal article
  Year 2018 Publication Frontiers in microbiology Abbreviated Journal  
  Volume 9 Issue (up) Pages 2914  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Typically, nitrification is a two-stage microbial process and is key in wastewater treatment and nutrient recovery from waste streams. Changes in salinity represent a major stress factor that can trigger response mechanisms, impacting the activity and the physiology of bacteria. Despite its pivotal biotechnological role, little information is available on the specific response of nitrifying bacteria to varying levels of salinity. In this study, synthetic communities of ammonia-oxidizing bacteria (AOB Nitrosomonas europaea and/or Nitrosomonas ureae) and nitrite-oxidizing bacteria (NOB Nitrobacter winogradskyi and/or Nitrobacter vulgaris) were tested at 5, 10, and 30 mS cm-1 by adding sodium chloride to the mineral medium (0, 40, and 200 mM NaCl, respectively). Ammonia oxidation activity was less affected by salinity than nitrite oxidation. AOB, on their own or in combination with NOB, showed no significant difference in the ammonia oxidation rate among the three conditions. However, N. winogradskyi improved the absolute ammonia oxidation rate of both N. europaea and N. ureae. N. winogradskyis nitrite oxidation rate decreased to 42% residual activity upon exposure to 30 mS cm-1, also showing a similar behavior when tested with Nitrosomonas spp. The nitrite oxidation rate of N. vulgaris, as a single species, was not affected when adding sodium chloride up to 30 mS cm-1, however, its activity was completely inhibited when combined with Nitrosomonas spp. in the presence of ammonium/ammonia. The proteomic analysis of a co-culture of N. europaea and N. winogradskyi revealed the production of osmolytes, regulation of cell permeability and an oxidative stress response in N. europaea and an oxidative stress response in N. winogradskyi, as a result of increasing the salt concentration from 5 to 30 mS cm-1. A specific metabolic response observed in N. europaea suggests the role of carbon metabolism in the production of reducing power, possibly to meet the energy demands of the stress response mechanisms, induced by high salinity. For the first time, metabolic modifications and response mechanisms caused by the exposure to salinity were described, serving as a tool toward controllability and predictability of nitrifying systems exposed to salt fluctuations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451903700001 Publication Date 2018-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-302x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155237 Serial 8217  
Permanent link to this record
 

 
Author Seuntjens, D.; Meerburg, F.A.; Vlaeminck, S.E.; Roume, H.; Pieper, D.H.; Jauregui, R.; Vilchez-Vargas, R.; Boon, N. openurl 
  Title Microbial ecology of high-rate versus conventional activated sludge : environmental and operational parameters shape microbial structure, co-occurrence and functionality Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue (up) Pages 4 p. T2 - WEF/IWA Nutrient Removal and Recovery Co  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151127 Serial 8241  
Permanent link to this record
 

 
Author Spanoghe, J.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Microbial food from light, carbon dioxide and hydrogen gas : kinetic, stoichiometric and nutritional potential of three purple bacteria Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 337 Issue (up) Pages 125364  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The urgency for a protein transition towards more sustainable solutions is one of the major societal challenges. Microbial protein is one of the alternative routes, in which land- and fossil-free production should be targeted. The photohydrogenotrophic growth of purple bacteria, which builds on the H2– and CO2-economy, is unexplored for its microbial protein potential. The three tested species (Rhodobacter capsulatus, Rhodobacter sphaeroides and Rhodopseudomonas palustris) obtained promising growth rates (2.3–2.7 d−1 at 28°C) and protein productivities (0.09–0.12 g protein L−1 d−1), rendering them likely faster and more productive than microalgae. The achieved protein yields (2.6–2.9 g protein g−1 H2) transcended the ones of aerobic hydrogen oxidizing bacteria. Furthermore, all species provided full dietary protein matches for humans and their fatty acid content was dominated by vaccenic acid (82–86%). Given its kinetic and nutritional performance we recommend to consider Rhodobacter capsulatus as a high-potential sustainable source of microbial food.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694862500007 Publication Date 2021-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:178752 Serial 8243  
Permanent link to this record
 

 
Author Zhang, Q.; Higgins, M.J.; Vlaeminck, S.E.; DeBarbadillo, C.; Suzuki, R.; Kharkar, S.M.; Al-Omari, A.; Wett, B.; Chandran, K.; Murthy, S.; De Clippeleir, H. openurl 
  Title Minimizing recalcitrant organics and maximizing nitrogen removal linked to advanced biosolids processing at Blue Plains WWTP Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue (up) Pages 12 p. T2 - IWA 2017 Conference on Sustainable Wast  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151107 Serial 8252  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: