toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Karaaslan, Y.; Haskins, J.B.; Yapicioglu, H.; Sevik, C. doi  openurl
  Title Influence of randomly distributed vacancy defects on thermal transport in two-dimensional group-III nitrides Type A1 Journal article
  Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 129 Issue (up) 22 Pages 224304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Efficient thermal transport control is a fundamental issue for electronic device applications such as information, communication, and energy storage technologies in modern electronics in order to achieve desired thermal conditions. Structural defects in materials provide a mechanism to adjust the thermal transport properties of these materials on demand. In this context, the effect of structural defects on lattice thermal conductivities of two-dimensional hexagonal binary group-III nitride (XN, X = B, Al, and Ga) semiconductors is systematically investigated by means of classical molecular dynamics simulations performed with recently developed transferable inter-atomic potentials accurately describing defect energies. Here, two different Green-Kubo based approaches and another approach based on non-equilibrium molecular dynamics are compared in order to get an overall understanding. Our investigation clearly shows that defect concentrations of 3% decrease the thermal conductivity of systems containing these nitrites up to 95%. Results hint that structural defects can be used as effective adjustment parameters in controlling thermal transport properties in device applications associated with these materials. Published under an exclusive license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000692024300001 Publication Date 2021-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:181618 Serial 8096  
Permanent link to this record
 

 
Author Ro, C.-U.; Oh, K.-Y.; Kim, H.; Kim, Y.P.; Lee, C.B.; Kim, K.-H.; Kang, C.H.; Osán, J.; de Hoog, J.; Worobiec, A.; Van Grieken, R. doi  openurl
  Title Single-particle analysis of aerosols at Cheju Island, Korea, using low-Z electron probe X-ray microanalysis: a direct proof of nitrate formation from sea salts Type A1 Journal article
  Year 2001 Publication Environmental science and technology Abbreviated Journal  
  Volume 35 Issue (up) 22 Pages 4487-4494  
  Keywords A1 Journal article; Laboratory Experimental Medicine and Pediatrics (LEMP); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000172177700014 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:36092 Serial 8529  
Permanent link to this record
 

 
Author Ro, C.-U.; Kim, H.; Oh, K.-Y.; Yea, S.K.; Lee, C.B.; Jang, M.; Van Grieken, R. doi  openurl
  Title Single-particle characterization of urban aerosol particles collected in three Korean cities using low-Z electron probe x-ray microanalysis Type A1 Journal article
  Year 2002 Publication Environmental science and technology Abbreviated Journal  
  Volume 36 Issue (up) 22 Pages 4770-4776  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000179348500010 Publication Date 2002-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:40617 Serial 8541  
Permanent link to this record
 

 
Author Vincze, L.; Vekemans, B.; Brenker, F.E.; Falkenberg, G.; Rickers, K.; Somogyi, A.; Kersten, M.; Adams, F. doi  openurl
  Title Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging Type A1 Journal article
  Year 2004 Publication Analytical chemistry Abbreviated Journal  
  Volume 76 Issue (up) 22 Pages 6786-6791  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000225076400034 Publication Date 2004-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:49817 Serial 8669  
Permanent link to this record
 

 
Author Defoirdt, T.; Vlaeminck, S.E.; Sun, X.; Boon, N.; Clauwaert, P. pdf  url
doi  openurl
  Title Ureolytic activity and its regulation in vibrio campbellii and vibrio harveyi in relation to nitrogen recovery from human urine Type A1 Journal article
  Year 2017 Publication Environmental science and technology Abbreviated Journal  
  Volume 51 Issue (up) 22 Pages 13335-13343  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Human urine contains a high concentration of nitrogen and is therefore an interesting source for nutrient recovery. Ureolysis is a key requirement in many processes aiming at nitrogen recovery from urine. Although ureolytic activity is widespread in terrestrial and aquatic environments, very little is known about the urease activity and regulation in specific bacteria other than human pathogens. Given the relatively high salt concentration of urine, marine bacteria would be particularly well suited for biotechnological applications involving nitrogen recovery from urine, and therefore, in this study, we investigated ureolytic activity and its regulation in marine vibrios. Thirteen out of 14 strains showed ureolytic activity. The urease activity was induced by urea, since complete and very rapid hydrolysis, up to 4 g L-1 of urea, was observed in synthetic human urine when the bacteria were pretreated with 10 g L-1 urea, whereas slow hydrolysis occurred when they were pretreated with 1 g L-1 urea (14-35% hydrolysis after 2 days). There was no correlation between biofilm formation and "motility on one hand, and ureolysis on the other hand, and biofilm and motility inhibitors did not affect ureolysis. Together, our data demonstrate for the first time the potential of marine vibrios as fast urea hydrolyzers for biotechnological applications aiming at nutrient recovery from human urine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000416496700032 Publication Date 2017-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:147703 Serial 8716  
Permanent link to this record
 

 
Author Liu, J.; Xu, W.; Xiao, Y.M.; Ding, L.; Li, H.W.; Peeters, F.M. url  doi
openurl 
  Title Optical spectrum of n-type and p-type monolayer MoS₂ in the presence of proximity-induced interactions Type A1 Journal article
  Year 2023 Publication Journal of applied physics Abbreviated Journal  
  Volume 134 Issue (up) 22 Pages 224301-224307  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, we examined the effects of proximity-induced interactions such as Rashba spin-orbit coupling and effective Zeeman fields (EZFs) on the optical spectrum of n-type and p-type monolayer (ML)-MoS2. The optical conductivity is evaluated using the standard Kubo formula under random-phase approximation by including the effective electron-electron interaction. It has been found that there exist two absorption peaks in n-type ML-MoS2 and two knife shaped absorptions in p-type ML-MoS2, which are contributed by the inter-subband spin-flip electronic transitions within conduction and valence bands at valleys K and K ' with a lifted valley degeneracy. The optical absorptions in n-type and p-type ML-MoS 2 occur in THz and infrared radiation regimes and the position, height, and shape of them can be effectively tuned by Rashba parameter, EZF parameters, and carrier density. The interesting theoretical predictions in this study would be helpful for the experimental observation of the optical absorption in infrared to THz bandwidths contributed by inter-subband spin-flip electronic transitions in a lifted valley degeneracy monolayer transition metal dichalcogenides system. The obtained results indicate that ML-MoS2 with the platform of proximity interactions make it a promising infrared and THz material for optics and optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001135684400003 Publication Date 2023-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.2 Times cited Open Access  
  Notes Approved Most recent IF: 3.2; 2023 IF: 2.068  
  Call Number UA @ admin @ c:irua:202777 Serial 9069  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Mortazavi, B.; Ziabari, A.A.; Khatibani, A.B.; Nguyen, C., V; Ghergherehchi, M.; Gogova, D. pdf  doi
openurl 
  Title Point defects in a two-dimensional ZnSnN₂ nanosheet : a first-principles study on the electronic and magnetic properties Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue (up) 23 Pages 13067-13075  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The reduction of dimensionality is a very effective way to achieve appealing properties in two-dimensional materials (2DMs). First-principles calculations can greatly facilitate the prediction of 2DM properties and find possible approaches to enhance their performance. We employed first-principles calculations to gain insight into the impact of different types of point defects (vacancies and substitutional dopants) on the electronic and magnetic properties of a ZnSnN2 (ZSN) monolayer. We show that Zn, Sn, and N + Zn vacancy-defected structures are p-type conducting, while the defected ZSN with a N vacancy is n-type conducting. For substitutional dopants, we found that all doped structures are thermally and energetically stable. The most stable structure is found to be B-doping at the Zn site. The highest work function value (5.0 eV) has been obtained for Be substitution at the Sn site. Li-doping (at the Zn site) and Be-doping (at the Sn site) are p-type conducting, while B-doping (at the Zn site) is n-type conducting. We found that the considered ZSN monolayer-based structures with point defects are magnetic, except those with the N vacancy defects and Be-doped structures. The ab initio molecular dynamics simulations confirm that all substitutionally doped and defected structures are thermally stable. Thus, our results highlight the possibility of tuning the magnetism in ZnSnN2 monolayers through defect engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000664312500063 Publication Date 2021-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:179741 Serial 7012  
Permanent link to this record
 

 
Author De Keyser, N.; Broers, F.; Vanmeert, F.; De Meyer, S.; Gabrieli, F.; Hermens, E.; van der Snickt, G.; Janssens, K.; Keune, K. url  doi
openurl 
  Title Reviving degraded colors of yellow flowers in 17th century still life paintings with macro- and microscale chemical imaging Type A1 Journal article
  Year 2022 Publication Science Advances Abbreviated Journal  
  Volume 8 Issue (up) 23 Pages 1-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Over time, artist pigments are prone to degradation, which can decrease the readability of the artwork or notably change the artist's intention. In this article, the visual implication of secondary degradation products in a degraded yellow rose in a still life painting by A. Mignon is discussed as a case study. A multimodal combination of chemical and optical imaging techniques, including noninvasive macroscopic x-ray powder diffraction (MA-XRPD) and macroscopic x-ray fluorescence imaging, allowed us to gain a 3D understanding of the transformation of the original intended appearance of the rose into its current degraded state. MA-XRPD enabled us to precisely correlate in situ formed products with what is optically visible on the surface and demonstrated that the precipitated lead arsenates and arsenolite from the yellow pigment orpiment and the light-induced fading of an organic yellow lake irreversibly changed the artist's intentional light-shadow modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000811556500011 Publication Date 2022-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.6  
  Call Number UA @ admin @ c:irua:189657 Serial 7205  
Permanent link to this record
 

 
Author Volders, J.; Elen, K.; Raes, A.; Ninakanti, R.; Kelchtermans, A.-S.; Sastre, F.; Hardy, A.; Cool, P.; Verbruggen, S.W.; Buskens, P.; Van Bael, M.K. url  doi
openurl 
  Title Sunlight-powered reverse water gas shift reaction catalysed by plasmonic Au/TiO₂ nanocatalysts : effects of Au particle size on the activity and selectivity Type A1 Journal article
  Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 12 Issue (up) 23 Pages 4153-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study reports the low temperature and low pressure conversion (up to 160 °C, p = 3.5 bar) of CO2 and H2 to CO using plasmonic Au/TiO2 nanocatalysts and mildly concentrated artificial sunlight as the sole energy source (up to 13.9 kW·m-2 = 13.9 suns). To distinguish between photothermal and non-thermal contributors, we investigated the impact of the Au nanoparticle size and light intensity on the activity and selectivity of the catalyst. A comparative study between P25 TiO2-supported Au nanocatalysts of a size of 6 nm and 16 nm displayed a 15 times higher activity for the smaller particles, which can only partially be attributed to the higher Au surface area. Other factors that may play a role are e.g., the electronic contact between Au and TiO2 and the ratio between plasmonic absorption and scattering. Both catalysts displayed ≥84% selectivity for CO (side product is CH4). Furthermore, we demonstrated that the catalytic activity of Au/TiO2 increases exponentially with increasing light intensity, which indicated the presence of a photothermal contributor. In dark, however, both Au/TiO2 catalysts solely produced CH4 at the same catalyst bed temperature (160 °C). We propose that the difference in selectivity is caused by the promotion of CO desorption through charge transfer of plasmon generated charges (as a non-thermal contributor).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000896093900001 Publication Date 2022-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.3  
  Call Number UA @ admin @ c:irua:191843 Serial 7341  
Permanent link to this record
 

 
Author Sanchez-Barriga, J.; Aguilera, I.; Yashina, L., V; Tsukanova, D.Y.; Freyse, F.; Chaika, A.N.; Callaert, C.; Abakumov, A.M.; Hadermann, J.; Varykhalov, A.; Rienks, E.D.L.; Bihlmayer, G.; Blugel, S.; Rader, O. url  doi
openurl 
  Title Anomalous behavior of the electronic structure of (Bi1-xInx)2Se3across the quantum phase transition from topological to trivial insulator Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal  
  Volume 98 Issue (up) 23 Pages 235110  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using spin- and angle-resolved photoemission spectroscopy and relativistic many-body calculations, we investigate the evolution of the electronic structure of (Bi1-xInx)(2)Se-3)(2)Se-3 bulk single crystals around the critical point of the trivial to topological insulator quantum-phase transition. By increasing x, we observe how a surface gap opens at the Dirac point of the initially gapless topological surface state of Bi2Se3, leading to the existence of massive fermions. The surface gap monotonically increases for a wide range of x values across the topological and trivial sides of the quantum-phase transition. By means of photon-energy-dependent measurements, we demonstrate that the gapped surface state survives the inversion of the bulk bands which occurs at a critical point near x = 0.055. The surface state exhibits a nonzero in-plane spin polarization which decays exponentially with increasing x, and which persists in both the topological and trivial insulator phases. Our calculations reveal qualitative agreement with the experimental results all across the quantum-phase transition upon the systematic variation of the spin-orbit coupling strength. A non-time-reversal symmetry-breaking mechanism of bulk-mediated scattering processes that increase with decreasing spin-orbit coupling strength is proposed as explanation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452322800003 Publication Date 2018-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156240 Serial 7462  
Permanent link to this record
 

 
Author Wozniak, T.; Faria, P.E., Jr.; Seifert, G.; Chaves, A.; Kunstmann, J. url  doi
openurl 
  Title Exciton g factors of van der Waals heterostructures from first-principles calculations Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue (up) 23 Pages 235408-235411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract External fields are a powerful tool to probe optical excitations in a material. The linear energy shift of an excitation in a magnetic field is quantified by its effective g factor. Here we show how exciton g factors and their sign can be determined by converged first-principles calculations. We apply the method to monolayer excitons in semiconducting transition metal dichalcogenides and to interlayer excitons in MoSe2/WSe2 heterobilayers and obtain good agreement with recent experimental data. The precision of our method allows us to assign measured g factors of optical peaks to specific transitions in the band structure and also to specific regions of the samples. This revealed the nature of various, previously measured interlayer exciton peaks. We further show that, due to specific optical selection rules, g factors in van der Waals heterostructures are strongly spin and stacking-dependent. The calculation of orbital angular momenta requires the summation over hundreds of bands, indicating that for the considered two-dimensional materials the basis set size is a critical numerical issue. The presented approach can potentially be applied to a wide variety of semiconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537315100009 Publication Date 2020-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:170219 Serial 7944  
Permanent link to this record
 

 
Author Watanabe, Y.; Hyeon-Deuk, K.; Yamamoto, T.; Yabuuchi, M.; Karakulina, O.M.; Noda, Y.; Kurihara, T.; Chang, I.-Y.; Higashi, M.; Tomita, O.; Tassel, C.; Kato, D.; Xia, J.; Goto, T.; Brown, C.M.; Shimoyama, Y.; Ogiwara, N.; Hadermann, J.; Abakumov, A.M.; Uchida, S.; Abe, R.; Kageyama, H. url  doi
openurl 
  Title Polyoxocationic antimony oxide cluster with acidic protons Type A1 Journal article
  Year 2022 Publication Science Advances Abbreviated Journal  
  Volume 8 Issue (up) 24 Pages eabm5379-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The success and continued expansion of research on metal-oxo clusters owe largely to their structural richness and wide range of functions. However, while most of them known to date are negatively charged polyoxometalates, there is only a handful of cationic ones, much less functional ones. Here, we show an all-inorganic hydroxyiodide [H(10.)7Sb(32.1)O(44)][H2.1Sb2.1I8O6][Sb0.76I6](2)center dot 25H(2)O (HSbOI), forming a face-centered cubic structure with cationic Sb32O44 clusters and two types of anionic clusters in its interstitial spaces. Although it is submicrometer in size, electron diffraction tomography of HSbOI allowed the construction of the initial structural model, followed by powder Rietveld refinement to reach the final structure. The cationic cluster is characterized by the presence of acidic protons on its surface due to substantial Sb3+ deficiencies, which enables HSbOI to serve as an excellent solid acid catalyst. These results open up a frontier for the exploration and functionalization of cationic metal-oxo clusters containing heavy main group elements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000812533800008 Publication Date 2022-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.6  
  Call Number UA @ admin @ c:irua:189689 Serial 7091  
Permanent link to this record
 

 
Author Bencs, L.; Krata, A.; Horemans, B.; Buczyńska, A.J.; Dirtu, A.C.; Godoi, A.F.L.; Godoi, R.H.M.; Potgieter-Vermaak, S.; Van Grieken, R. pdf  doi
openurl 
  Title Atmospheric nitrogen fluxes at the Belgian coast: 2004-2006 Type A1 Journal article
  Year 2009 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 43 Issue (up) 24 Pages 3786-3798  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Daily and seasonal variations in dry and wet atmospheric nitrogen fluxes have been studied during four campaigns between 2004 and 2006 at a coastal site of the Southern North Sea at De Haan (Belgium) located at coordinates of 51.1723° N and 3.0369° E. Concentrations of inorganic N-compounds were determined in the gaseous phase, size-segregated aerosol (coarse, medium, and fine), and rainwater samples. Dissolved organic nitrogen (DON) was quantified in rainwater. The daily variations in N-fluxes of compounds were evaluated with air-mass backward trajectories, classified into the main air-masses arriving at the sampling site (i.e., continental, North Sea, and Atlantic/UK/Channel). The three, non-episodic campaigns showed broadly consistent fluxes, but during the late summer campaign exceptionally high episodic N-deposition was observed. The average dry and wet fluxes for non-episodic campaigns amounted to 2.6 and 4.0 mg N m−2 d−1, respectively, whereas during the episodic late summer period these fluxes were as high as 5.2 and 6.2 mg N m−2 d−1, respectively. Non-episodic seasons/campaigns experienced average aerosol fluxes of 0.91.4 mg N m−2 d−1. Generally, the contribution of aerosol NH4+ was more significant in the medium and fine particulate fractions than that of aerosol NO3−, whereas the latter contributed more in the coarse fraction, especially in continental air-masses. During the dry mid-summer campaign, the DON contributed considerably (15%) to the total N-budget. Exceptionally high episodic aerosol-N inputs have been observed for the late summer campaign, with especially high deposition rates of 3.6 and 2.9 mg N m−2 d−1 for Atlantic/UK/Channel and North Sea-continental (mixed) air-masses, respectively. During this pollution episode, the flux of NH4+ was dominating in each aerosol fraction/air-mass, except for coarse continental aerosols. High deposition of gaseous-N was also observed in this campaign with an average total N-flux of 22.5-times higher than in other campaigns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000268609000015 Publication Date 2009-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:77255 Serial 7527  
Permanent link to this record
 

 
Author Godoi, R.H.M.; Goncalves, S.J., Jr.; Sayama, C.; Polezer, G.; Reis Neto, J.M.; Alfoldy, B.; Van Grieken, R.; Riedi, C.A.; Yamamoto, C.I.; Godoi, A.F.L.; Bencs, L. pdf  doi
openurl 
  Title Health implications of atmospheric aerosols from asbestos-bearing road pavements traditionally used in Southern Brazil Type A1 Journal article
  Year 2016 Publication Environmental Science and Pollution Research T2 – 1st International Caparica Conference on Pollutant Toxic Ions and, Molecules (PTIM), 2015, Caparica, PORTUGAL Abbreviated Journal  
  Volume 23 Issue (up) 24 Pages 25180-25190  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Serpentine and amphibole asbestos occur naturally in certain geologic settings worldwide, most commonly in association with ultramafic rocks, along associated faults. Ultramafic rocks have been used in Pin County, Southern Brazil for decades for the purpose of road paving in rural and urban areas, but without the awareness of their adverse environmental and health impact. The aim of this study was the chemical characterization of aerosols re-suspended in two rural roads of Pin, paved with ultramafic rocks and to estimate the pulmonary deposition of asbestos aerosols. Bulk aerosol samples were analyzed by means of X-ray fluorescence spectrometry and X-ray diffraction analysis, in order to characterize elemental composition and crystallinity. Single-particle compositions of aerosols were analyzed by computer-controlled electron-probe microanalysis, indicating the presence of a few percentages of serpentine and amphibole. Given the chemical composition and size distribution of aerosol particles, the deposition efficiency of chrysotile, a sub-group of serpentine, in two principal segments of the human respiratory system was estimated using a lung deposition model. As an important finding, almost half of the inhaled particles were calculated to be deposited in the respiratory system. Asbestos depositions were significant (similar to 25 %) in the lower airways, even though the selected breathing conditions (rest situation, nose breathing) implied the lowest rate of respiratory deposition. Considering the fraction of inhalable suspended chrysotile near local roads, and the long-term exposure of humans to these aerosols, chrysotile may represent a hazard, regarding more frequent development of lung cancer in the population of the exposed region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000389301700060 Publication Date 2016-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139232 Serial 8018  
Permanent link to this record
 

 
Author Safdar, M.; Khan, S.U.; Jänis, J. pdf  url
doi  openurl
  Title Progress toward catalytic micro- and nanomotors for biomedical and environmental applications Type A1 Journal article
  Year 2018 Publication Advanced Materials Abbreviated Journal  
  Volume 30 Issue (up) 24 Pages 1703660  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Synthetic micro‐ and nanomotors (MNMs) are tiny objects that can autonomously move under the influence of an appropriate source of energy, such as a chemical fuel, magnetic field, ultrasound, or light. Chemically driven MNMs are composed of or contain certain reactive material(s) that convert chemical energy of a fuel into kinetic energy (motion) of the particles. Several different materials have been explored over the last decade for the preparation of a wide variety of MNMs. Here, the discovery of materials and approaches to enhance the efficiency of chemically driven MNMs are reviewed. Several prominent applications of the MNMs, especially in the fields of biomedicine and environmental science, are also discussed, as well as the limitations of existing materials and future research directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436455800006 Publication Date 2018-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:175426 Serial 8424  
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Van Echelpoel, R.; Boeye, G.; Eliaerts, J.; Samanipour, M.; Ching, H.Y.V.; Florea, A.; Van Doorslaer, S.; Van Durme, F.; Samyn, N.; Parrilla, M.; De Wael, K. pdf  url
doi  openurl
  Title Towards developing a screening strategy for ecstasy : revealing the electrochemical profile Type A1 Journal article
  Year 2021 Publication Chemelectrochem Abbreviated Journal Chemelectrochem  
  Volume 8 Issue (up) 24 Pages 4826-4834  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY); Applied Electrochemistry & Catalysis (ELCAT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This article describes the development of an electrochemical screening strategy for 3,4-methylenedioxymethamphetamine (MDMA), the regular psychoactive compound in ecstasy (XTC) pills. We have investigated the specific electrochemical profile of MDMA and its electro-oxidation mechanisms at disposable graphite screen-printed electrodes. We have proved that the formation of a radical cation and subsequent reactions are indeed responsible for the electrode surface passivation, as evidenced by using electron paramagnetic resonance spectroscopy and electrochemistry. Thereafter, pure cutting agents and MDMA as well as simulated binary mixtures of compounds with MDMA were subjected to square wave voltammetry at pH 7 to understand the characteristic electrochemical profile. An additional measurement at pH 12 was able to resolve false positives and negatives occurring at pH 7. Finally, validation of the screening strategy was done by measuring a set of ecstasy street samples. Overall, our proposed electrochemical screening strategy has been demonstrated for the rapid, sensitive, and selective detection of MDMA, resolving most of the false positives and negatives given by the traditional Marquis color tests, thus exhibiting remarkable promises for the on-site screening of MDMA.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000735883700020 Publication Date 2021-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.136 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.136  
  Call Number UA @ admin @ c:irua:184371 Serial 8680  
Permanent link to this record
 

 
Author Radujković, D.; Vicca, S.; van Rooyen, M.; Wilfahrt, P.; Brown, L.; Jentsch, A.; Reinhart, K.O.; Brown, C.; De Gruyter, J.; Jurasinski, G.; Askarizadeh, D.; Bartha, S.; Beck, R.; Blenkinsopp, T.; Cahill, J.; Campetella, G.; Canullo, R.; Chelli, S.; Enrico, L.; Fraser, L.; Hao, X.; Henry, H.A.L.; Hohn, M.; Jouri, M.H.; Koch, M.; Lawrence Lodge, R.; Li, F.Y.; Lord, J.M.; Milligan, P.; Minggagud, H.; Palmer, T.; Schröder, B.; Szabó, G.; Zhang, T.; Zimmermann, Z.; Verbruggen, E. pdf  url
doi  openurl
  Title Consistent predictors of microbial community composition across spatial scales in grasslands reveal low context‐dependency Type A1 Journal article
  Year 2023 Publication Molecular ecology Abbreviated Journal  
  Volume 32 Issue (up) 24 Pages 6924-6938  
  Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract Environmental circumstances shaping soil microbial communities have been studied extensively. However, due to disparate study designs, it has been difficult to resolve whether a globally consistent set of predictors exists, or context‐dependency prevails. Here, we used a network of 18 grassland sites (11 of those containing regional plant productivity gradients) to examine (i) if similar abiotic or biotic factors predict both large‐scale (across sites) and regional‐scale (within sites) patterns in bacterial and fungal community composition, and (ii) if microbial community composition differs consistently at two levels of regional plant productivity (low vs. high). Our results revealed that bacteria were associated with particular soil properties (such as base saturation) and both bacteria and fungi were associated with plant community composition across sites and within the majority of sites. Moreover, a discernible microbial community signal emerged, clearly distinguishing high and low‐productivity soils across different grasslands independent of their location in the world. Hence, regional productivity differences may be typified by characteristic soil microbial communities across the grassland biome. These results could encourage future research aiming to predict the general effects of global changes on soil microbial community composition in grasslands and to discriminate fertile from infertile systems using generally applicable microbial indicators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001090315100001 Publication Date 2023-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1083 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.9 Times cited Open Access  
  Notes Approved Most recent IF: 4.9; 2023 IF: 6.086  
  Call Number UA @ admin @ c:irua:200464 Serial 9194  
Permanent link to this record
 

 
Author Akgenc, B.; Sarikurt, S.; Yagmurcukardes, M.; Ersan, F. pdf  url
doi  openurl
  Title Aluminum and lithium sulfur batteries : a review of recent progress and future directions Type A1 Journal article
  Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue (up) 25 Pages 253002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Advanced materials with various micro-/nanostructures have attracted plenty of attention for decades in energy storage devices such as rechargeable batteries (ion- or sulfur based batteries) and supercapacitors. To improve the electrochemical performance of batteries, it is uttermost important to develop advanced electrode materials. Moreover, the cathode material is also important that it restricts the efficiency and practical application of aluminum-ion batteries. Among the potential cathode materials, sulfur has become an important candidate material for aluminum-ion batteries cause of its considerable specific capacity. Two-dimensional materials are currently potential candidates as electrodes from lab-scale experiments to possible pragmatic theoretical studies. In this review, the fundamental principles, historical progress, latest developments, and major problems in Li-S and Al-S batteries are reviewed. Finally, future directions in terms of the experimental and theoretical applications have prospected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000655281200001 Publication Date 2021-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:179034 Serial 6971  
Permanent link to this record
 

 
Author Guo, J.; Clima, S.; Pourtois, G.; Van Houdt, J. doi  openurl
  Title Identifying alternative ferroelectric materials beyond Hf(Zr)O-₂ Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 117 Issue (up) 26 Pages 262903  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A database-driven approach combined with ab initio density functional theory (DFT) simulations is used to identify and simulate alternative ferroelectric materials beyond Hf(Zr)O-2. The database-driven screening method identifies a class of wurtzite ferroelectric materials. DFT simulations of wurtzite magnesium chalcogenides, including MgS, MgSe, and MgTe, show their potential to achieve improved ferroelectric (FE) stability, simple atomistic unit cell structure, and large FE polarization. Strain engineering can effectively modulate the FE switching barrier height for facilitating FE switching. The effect of the piezoelectric property on the FE switching barrier heights is also examined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000608049700003 Publication Date 2020-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited Open Access  
  Notes Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number UA @ admin @ c:irua:176053 Serial 6766  
Permanent link to this record
 

 
Author Demiroglu, I.; Karaaslan, Y.; Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C. pdf  url
doi  openurl
  Title Computation of the thermal expansion coefficient of graphene with Gaussian approximation potentials Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue (up) 26 Pages 14409-14415  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Direct experimental measurement of thermal expansion coefficient without substrate effects is a challenging task for two-dimensional (2D) materials, and its accurate estimation with large-scale ab initio molecular dynamics is computationally very expensive. Machine learning-based interatomic potentials trained with ab initio data have been successfully used in molecular dynamics simulations to decrease the computational cost without compromising the accuracy. In this study, we investigated using Gaussian approximation potentials to reproduce the density functional theory-level accuracy for graphene within both lattice dynamical and molecular dynamical methods, and to extend their applicability to larger length and time scales. Two such potentials are considered, GAP17 and GAP20. GAP17, which was trained with pristine graphene structures, is found to give closer results to density functional theory calculations at different scales. Further vibrational and structural analyses verify that the same conclusions can be deduced with density functional theory level in terms of the reasoning of the thermal expansion behavior, and the negative thermal expansion behavior is associated with long-range out-of-plane phonon vibrations. Thus, it is argued that the enabled larger system sizes by machine learning potentials may even enhance the accuracy compared to small-size-limited ab initio molecular dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000672734100027 Publication Date 2021-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:179850 Serial 7719  
Permanent link to this record
 

 
Author Craco, L.; Carara, S.S.; Barboza, E. da S.; Milošević, M.V.; Pereira, T.A.S. url  doi
openurl 
  Title Electronic and valleytronic properties of crystalline boron-arsenide tuned by strain and disorder Type A1 Journal article
  Year 2023 Publication RSC advances Abbreviated Journal  
  Volume 13 Issue (up) 26 Pages 17907-17913  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ab initio density functional theory (DFT) and DFT plus coherent potential approximation (DFT + CPA) are employed to reveal, respectively, the effect of in-plane strain and site-diagonal disorder on the electronic structure of cubic boron arsenide (BAs). It is demonstrated that tensile strain and static diagonal disorder both reduce the semiconducting one-particle band gap of BAs, and a V-shaped p-band electronic state emerges – enabling advanced valleytronics based on strained and disordered semiconducting bulk crystals. At biaxial tensile strains close to 15% the valence band lineshape relevant for optoelectronics is shown to coincide with one reported for GaAs at low energies. The role played by static disorder on the As sites is to promote p-type conductivity in the unstrained BAs bulk crystal, consistent with experimental observations. These findings illuminate the intricate and interdependent changes in crystal structure and lattice disorder on the electronic degrees of freedom of semiconductors and semimetals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001008414700001 Publication Date 2023-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.9; 2023 IF: 3.108  
  Call Number UA @ admin @ c:irua:197317 Serial 8861  
Permanent link to this record
 

 
Author Ying, J.; Lenaerts, S.; Symes, M.D.; Yang, X.-Y. url  doi
openurl 
  Title Hierarchical design in nanoporous metals Type A1 Journal article
  Year 2022 Publication Advanced Science Abbreviated Journal Adv Sci  
  Volume 9 Issue (up) 27 Pages 2106117-2106120  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hierarchically porous metals possess intriguing high accessibility of matter molecules and unique continuous metallic frameworks, as well as a high level of exposed active atoms. High rates of diffusion and fast energy transfer have been important and challenging goals of hierarchical design and porosity control with nanostructured metals. This review aims to summarize recent important progress toward the development of hierarchically porous metals, with special emphasis on synthetic strategies, hierarchical design in structure-function and corresponding applications. The current challenges and future prospects in this field are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000831201000001 Publication Date 2022-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15.1  
  Call Number UA @ admin @ c:irua:189646 Serial 7170  
Permanent link to this record
 

 
Author Gamon, J.; Bassat, J.-M.; Villesuzanne, A.; Duttine, M.; Batuk, M.; Vandemeulebroucke, D.; Hadermann, J.; Alassani, F.; Weill, F.; Durand, E.; Demourgues, A. pdf  doi
openurl 
  Title Impact of anionic ordering on the iron site distribution and valence states in oxyfluoride Sr2FeO3+xF1-x(x=0.08, 0.2) with a layered Perovskite network Type A1 Journal article
  Year 2023 Publication Inorganic chemistry Abbreviated Journal  
  Volume 62 Issue (up) 27 Pages 10822-10832  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sr2FeO3+x F1-x (x = 0.08, 0.2), an n = 1 Ruddlesden-Popperphase, was synthesized from the oxidationof Sr2FeO3F in air at high temperature followinga fluorine for oxygen substitution and Fe3+ to Fe4+ oxidation. A structural investigation of both compounds was performedusing complementary and high-resolution techniques (Synchrotron X-rayand electron diffraction, Mo''ssbauer spectroscopy, HR-STEM)coupled to DFT calculation. This study reveals that oxidation leadsto a high degree of apical anion disorder coupled to antiphase boundaries. Sr2FeO3F, an oxyfluoride compoundwith an n = 1 Ruddlesden-Popper structure,was identifiedas a potential interesting mixed ionic and electronic conductor (MIEC).The phase can be synthesized under a range of different pO(2) atmospheres, leading to various degrees of fluorinefor oxygen substitution and Fe4+ content. A structuralinvestigation and thorough comparison of both argon- and air-synthesizedcompounds were performed by combining high-resolution X-ray and electrondiffraction, high-resolution scanning transmission electron microscopy,Mo''ssbauer spectroscopy, and DFT calculations. While the argon-synthesizedphase shows a well-behaved O/F ordered structure, this study revealedthat oxidation leads to averaged large-scale anionic disorder on theapical site. In the more oxidized Sr2FeO3.2F0.8 oxyfluoride, containing 20% of Fe4+, two differentFe positions can be identified with a 32%/68% occupancy (P4/nmm space group). This originates due to the presenceof antiphase boundaries between ordered domains within the grains.Relations between site distortion and valence states as well as stabilityof apical anionic sites (O vs F) are discussed. This study paves theway for further studies on both ionic and electronic transport propertiesof Sr2FeO3.2F0.8 and its use in MIEC-baseddevices, such as solid oxide fuel cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001018974700001 Publication Date 2023-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.6; 2023 IF: 4.857  
  Call Number UA @ admin @ c:irua:197789 Serial 8881  
Permanent link to this record
 

 
Author Peng, X.; Peng, H.; Zhao, K.; Zhang, Y.; Xia, F.; Lyu, J.; Van Tendeloo, G.; Sun, C.; Wu, J. pdf  doi
openurl 
  Title Direct visualization of atomic-scale heterogeneous structure dynamics in MnO₂ nanowires Type A1 Journal article
  Year 2021 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 13 Issue (up) 28 Pages 33644-33651  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Manganese oxides are attracting great interest owing to their rich polymorphism and multiple valent states, which give rise to a wide range of applications in catalysis, capacitors, ion batteries, and so forth. Most of their functionalities are connected to transitions among the various polymorphisms and Mn valences. However, their atomic-scale dynamics is still a great challenge. Herein, we discovered a strong heterogeneity in the crystalline structure and defects, as well as in the Mn valence state. The transitions are studied by in situ transmission electron microscopy (TEM), and they involve a complex ordering of [MnO6] octahedra as the basic building tunnels. MnO2 nanowires synthesized using solution-based hydrothermal methods usually exhibit a large number of multiple polymorphism impurities with different tunnel sizes. Upon heating, MnO2 nanowires undergo a series of stoichiometric polymorphism changes, followed by oxygen release toward an oxygen-deficient spinel and rock-salt phase. The impurity polymorphism exhibits an abnormally high stability with interesting small-large-small tunnel size transition, which is attributed to a preferential stabilizer (K+) concentration, as well as a strong competition of kinetics and thermodynamics. Our results unveil the complicated intergrowth of polymorphism impurities in MnO2, which provide insights into the heterogeneous kinetics, thermodynamics, and transport properties of the tunnel-based building blocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000677540900101 Publication Date 2021-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 7.504  
  Call Number UA @ admin @ c:irua:180450 Serial 6861  
Permanent link to this record
 

 
Author Faraji, M.; Bafekry, A.; Fadlallah, M.M.; Molaei, F.; Hieu, N.N.; Qian, P.; Ghergherehchi, M.; Gogova, D. url  doi
openurl 
  Title Surface modification of titanium carbide MXene monolayers (Ti₂C and Ti₃C₂) via chalcogenide and halogenide atoms Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue (up) 28 Pages 15319-15328  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Inspired by the recent successful growth of Ti2C and Ti3C2 monolayers, here, we investigate the structural, electronic, and mechanical properties of functionalized Ti2C and Ti3C2 monolayers by means of density functional theory calculations. The results reveal that monolayers of Ti2C and Ti3C2 are dynamically stable metals. Phonon band dispersion calculations demonstrate that two-surface functionalization of Ti2C and Ti(3)C(2)via chalcogenides (S, Se, and Te), halides (F, Cl, Br, and I), and oxygen atoms results in dynamically stable novel functionalized monolayer materials. Electronic band dispersions and density of states calculations reveal that all functionalized monolayer structures preserve the metallic nature of both Ti2C and Ti3C2 except Ti2C-O-2, which possesses the behavior of an indirect semiconductor via full-surface oxygen passivation. In addition, it is shown that although halide passivated Ti3C2 structures are still metallic, there exist multiple Dirac-like cones around the Fermi energy level, which indicates that semi-metallic behavior can be obtained upon external effects by tuning the energy of the Dirac cones. In addition, the computed linear-elastic parameters prove that functionalization is a powerful tool in tuning the mechanical properties of stiff monolayers of bare Ti2C and Ti3C2. Our study discloses that the electronic and structural properties of Ti2C and Ti3C2 MXene monolayers are suitable for surface modification, which is highly desirable for material property engineering and device integration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000672406800001 Publication Date 2021-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:179809 Serial 7027  
Permanent link to this record
 

 
Author Bafekry, A.; Karbasizadeh, S.; Stampfl, C.; Faraji, M.; Hoat, D.M.; Sarsari, I.A.; Feghhi, S.A.H.; Ghergherehchi, M. url  doi
openurl 
  Title Two-dimensional Janus semiconductor BiTeCl and BiTeBr monolayers : a first-principles study on their tunable electronic properties via an electric field and mechanical strain Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue (up) 28 Pages 15216-15223  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent successful synthesis of highly crystalline ultrathin BiTeCl and BiTeBr layered sheets [Debarati Hajra et al., ACS Nano, 2020, 14, 15626], herein for the first time, we carry out a comprehensive study on the structural and electronic properties of BiTeCl and BiTeBr Janus monolayers using density functional theory (DFT) calculations. Different structural and electronic parameters including the lattice constant, bond lengths, layer thickness in the z-direction, different interatomic angles, work function, charge density difference, cohesive energy and Rashba coefficients are determined to acquire a deep understanding of these monolayers. The calculations show good stability of the studied single layers. BiTeCl and BiTeBr monolayers are semiconductors with electronic bandgaps of 0.83 and 0.80 eV, respectively. The results also show that the semiconductor-metal transformation can be induced by increasing the number of layers. In addition, the engineering of the electronic structure is also studied by applying an electric field, and mechanical uniaxial and biaxial strain. The results show a significant change of the bandgaps and that an indirect-direct band-gap transition can be induced. This study highlights the positive prospect for the application of BiTeCl and BiTeBr layered sheets in novel electronic and energy conversion systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670553900001 Publication Date 2021-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:179827 Serial 7042  
Permanent link to this record
 

 
Author Vandewalle, L.A.; Gonzalez-Quiroga, A.; Perreault, P.; Van Geem, K.M.; Marin, G.B. pdf  doi
openurl 
  Title Process intensification in a gas–solid vortex unit : computational fluid dynamics model based analysis and design Type A1 Journal article
  Year 2019 Publication Industrial and engineering chemistry research Abbreviated Journal  
  Volume 58 Issue (up) 28 Pages 12751-12765  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The process intensification abilities of gas–solid vortex units (GSVU) are very promising for gas–solid processes. By working in a centrifugal force field, much higher gas–solid slip velocities can be obtained compared to gravitational fluidized beds, resulting in a significant increase in heat and mass transfer rates. In this work, local azimuthal and radial particle velocities for an experimental GSVU are simulated using the Euler–Euler framework in OpenFOAM and compared with particle image velocimetry measurements. With the validated model, the effect of the particle diameter, number of inlet slots and reactor length on the bed hydrodynamics is assessed. Starting from 1g-Geldart-B type particles, increasing the particle diameter or density, increasing the number of inlet slots or increasing the gas injection velocity leads to an increased bed stability and uniformity. However, a trade-off has to be made since increased bed stability and uniformity lead to higher shear stresses and attrition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476686000027 Publication Date 2019-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162122 Serial 8416  
Permanent link to this record
 

 
Author Paulussen, S.; Sels, B.; Bogaerts, A.; Paul, J. openurl 
  Title Een tweede leven voor broeikasgassen? Type A2 Journal article
  Year 2008 Publication Het ingenieursblad : maandblad van de Koninklijke Vlaamse Ingenieursvereniging KVIV Abbreviated Journal  
  Volume 77 Issue (up) 3 Pages 16-20  
  Keywords A2 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1235 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:82308 Serial 3765  
Permanent link to this record
 

 
Author Janssens, K.; Vanborm, W.; van Espen, P. pdf  doi
openurl 
  Title Increased accuracy in the automated interpretation of large epma data sets by the use of an expert system Type A1 Journal article
  Year 1988 Publication Journal of research of the National Bureau of Standards (1934) Abbreviated Journal  
  Volume 93 Issue (up) 3 Pages 260-264  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Chemometrics (Mitac 3)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1988P035100026 Publication Date 2012-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0091-0635 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149777 Serial 5660  
Permanent link to this record
 

 
Author Adams, F.; Adriaens, A.; Aerts, A.; de Raedt, I.; Janssens, K.; Schalm, O. doi  openurl
  Title Micro and surface analysis in archaeology Type A1 Journal article
  Year 1997 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 12 Issue (up) 3 Pages 257-265  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1997WN16300001 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited Open Access  
  Notes Approved Most recent IF: 3.379; 1997 IF: 3.595  
  Call Number UA @ admin @ c:irua:16274 Serial 5711  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: