|   | 
Details
   web
Records
Author Zhang, L.; Fernández Becerra, V.; Covaci, L.; Milošević, M.V.
Title Electronic properties of emergent topological defects in chiral p-wave superconductivity Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 024520
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Chiral p-wave superconductors in applied magnetic field can exhibit more complex topological defects than just conventional superconducting vortices, due to the two-component order parameter (OP) and the broken time-reversal symmetry. We investigate the electronic properties of those exotic states, some of which contain clusters of one-component vortices in chiral components of the OP and/or exhibit skyrmionic character in the relative OP space, all obtained as a self-consistent solution of the microscopic Bogoliubov-de Gennes equations. We reveal the link between the local density of states (LDOS) of the novel topological states and the behavior of the chiral domain wall between the OP components, enabling direct identification of those states in scanning tunneling microscopy. For example, a skyrmion always contains a closed chiral domain wall, which is found to be mapped exactly by zero-bias peaks in LDOS. Moreover, the LDOS exhibits electron-hole asymmetry, which is different from the LDOS of conventional vortex states with same vorticity. Finally, we present the magnetic field and temperature dependence of the properties of a skyrmion, indicating that this topological defect can be surprisingly large in size, and can be pinned by an artificially indented nonsuperconducting closed path in the sample. These features are expected to facilitate the experimental observation of skyrmionic states, thereby enabling experimental verification of chirality in emerging superconducting materials.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000381479500002 Publication Date 2016-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:135742 Serial 4303
Permanent link to this record
 

 
Author Klimin, S.N.; Tempere, J.; Verhelst, N.; Milošević, M.V.
Title Finite-temperature vortices in a rotating Fermi gas Type A1 Journal article
Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A
Volume 94 Issue (up) 94 Pages 023620
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract Vortices and vortex arrays have been used as a hallmark of superfluidity in rotated, ultracold Fermi gases. These superfluids can be described in terms of an effective field theory for a macroscopic wave function representing the field of condensed pairs, analogous to the Ginzburg-Landau theory for superconductors. Here we establish how rotation modifies this effective field theory, by rederiving it starting from the action of Fermi gas in the rotating frame of reference. The rotation leads to the appearance of an effective vector potential, and the coupling strength of this vector potential to the macroscopic wave function depends on the interaction strength between the fermions, due to a renormalization of the pair effective mass in the effective field theory. The mass renormalization derived here is in agreement with results of functional renormalization-group theory. In the extreme Bose-Einstein condensate regime, the pair effective mass tends to twice the fermion mass, in agreement with the physical picture of a weakly interacting Bose gas of molecular pairs. Then we use our macroscopic-wave-function description to study vortices and the critical rotation frequencies to form them. Equilibrium vortex state diagrams are derived and they are in good agreement with available results of the Bogoliubov-de Gennes theory and with experimental data.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y. Editor
Language Wos 000381473100001 Publication Date 2016-08-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9934 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 6 Open Access
Notes ; We are grateful to G. C. Strinati and H. Warringa for valuable discussions. This research was supported by the Flemish Research Foundation Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N, by the Scientific Research Network of the Flemish Research Foundation, Grant No. WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved Most recent IF: 2.925
Call Number UA @ lucian @ c:irua:135686 Serial 4304
Permanent link to this record
 

 
Author Sisakht, E.T.; Fazileh, F.; Zare, M.H.; Zarenia, M.; Peeters, F.M.
Title Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 085417
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding (TB) approximation with inclusion of the spin-orbit interaction, we predict a topological phase transition in the electronic band structure of phosphorene in the presence of axial strains. We derive a low-energy TB Hamiltonian that includes the spin-orbit interaction for bulk phosphorene. Applying a compressive biaxial in-plane strain and perpendicular tensile strain in ranges where the structure is still stable leads to a topological phase transition. We also examine the influence of strain on zigzag phosphorene nanoribbons (zPNRs) and the formation of the corresponding protected edge states when the system is in the topological phase. For zPNRs up to a width of 100 nm the energy gap is at least three orders of magnitude larger than the thermal energy at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000381600800004 Publication Date 2016-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 76 Open Access
Notes ; This work was supported by Ministry of Science, Research and Technology, Iran. M.Z. acknowledges support as a postdoctoral fellow of the Flemish Research Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:135643 Serial 4309
Permanent link to this record
 

 
Author Bekaert, J.; Vercauteren, S.; Aperis, A.; Komendová, L.; Prozorov, R.; Partoens, B.; Milošević, M.V.
Title Anisotropic type-I superconductivity and anomalous superfluid density in OsB2 Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 144506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a microscopic study of superconductivity in OsB2 , and discuss the origin and characteristic length

scales of the superconducting state. From first-principles we show that OsB2 is characterized by three different

Fermi sheets, and we prove that this fermiology complies with recent quantum-oscillation experiments. Using the

found microscopic properties, and experimental data from the literature, we employ Ginzburg-Landau relations

to reveal that OsB2 is a distinctly type-I superconductor with a very low Ginzburg-Landau parameter κ—a rare

property among compound materials. We show that the found coherence length and penetration depth corroborate

the measured thermodynamic critical field. Moreover, our calculation of the superconducting gap structure using

anisotropic Eliashberg theory and ab initio calculated electron-phonon interaction as input reveals a single but

anisotropic gap. The calculated gap spectrum is shown to give an excellent account for the unconventional

behavior of the superfluid density of OsB2 measured in experiments as a function of temperature. This reveals

that gap anisotropy can explain such behavior, observed in several compounds, which was previously attributed

solely to a two-gap nature of superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385622500009 Publication Date 2016-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes Fonds Wetenschappelijk Onderzoek; European Cooperation in Science and Technology, MP1201 ; Vetenskapsrådet; Approved Most recent IF: 3.836
Call Number CMT @ cmt @ c:irua:139020 Serial 4338
Permanent link to this record
 

 
Author De Beule, C.; Ziani, N.T.; Zarenia, M.; Partoens, B.; Trauzettel, B.
Title Correlation and current anomalies in helical quantum dots Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 155111
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the ground-state properties of a quantum dot defined on the surface of a strong three-dimensional time-reversal invariant topological insulator. Confinement is realized by ferromagnetic barriers and Coulomb interaction is treated numerically for up to seven electrons in the dot. Experimentally relevant intermediate interaction strengths are considered. The topological origin of the dot has several consequences: (i) spin polarization increases and the ground state exhibits quantum phase transitions at specific angular momenta as a function of interaction strength, (ii) the onset of Wigner correlations takes place mainly in one spin channel, and (iii) the ground state is characterized by a robust persistent current that changes sign as a function of the distance from the center of the dot.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385242200001 Publication Date 2016-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; We thank F. Cavaliere, F. Crepin, C. Felser, and B. Yan for interesting discussions, and S. Curreli for performing the finite-element calculation of the magnetic field in COMSOL. C.D.B. and M.Z. are supported by the Flemish Research Foundation (FWO). N.T.Z. and B.T. acknowledge financial support by the DFG (SPP1666 and SFB1170 “ToCoTronics”), the Helmholtz Foundation (VITI), and the ENB Graduate School on “Topological Insulators.” ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:137234 Serial 4351
Permanent link to this record
 

 
Author Mirzakhani, M.; Zarenia, M.; da Costa, D.R.; Ketabi, S.A.; Peeters, F.M.
Title Energy levels of ABC-stacked trilayer graphene quantum dots with infinite-mass boundary conditions Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 165423
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the continuum model, we investigate the confined states and the corresponding wave functions of ABC-stacked trilayer graphene (TLG) quantum dots (QDs). First, a general infinite-mass boundary condition is derived and applied to calculate the electron and hole energy levels of a circular QD in both the absence and presence of a perpendicular magnetic field. Our analytical results for the energy spectra agree with those obtained by using the tight-binding model, where a TLG QD is surrounded by a staggered potential. Our findings show that (i) the energy spectrum exhibits intervalley symmetry E-K(e)(m) = -E-K'(h)(m) for the electron (e) and hole (h) states, where m is the angular momentum quantum number, (ii) the zero-energy Landau level (LL) is formed by the magnetic states with m <= 0 for both Dirac valleys, that is different from monolayer and bilayer graphene QD with infinite-mass potential in which only one of the cones contributes, and (iii) groups of three quantum Hall edge states in the tight-binding magnetic spectrum approach the zero LL, which results from the layer symmetry in TLG QDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386168000011 Publication Date 2016-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Brazilian Council for Research (CNPq), the Science without Borders program, PRONEX/FUNCAP, and CAPES foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:138174 Serial 4353
Permanent link to this record
 

 
Author Xiao, Y.M.; Xu, W.; Van Duppen, B.; Peeters, F.M.
Title Infrared to terahertz optical conductivity of n-type and p-type monolayer MoS2 in the presence of Rashba spin-orbit coupling Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 155432
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the effect of Rashba spin-orbit coupling (SOC) on the optoelectronic properties of n- and p-type monolayer MoS2. The optical conductivity is calculated within the Kubo formalism. We find that the spin-flip transitions enabled by the Rashba SOC result in a wide absorption window in the optical spectrum. Furthermore, we evaluate the effects of the polarization direction of the radiation, temperature, carrier density, and the strength of the Rashba spin-orbit parameter on the optical conductivity. We find that the position, width, and shape of the absorption peak or absorption window can be tuned by varying these parameters. This study shows that monolayer MoS2 can be a promising tunable optical and optoelectronic material that is active in the infrared to terahertz spectral range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386097800003 Publication Date 2016-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 20 Open Access
Notes ; Y.M.X. acknowledges financial support from the China Scholarship Council (CSC). This work was also supported by the National Natural Science Foundation of China (Grant No. 11574319), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. B.V.D. is supported by a Ph.D. fellowship from the Flemish Science Foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:138175 Serial 4355
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Senger, R.T.; Peeters, F.M.; Sahin, H.
Title Mechanical properties of monolayer GaS and GaSe crystals Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 245407
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The mechanical properties of monolayer GaS and GaSe crystals are investigated in terms of their elastic constants: in-plane stiffness (C), Poisson ratio (nu), and ultimate strength (sigma(U)) by means of first-principles calculations. The calculated elastic constants are compared with those of graphene and monolayer MoS2. Our results indicate that monolayer GaS is a stiffer material than monolayer GaSe crystals due to the more ionic character of the Ga-S bonds than the Ga-Se bonds. Although their Poisson ratio values are very close to each other, 0.26 and 0.25 for GaS and GaSe, respectively, monolayer GaS is a stronger material than monolayer GaSe due to its slightly higher sU value. However, GaS and GaSe crystals are found to be more ductile and flexible materials than graphene and MoS2. We have also analyzed the band-gap response of GaS and GaSe monolayers to biaxial tensile strain and predicted a semiconductor-metal crossover after 17% and 14% applied strain, respectively, for monolayer GaS and GaSe. In addition, we investigated how the mechanical properties are affected by charging. We found that the flexibility of single layer GaS and GaSe displays a sharp increase under 0.1e/cell charging due to the repulsive interactions between extra charges located on chalcogen atoms. These charging-controllable mechanical properties of single layers of GaS and GaSe can be of potential use for electromechanical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000389503400008 Publication Date 2016-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 108 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. R.T.S. acknowledges the support from TUBITAK through project 114F397. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:139229 Serial 4356
Permanent link to this record
 

 
Author Khoeini, F.; Shakouri; Peeters, F.M.
Title Peculiar half-metallic state in zigzag nanoribbons of MoS2 : spin filtering Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 125412
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Layered structures of molybdenum disulfide (MoS2) belong to a new class of two-dimensional (2D) semiconductor materials in which monolayers exhibit a direct band gap in their electronic spectrum. This band gap has recently been shown to vanish due to the presence of metallic edge modes when MoS2 monolayers are terminated by zigzag edges on both sides. Here, we demonstrate that a zigzag nanoribbon of MoS2, when exposed to an external exchange field in combination with a transverse electric field, has the potential to exhibit a peculiar half-metallic nature and thereby allows electrons of only one spin direction to move. The peculiarity of such spin-selective conductors originates from a spin switch near the gap-closing region, so the allowed spin orientation can be controlled by means of an external gate voltage. It is shown that the induced half-metallic phase is resistant to random fluctuations of the exchange field as well as the presence of edge vacancies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383238800009 Publication Date 2016-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:137130 Serial 4360
Permanent link to this record
 

 
Author Callewaert, V.; Shastry, K.; Saniz, R.; Makkonen, I.; Barbiellini, B.; Assaf, B.A.; Heiman, D.; Moodera, J.S.; Partoens, B.; Bansil, A.; Weiss, A.H.;
Title Positron surface state as a spectroscopic probe for characterizing surfaces of topological insulator materials Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 115411
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Topological insulators are attracting considerable interest due to their potential for technological applications and as platforms for exploring wide-ranging fundamental science questions. In order to exploit, fine-tune, control, and manipulate the topological surface states, spectroscopic tools which can effectively probe their properties are of key importance. Here, we demonstrate that positrons provide a sensitive probe for topological states and that the associated annihilation spectrum provides a technique for characterizing these states. Firm experimental evidence for the existence of a positron surface state near Bi2Te2Se with a binding energy of E-b = 2.7 +/- 0.2 eV is presented and is confirmed by first-principles calculations. Additionally, the simulations predict a significant signal originating from annihilation with the topological surface states and show the feasibility to detect their spin texture through the use of spin-polarized positron beams.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383232800012 Publication Date 2016-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes ; I.M. acknowledges discussions with M. Ervasti and A. Harju. V.C. and R.S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. The computational resources and services used in this paper were, in part, provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government (EWI Department). I.M. acknowledges financial support from the Academy of Finland (Projects No. 285809 and No. 293932). The work at Northeastern University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences Grant No. DE-FG02-07ER46352 and benefited from Northeastern University's Advanced Scientific Computation Center (ASCC) and the NERSC supercomputing center through DOE Grant No. DE-AC02-05CH11231. K.S. and A.W. acknowledge financial support from the National Science Foundation through Grants No. DMR-MRI-1338130 and No. DMR-1508719. D.H. received financial support from the National Science Foundation (Grant No. ECCS-1402738). J.S.M. was supported by the STC Center for Integrated Quantum Materials under NSF Grants No. DMR-1231319, No. DMR-1207469, and ONR Grant No. N00014-13-1-0301. B.A.A. also acknowledges support from the LabEx ENS-ICFP Grant No. ANR-10-LABX-0010/ANR-10-IDEX-0001-02 PSL. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:137134 Serial 4362
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Torun, E.; Senger, R.T.; Peeters, F.M.; Sahin, H.
Title Mg(OH)2-WS2 van der Waals heterobilayer : electric field tunable band-gap crossover Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 195403
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnesium hydroxide [Mg(OH)(2)] has a layered brucitelike structure in its bulk form and was recently isolated as a new member of two-dimensional monolayer materials. We investigated the electronic and optical properties of monolayer crystals of Mg(OH)(2) and WS2 and their possible heterobilayer structure by means of first-principles calculations. It was found that both monolayers of Mg(OH)(2) and WS2 are direct-gap semiconductors and these two monolayers form a typical van der Waals heterostructure with a weak interlayer interaction and a type-II band alignment with a staggered gap that spatially separates electrons and holes. We also showed that an out-of-plane electric field induces a transition from a staggered to a straddling-type heterojunction. Moreover, by solving the Bethe-Salpeter equation on top of single-shot G(0)W(0) calculations, we show that the low-energy spectrum of the heterobilayer is dominated by the intralyer excitons of the WS2 monolayer. Because of the staggered interfacial gap and the field-tunable energy-band structure, the Mg(OH)(2)-WS2 heterobilayer can become an important candidate for various optoelectronic device applications in nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386769400007 Publication Date 2016-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWOPegasus Long Marie Curie Fellowship. H.S. and R.T.S. acknowledge support from TUBITAK through Project No. 114F397. H.S. acknowledges support from Bilim Akademisi – The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:138205 Serial 4364
Permanent link to this record
 

 
Author Shumilin, A.V.; Baranov, V.V.; Kabanov, V.V.
Title Upper critical field in the model with finite-range interaction between electrons Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 174506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We develop a theory of the upper critical field in a BCS superconductor with a nonlocal interaction between electrons. We have shown that the nonlocal interaction is characterized by the parameter k(F)rho(0), where k(F) is the Fermi momentum and rho(0) is the radius of electron-electron interaction. The presence of the external magnetic field leads to the generation of additional components of the order parameter with different angular momenta. This effect leads to the enhancement of the upper critical field above the orbital limiting field. In addition the upward curvature in the temperature dependence of H-c2 (T) in the clean limit is predicted. The impurity scattering suppresses the effect in the dirty limit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387884100005 Publication Date 2016-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record
Impact Factor 3.836 Times cited Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:139166 Serial 4365
Permanent link to this record
 

 
Author Fernández Becerra, V.; Milošević, M.V.
Title Multichiral ground states in mesoscopic p-wave superconductors Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 184517
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using Ginzburg-Landau formalism, we investigate the effect of confinement on the ground state of mesoscopic chiral p-wave superconductors in the absence of magnetic field. We reveal stable multichiral states with domain walls separating the regions with different chiralities, as well as monochiral states with spontaneous currents flowing along the edges. We show that multichiral states can exhibit identifying signatures in the spatial profile of the magnetic field if those are not screened by edge currents in the case of strong confinement. Such magnetic detection of domain walls in topological superconductors can serve as long-sought evidence of broken time-reversal symmetry. Furthermore, when applying electric current to mesoscopic p-wave samples, we found a hysteretic behavior in the current-voltage characteristic that distinguishes states with and without domain walls, thereby providing another useful hallmark for indirect confirmation of chiral p-wave superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388816700001 Publication Date 2016-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO-Vlaanderen), the COST-EU action MP1201, and the MultiSuper network. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:139241 Serial 4456
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M.
Title Quantum transport in graphene Hall bars: Effects of vacancy disorder Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 235413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding model, we investigate the influence of vacancy disorder on electrical transport in graphene Hall bars in the presence of quantizing magnetic fields. Disorder, induced by a random distribution of monovacancies, breaks the graphene sublattice symmetry and creates states localized on the vacancies. These states are observable in the bend resistance, as well as in the total DOS. Their energy is proportional to the square root of the magnetic field, while their localization length is proportional to the cyclotron radius. At the energies of these localized states, the electron current flows around the monovacancies and, as we show, it can follow unexpected paths depending on the particular arrangement of vacancies. We study how these localized states change with the vacancy concentration, and what are the effects of including the next-nearest-neighbor hopping term. Our results are also compared with the situation when double vacancies are present in the system. Double vacancies also induce localized states, but their energy and magnetic field dependencies are different. Their localization energy scales linearly with the magnetic field, and their localization length appears not to depend on the field strength.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000389574200005 Publication Date 2016-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:140237 Serial 4459
Permanent link to this record
 

 
Author Heshmati-Moulai, A.; Simchi, H.; Esmaeilzadeh, M.; Peeters, F.M.
Title Phase transition and spin-resolved transport in MoS2 nanoribbons Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 94 Pages 235424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic structure and transport properties of monolayer MoS2 are studied using a tight-binding approach coupled with the nonequilibrium Green's function method. A zigzag nanoribbon of MoS2 is conducting due to the intersection of the edge states with the Fermi level that is located within the bulk gap. We show that applying a transverse electric field results in the disappearance of this intersection and turns the material into a semiconductor. By increasing the electric field the band gap undergoes a two stage linear increase after which it decreases and ultimately closes. It is shown that in the presence of a uniform exchange field, this electric field tuning of the gap can be exploited to open low energy domains where only one of the spin states contributes to the electronic conductance. This introduces possibilities in designing spin filters for spintronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000394546100005 Publication Date 2016-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:141978 Serial 4557
Permanent link to this record
 

 
Author Mulkers, J.; Van Waeyenberge, B.; Milošević, M.V.
Title Effects of spatially engineered Dzyaloshinskii-Moriya interaction in ferromagnetic films Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 144401
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Dzyaloshinskii-Moriya interaction (DMI) is a chiral interaction that favors formation of domain walls. Recent experiments and ab initio calculations show that there are multiple ways to modify the strength of the interfacially induced DMI in thin ferromagnetic films with perpendicular magnetic anisotropy. In this paper we reveal theoretically the effects of spatially varied DMI on the magnetic state in thin films. In such heterochiral 2D structures we report several emergent phenomena, ranging from the equilibrium spin canting at the interface between regions with different DMI, over particularly strong confinement of domain walls and skyrmions within high-DMI tracks, to advanced applications such as domain tailoring nearly at will, design of magnonic waveguides, and much improved skyrmion racetrack memory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399382100003 Publication Date 2017-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 60 Open Access
Notes Fonds Wetenschappelijk Onderzoek, G098917N ; Approved Most recent IF: 3.836
Call Number CMT @ cmt @ c:irua:141917 Serial 4534
Permanent link to this record
 

 
Author Li, L.L.; Zarenia, M.; Xu, W.; Dong, H.M.; Peeters, F.M.
Title Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley to intervalley transition Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 045409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The magnetic-field dependence of the energy spectrum, wave function, binding energy, and oscillator strength of exciton states confined in a circular graphene quantum dot (CGQD) is obtained within the configuration interaction method. We predict that (i) excitonic effects are very significant in the CGQD as a consequence of a combination of geometric confinement, magnetic confinement, and reduced screening; (ii) two types of excitons (intravalley and intervalley) are present in the CGQD because of the valley degree of freedom in graphene; (iii) the intravalley and intervalley exciton states display different magnetic-field dependencies due to the different electron-hole symmetries of the single-particle energy spectra; (iv) with increasing magnetic field, the exciton ground state in the CGQD undergoes an intravalley to intervalley transition accompanied by a change of angular momentum; (v) the exciton binding energy does not increase monotonically with the magnetic field due to the competition between geometric and magnetic confinements; and (vi) the optical transitions of the intervalley and intravalley excitons can be tuned by the magnetic field, and valley-dependent excitonic transitions can be realized in a CGQD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000391856000006 Publication Date 2017-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grants No. 11304316, No. 11574319, and No. 11604380), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:141444 Serial 4555
Permanent link to this record
 

 
Author Satarifard, V.; Mousaei, M.; Hadadi, F.; Dix, J.; Sobrino Fernández, M.; Carbone, P.; Beheshtian, J.; Peeters, F.M.; Neek-Amal, M.
Title Reversible structural transition in nanoconfined ice Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 064105
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The report on square ice sandwiched between two graphene layers by Algara-Siller et al. [Nature (London) 519, 443 (2015)] has generated a large interest in this system. By applying high lateral pressure on nanoconfined water, we found that monolayer ice is transformed to bilayer ice when the two graphene layers are separated by H = 6,7 angstrom. It was also found that three layers of a denser phase of ice with smaller lattice constant are formed if we start from bilayer ice and apply a lateral pressure of about 0.7 GPa with H = 8,9 angstrom. The lattice constant (2.5-2.6 angstrom) in both transitions is found to be smaller than those typical for the known phases of ice and water, i.e., 2.8 angstrom. We validate these results using ab initio calculations and find good agreement between ab initio O-O distance and those obtained from classical molecular dynamics simulations. The reversibility of the mentioned transitions is confirmed by decompressing the systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393943300005 Publication Date 2017-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:141994 Serial 4558
Permanent link to this record
 

 
Author Han, F.W.; Xu, W.; Li, L.L.; Zhang, C.; Dong, H.M.; Peeters, F.M.
Title Electronic and transport properties of n-type monolayer black phosphorus at low temperatures Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 115436
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a detailed theoretical study of the electronic and transport properties of monolayer black phosphorus (BP). This study is motivated by recent experimental activities in investigating n-type few-layer BP systems. The electron density of states, the screening length, and the low-temperature electron mobility are calculated for monolayer BP (MLBP). In particular, the electron transport mobilities along the armchair and zigzag directions are examined on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation. The anisotropic electron mobilities in MLBP along different directions are demonstrated where the electron-impurity scattering is considered. Furthermore, we compare the results obtained from two electronic band structures of MLBP and find that the simplified model can describe quite rightly the electronic and transport properties of MLBP. This study is relevant to the application of few-layer BP based electronic systems as advanced electronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399140700012 Publication Date 2017-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes National Natural Science Foundation of China, 11574319 11304316 11304317 11604380 ; Ministry of Science and Technology of the People's Republic of China, 2011YQ130018 ; Chinese Academy of Sciences; Approved Most recent IF: 3.836
Call Number CMT @ cmt @ c:irua:142431 Serial 4564
Permanent link to this record
 

 
Author Zhao, H.J.; Misko, V.R.; Tempere, J.; Nori, F.
Title Pattern formation in vortex matter with pinning and frustrated intervortex interactions Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 104519
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract We investigate the effects related to vortex-core deformations when vortices approach each other. As a result of these vortex-core deformations, the vortex-vortex interaction effectively acquires an attractive component leading to a variety of vortex patterns typical for systems with nonmonotonic repulsive-attractive interaction, such as stripes and labyrinths. The core deformations are anisotropic and can induce frustration in the vortex-vortex interaction. In turn, this frustration has an impact on the resulting vortex patterns, which are analyzed in the presence of additional random pinning, as a function of the pinning strength. This analysis can be applicable to vortices in multiband superconductors or to vortices in Bose-Einstein condensates.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000399138800006 Publication Date 2017-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; We acknowledge fruitful discussions with E. Babaev and V. Gladilin. This work is partially supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20150595), the National Natural Science Foundation of China (Grants No. NSFC-U1432135, No. 11611140101, and No. 11674054), the “Odysseus” program of the Flemish Government and Flemish Research Foundation (FWO-Vl), the Flemish Research Foundation (through Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N), the Research Fund of the University of Antwerp, the RIKEN iTHES Project, the MURI Center for Dynamic Magneto-Optics via the AFOSR Award No. FA9550-14-1-0040, the IMPACT program of JST, a Grant-in-Aid for Scientific Research (A), the Japan Society for the Promotion of Science (KAKENHI), CREST, and a grant from the John Templeton Foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:142429 Serial 4602
Permanent link to this record
 

 
Author Michel, K.H.; Çakir, D.; Sevik, C.; Peeters, F.M.
Title Piezoelectricity in two-dimensional materials : comparative study between lattice dynamics and ab initio calculations Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 125415
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The elastic constant C-11 and piezoelectric stress constant e(1),(11) of two-dimensional (2D) dielectric materials comprising h-BN, 2H-MoS2, and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000396013400005 Publication Date 2017-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; The authors acknowledge useful discussions with L. Wirtz and A. Molina-Sanchez. This work was supported by the Methusalem program and the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:142444 Serial 4603
Permanent link to this record
 

 
Author De Beule, C.; Zarenia, M.; Partoens, B.
Title Transmission in graphene-topological insulator heterostructures Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 115424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate scattering of the topological surface state of a three-dimensional time-reversal invariant topological insulator when graphene is deposited on the topological-insulator surface. Specifically, we consider the (111) surface of a Bi2Se3-like topological insulator. We present a low-energy model for the graphene-topological insulator heterostructure and we calculate the transmission probability at zigzag and armchair edges of the deposited graphene, and the conductance through graphene nanoribbon barriers, and show that its features can be understood from antiresonances in the transmission probability.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000399216700004 Publication Date 2017-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; The authors would like to thank B. Van Duppen for interesting discussions. This work was supported by the Flemish Research Foundation (FWO) through the Aspirant Fellowship of Christophe De Beule. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:143652 Serial 4609
Permanent link to this record
 

 
Author de Sousa, G.O.; da Costa, D.R.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Unusual quantum confined Stark effect and Aharonov-Bohm oscillations in semiconductor quantum rings with anisotropic effective masses Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 205414
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effects of external electric and magnetic fields on the energy spectrum of quantum rings made out of a bidimensional semiconductor material with anisotropic band structures are investigated within the effective-mass model. The interplay between the effective-mass anisotropy and the radial confinement leads to wave functions that are strongly localized at two diametrically opposite regions where the kinetic energy is lowest due to the highest effective mass. We show that this quantum phenomenon has clear consequences on the behavior of the energy states in the presence of applied in-plane electric fields and out-of-plane magnetic fields. In the former, the quantum confined Stark effect is observed with either linear or quadratic shifts, depending on the direction of the applied field. As for the latter, the usual Aharonov-Bohm oscillations are not observed for a circularly symmetric confining potential, however they can be reinstated if an elliptic ring with an appropriate aspect ratio is chosen.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000401230600007 Publication Date 2017-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes ; This work was financially supported by CNPq under the PRONEX/FUNCAP grants, CAPES Foundation, the Flemish Science Foundation (FWO-Vl), and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:143746 Serial 4610
Permanent link to this record
 

 
Author Zarenia, M.; Neilson, D.; Partoens, B.; Peeters, F.M.
Title Wigner crystallization in transition metal dichalcogenides : a new approach to correlation energy Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue (up) 95 Pages 115438
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We introduce a new approach for the correlation energy of one- and two-valley two-dimensional electron gas (2DEG) systems. Our approach is based on an interpolation between two limits, a random phase approximation at high densities and a classical approach at low densities which gives excellent agreement with available Quantum Monte Carlo (QMC) calculations. The two-valley 2DEG model is introduced to describe the electron correlations in monolayer transition metal dichalcogenides (TMDs). We study the zero-temperature transition from a Fermi liquid to a quantum Wigner crystal phase in monolayer TMDs. Consistent with QMC, we find that electrons crystallize at r(s) = 31 in one-valley 2DEG. For two valleys, we predict Wigner crystallization at r(s) = 30, implying that valley degeneracy has little effect on the critical r(s), in contrast to an earlier claim.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000399141200003 Publication Date 2017-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was partially supported by the Flanders Research Foundation (FWO) and the Methusalem program of the Flemish government. D.N. acknowledges support by the University of Camerino FAR project CESEMN. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:142428 Serial 4613
Permanent link to this record
 

 
Author Horzum, S.; Torun, E.; Serin, T.; Peeters, F.M.
Title Structural, electronic and optical properties of Cu-doped ZnO : experimental and theoretical investigation Type A1 Journal article
Year 2016 Publication Philosophical magazine Abbreviated Journal Philos Mag
Volume 96 Issue (up) 96 Pages 1743-1756
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Experiments are supplemented with ab initio density functional theory (DFT) calculations in order to investigate how the structural, electronic and optical properties of zinc oxide (ZnO) thin films are modified upon Cu doping. Changes in characteristic properties of doped thin films, that are deposited on a glass substrate by sol-gel dip coating technique, are monitored using X-ray diffraction (XRD) and UV measurements. Our ab initio calculations show that the electronic structure of ZnO can be well described by DFT+U/G(0)W(0) method and we find that Cu atom substitutional doping in ZnO is the most favourable case. Our XRD measurements reveal that the crystallite size of the films decrease with increasing Cu doping. Moreover, we determine the optical constants such as refractive index, extinction coefficient, optical dielectric function and optical energy band gap values of the films by means of UV-Vis transmittance spectra. The optical band gap of ZnO the thin film linearly decreases from 3.25 to 3.20 eV at 5% doping. In addition, our calculations reveal that the electronic defect states that stem from Cu atoms are not optically active and the optical band gap is determined by the ZnO band edges. Experimentally observed structural and optical results are in good agreement with our theoretical results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000376076500002 Publication Date 2016-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1478-6435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.505 Times cited 29 Open Access
Notes ; Theoretical part of this work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. Experimental part of this work was supported by Ankara University BAP under Project Number [14B0443001]. ; Approved Most recent IF: 1.505
Call Number UA @ lucian @ c:irua:134161 Serial 4254
Permanent link to this record
 

 
Author Cândido, L.; Rino, J.-P.; Studart, N.; Peeters, F.M.
Title Classical model of clusters of screened charges in quantum dots Type A1 Journal article
Year 1997 Publication Brazilian journal of physics Abbreviated Journal Braz J Phys
Volume 27 Issue (up) A Pages 312-315
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication São Paulo Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0103-9733 ISBN Additional Links UA library record
Impact Factor 0.732 Times cited Open Access
Notes Approved Most recent IF: 0.732; 1997 IF: NA
Call Number UA @ lucian @ c:irua:19297 Serial 367
Permanent link to this record
 

 
Author Shi, J.M.; Farias, G.A.; Koenraad, P.M.; van de Stadt, A.F.W.; Peeters, F.M.; Wolter, J.H.; Devreese, J.T.
Title Correlation effects of DX centers on electron mobility in delta doped semiconductors investigated by Monte Carlo simulations Type A1 Journal article
Year 1997 Publication Brazilian journal of physics Abbreviated Journal Braz J Phys
Volume 27 Issue (up) A Pages 327-331
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication São Paulo Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0103-9733 ISBN Additional Links UA library record
Impact Factor 0.732 Times cited Open Access
Notes Approved Most recent IF: 0.732; 1997 IF: NA
Call Number UA @ lucian @ c:irua:19298 Serial 525
Permanent link to this record
 

 
Author Baelus, B.J.; Kadowaki, K.; Peeters, F.M.
Title Influence of surface defects on the vortex transitions in mesoscopic superconductors Type A1 Journal article
Year 2006 Publication AIP conference proceedings Abbreviated Journal
Volume 850 Issue (up) a-b Pages 745-746
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Solving the nonlinear Ginzburg-Landau equations self-consistently, we investigate the influence of a triangular surface defect (i.e. pacman shaped sample) on the vortex transitions in mesoscopic superconducting disks. Depending on the size of the defect, vortices may enter/leave one by one or in pairs.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-243x ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94704 Serial 1639
Permanent link to this record
 

 
Author Schweigert, I.V.; Schweigert, V.A.; Peeters, F.M.
Title Influence of the lattice symmetry on melting of the bilayer Wigner crystal Type A1 Journal article
Year 2000 Publication Journal de physique: 4 T2 – International Conference on Strongly Coupled Coulomb Systems, SEP 04-10, 1999, ST MALO, FRANCE Abbreviated Journal J Phys Iv
Volume 10 Issue (up) P5 Pages 117-120
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The melting transition of the five different lattices of a bilayer crystal is studied using the Monte-Carlo (MC) technique. We found the surprising result that the square lattice has a substantial larger melting temperature as compared to the other lattice structures, which is a consequence of the specific topology of the temperature induced defects. A new melting criterion is formulated which we show to be universal for bilayers as well as for single layer crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Les Ulis Editor
Language Wos 000087026300016 Publication Date 2007-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:103954 Serial 1647
Permanent link to this record
 

 
Author Ivanov, V.A.; Krstajic, P.M.; Peeters, F.M.; Fleurov, V.; Kikoin, K.
Title On the ferromagnetic exchange in Mn-doped III-V semiconductors Type A1 Journal article
Year 2003 Publication Physica: B : condensed matter T2 – 23rd International Conference on Low Temperature Physics (LT23), AUG 20-27, 2002, HIROSHIMA, JAPAN Abbreviated Journal Physica B
Volume 329 Issue (up) Part 2 Pages 1282-1283
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We propose a microscopic model for double exchange in GaAs:Mn, GaP:Mn which is based on the interaction between the transition metal impurities and the heavy holes of host semiconductor. The kinematic exchange is derived and the Curie temperature is calculated which agrees with recent experiments. (C) 2003 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000183802700400 Publication Date 2003-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.386 Times cited 5 Open Access
Notes Approved Most recent IF: 1.386; 2003 IF: 0.908
Call Number UA @ lucian @ c:irua:103813 Serial 2435
Permanent link to this record