|   | 
Details
   web
Records
Author Chen, Q.; Skorikov, A.; van der Hoeven, J.E.S.; van Blaaderen, A.; Albrecht, W.; Perez-Garza, H.H.; Bals, S.
Title Estimation of temperature homogeneity in MEMS-based heating nanochips via quantitative HAADF-STEM tomography Type A1 Journal article
Year 2023 Publication Particle and particle systems characterization Abbreviated Journal
Volume 41 Issue (down) 2 Pages 1-8
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Sample holders for transmission electron microscopy (TEM) based on micro-electro-mechanical systems (MEMS) have recently become popular for investigating the behavior of nanomaterials under in situ or environmental conditions. The accuracy and reproducibility of these in situ holders are essential to ensure the reliability of experimental results. In addition, the uniformity of an applied temperature trigger across the MEMS chip is a crucial parameter. In this work, it is measured the temperature homogeneity of MEMS-based heating sample supports by locally analyzing the dynamics of heat-induced alloying of Au@Ag nanoparticles located in different regions of the support through quantitative fast high-angle annular dark-field scanning TEM tomography. These results demonstrate the superior temperature homogeneity of a microheater design based on a heating element shaped as a circular spiral with a width decreasing outwards compared to a double spiral-shaped designed microheater. The proposed approach to measure the local temperature homogeneity based on the thermal properties of bimetallic nanoparticles will support the future development of MEMS-based heating supports with improved thermal properties and in situ studies where high precision in the temperature at a certain position is required. This schematic delineates an approach to quantifying potential localized temperature deviation within a nanochip. Employing two comparable nanoparticles as thermal probes in discrete nanochip regions, the alloying kinetics of these nanoparticles are monitorable using in situ quantitative high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) tomography, thus enabling the precise estimation of local temperature deviations.image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001060394600001 Publication Date 2023-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.7 Times cited Open Access Not_Open_Access
Notes This project was funded from the European Commission and The Marie Sklodowska-Curie Innovative Training Network MUMMERING (Grant Agreement no. 765604) Approved Most recent IF: 2.7; 2023 IF: 4.474
Call Number UA @ admin @ c:irua:199219 Serial 8863
Permanent link to this record
 

 
Author Leinders, G.; Grendal, O.G.; Arts, I.; Bes, R.; Prozheev, I.; Orlat, S.; Fitch, A.; Kvashnina, K.; Verwerft, M.
Title Refinement of the uranium dispersion corrections from anomalous diffraction Type A1 Journal Article
Year 2024 Publication Journal of Applied Crystallography Abbreviated Journal J Appl Cryst
Volume 57 Issue (down) 2 Pages 284-295
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The evolution of the uranium chemical state in uranium compounds, principally in the oxides, is of concern in the context of nuclear fuel degradation under storage and repository conditions, and in accident scenarios. The U–O system shows complicated phase relations between single-valence uranium dioxide (UO<sub>2</sub>) and different mixed-valence compounds (<italic>e.g.</italic>U<sub>4</sub>O<sub>9</sub>, U<sub>3</sub>O<sub>7</sub>and U<sub>3</sub>O<sub>8</sub>). To try resolving the electronic structure associated with unique atomic positions, a combined application of diffraction and spectroscopic techniques, such as diffraction anomalous fine structure (DAFS), can be considered. Reported here is the application of two newly developed routines for assessing a DAFS data set, with the aim of refining the uranium X-ray dispersion corrections. High-resolution anomalous diffraction data were acquired from polycrystalline powder samples of UO<sub>2</sub>(containing tetravalent uranium) and potassium uranate (KUO<sub>3</sub>, containing pentavalent uranium) using synchrotron radiation in the vicinity of the U<italic>L</italic><sub>3</sub>edge (17.17 keV). Both routines are based on an iterative refinement of the dispersion corrections, but they differ in either using the intensity of a selection of reflections or doing a full-pattern (Rietveld method) refinement. The uranium dispersion corrections obtained using either method are in excellent agreement with each other, and they show in great detail the chemical shifts and differences in fine structure expected for tetravalent and pentavalent uranium. This approach may open new possibilities for the assessment of other, more complicated, materials such as mixed-valence compounds. Additionally, the DAFS methodology can offer a significant resource optimization because each data set contains both structural (diffraction) and chemical (spectroscopy) information, which can avoid the requirement to use multiple experimental stations at synchrotron sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001208800100008 Publication Date 2024-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1600-5767 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.1 Times cited Open Access
Notes FPS Economy, SF-CORMOD; Approved Most recent IF: 6.1; 2024 IF: 2.495
Call Number EMAT @ emat @c:irua:206011 Serial 9127
Permanent link to this record
 

 
Author Susi, T.; Madsen, J.; Ludacka, U.; Mortensen, J.J.; Pennycook, T.J.; Lee, Z.; Kotakoski, J.; Kaiser, U.; Meyer, J.C.
Title Efficient first principles simulation of electron scattering factors for transmission electron microscopy Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 197 Issue (down) 197 Pages 16-22
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron microscopy is a powerful tool for studying the properties of materials down to their atomic structure. In many cases, the quantitative interpretation of images requires simulations based on atomistic structure models. These typically use the independent atom approximation that neglects bonding effects, which may, however, be measurable and of physical interest. Since all electrons and the nuclear cores contribute to the scattering potential, simulations that go beyond this approximation have relied on computationally highly demanding all-electron calculations. Here, we describe a new method to generate ab initio electrostatic potentials when describing the core electrons by projector functions. Combined with an interface to quantitative image simulations, this implementation enables an easy and fast means to model electron scattering. We compare simulated transmission electron microscopy images and diffraction patterns to experimental data, showing an accuracy equivalent to earlier all-electron calculations at a much lower computational cost.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000456311700003 Publication Date 2018-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 3 Open Access
Notes Approved Most recent IF: 2.843
Call Number UA @ admin @ c:irua:165938 Serial 6296
Permanent link to this record
 

 
Author Vanrenterghem, B.; Papaderakis, A.; Sotiropoulos, S.; Tsiplakides, D.; Balomenou, S.; Bals, S.; Breugelmans, T.
Title The reduction of benzylbromide at Ag-Ni deposits prepared by galvanic replacement Type A1 Journal article
Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 196 Issue (down) 196 Pages 756-768
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract A two-step procedure was applied to prepare bimetallic Ag-Ni glassy carbon supported catalysts (Ag-Ni/GC). First Ni layers were prepared by means of electrodeposition in an aqueous deaerated nickel chloride + nickel sulfamate + boric acid solution. Second, the partial replacement of Ni layers by Ag was achieved upon immersion of the latter in solutions containing silver nitrate. Three different pretreatment protocols were used after preparation of the Ag/Ni deposits; as prepared, cathodised in alkali and scanned in acid. After the pretreatment the surface was characterised by means of spectroscopy techniques (scanning electron microscopy and energy dispersive x-ray) and electrochemically in an alkali NaOH solution through cyclic voltammetry (CV). Afterwards the modified electrodes were tested for the reduction of benzylbromide in acetonitrile solutions by using CV and were found to show improved activity compared to bulk Ag electrode. The highest activity towards benzylbromide reduction was observed for pre-cathodised Ag-Ni electrodes. A final stage of the research focuses on the development of a practical Ag/Ni foam catalyst for the reduction of benzylbromide. Due to the high electrochemical active surface area of Ag/Ni foam, a higher conversion of benzyl bromide was obtained in comparison with bulk Ag.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372877400083 Publication Date 2016-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 21 Open Access OpenAccess
Notes The quanta 250 FEG microscope of the Electron Microscopy for Material Science group at the University of Antwerp was funded by the Hercules foundation of the Flemish government. Sara Bals acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 4.798
Call Number c:irua:132081 Serial 4065
Permanent link to this record
 

 
Author Pennycook, T.J.; Martinez, G.T.; Nellist, P.D.; Meyer, J.C.
Title High dose efficiency atomic resolution imaging via electron ptychography Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 196 Issue (down) 196 Pages 131-135
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Radiation damage places a fundamental limitation on the ability of microscopy to resolve many types of materials at high resolution. Here we evaluate the dose efficiency of phase contrast imaging with electron ptychography. The method is found to be far more resilient to temporal incoherence than conventional and spherical aberration optimized phase contrast imaging, resulting in significantly greater clarity at a given dose. This robustness is explained by the presence of achromatic lines in the four dimensional ptychographic dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451180800018 Publication Date 2018-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 1 Open Access
Notes Approved Most recent IF: 2.843
Call Number UA @ admin @ c:irua:165939 Serial 6301
Permanent link to this record
 

 
Author Drozhzhin, O.A.; Sumanov, V.D.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Baranov, A.N.; Stevenson, K.J.; Antipov, E.V.
Title Switching between solid solution and two-phase regimes in the Li1-xFe1-yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study Type A1 Journal article
Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 191 Issue (down) 191 Pages 149-157
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electrochemical properties and phase transformations during (de)insertion of Li+ in LiFePO4, LiFe0.9Mn0.1PO4 and LiFe0.5Mn0.5PO4 are studied by means of galvanostatic cycling, potential intermittent titration technique (PITT) and in situ X-ray powder diffraction. Different modes of switching between the solid solution and two-phase regimes are revealed which are influenced by the Mn content in Li1-xFe1-yMnyPO4. Additionally, an increase in electrochemical capacity with the Mn content is observed at high rates of galvanostatic cycling (10C, 20C), which is in good agreement with the numerically estimated contribution of the solid solution mechanism determined from PITT data. The observed asymmetric behavior of the phase transformations in Li1-xFe0.5Mn0.5PO4 during charge and discharge is discussed. For the first time, the crystal structures of electrochemically deintercalated Li1-xFe0.5Mn0.5PO4 with different Li content – LiFe0.5Mn0.5PO4, Li0.5Fe0.5Mn0.5PO4 and Li0.1Fe0.5Mn0.5PO4 – are refined, including the occupancy factors of the Li position. This refinement is done using electron diffraction tomography data. The crystallographic analyses of Li1-xFe0.5Mn0.5PO4 reveal that at x = 0.5 and 0.9 the structure retains the Pnma symmetry and the main motif of the pristine x = 0 structure without noticeable short range order effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371143200018 Publication Date 2016-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 27 Open Access
Notes This work was supported by the Russian Foundation of Basic Research (grants No. 14-29-04064 and 14-03-31473), Skolkovo Institute of Science and Technology, and the Lomonosov Moscow State University Program of Development. J. Hadermann, O. M. Karakulina and A. M. Abakumov acknowl- edge support from FWO under grant G040116N. Approved Most recent IF: 4.798
Call Number c:irua:131911 Serial 4032
Permanent link to this record
 

 
Author Reguera, J.; Jiménez de Aberasturi, D.; Naomi Winckelmans, N.; Langer, J.; Bals, S.; Liz-Marzan, L.M.
Title Synthesis of Janus plasmonic-magnetic, star-sphere nanoparticles, and their application in SERS detection Type A1 Journal article
Year 2016 Publication Faraday discussions Abbreviated Journal Faraday Discuss
Volume 191 Issue (down) 191 Pages 47-59
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multicomponent nanoparticles are of particular interest due to a unique combination of properties at the nanoscale, which make them suitable for a wide variety of applications. Among them, Janus nanoparticles, presenting two distinct surface regions, can lead to specific interactions with interfaces, biomolecules, membranes etc. We report the synthesis of Janus nanoparticles comprising iron oxide nanospheres and gold nanostars, through two consecutive seed-mediated-growth steps. Electron tomography combining HAADF-STEM and EDX mapping has been performed to evaluate the spatial distribution of the two components of the nanoparticle, showing their clear separation in a Janus morphology. Additionally, SERS measurements assisted by magnetic separation were carried out to assess the application of combined plasmonic and magnetic properties for sensing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385257300003 Publication Date 2016-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.588 Times cited 53 Open Access OpenAccess
Notes This work has been funded by the European Research Council (ERC Advanced Grant #267867, Plasmaquo). N.W. and S.B. acknowledge funding by the European Research Council (ERC Starting Grant #335078, Colouratom).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 3.588
Call Number c:irua:132891 Serial 4060
Permanent link to this record
 

 
Author Grieb, T.; Krause, F.F.; Schowalter, M.; Zillmann, D.; Sellin, R.; Müller-Caspary, K.; Mahr, C.; Mehrtens, T.; Bimberg, D.; Rosenauer, A.
Title Strain analysis from nano-beam electron diffraction : influence of specimen tilt and beam convergence Type A1 Journal article
Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 190 Issue (down) 190 Pages 45-57
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Strain analyses from experimental series of nano-beam electron diffraction (NBED) patterns in scanning transmission electron microscopy are performed for different specimen tilts. Simulations of NBED series are presented for which strain analysis gives results that are in accordance with experiment. This consequently allows to study the relation between measured strain and actual underlying strain. A two-tilt method which can be seen as lowest-order electron beam precession is suggested and experimentally implemented. Strain determination from NBED series with increasing beam convergence is performed in combination with the experimental realization of a probe-forming aperture with a cross inside. It is shown that using standard evaluation techniques, the influence of beam convergence on spatial resolution is lower than the influence of sharp rings around the diffraction disc which occur at interfaces and which are caused by the tails of the intensity distribution of the electron probe. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000432868800006 Publication Date 2018-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 1 Open Access OpenAccess
Notes ; This work was supported by the German Research Foundation (DFG) under Contracts RO2057/11-1 and RO2057/12-1. ; Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:151454 Serial 5041
Permanent link to this record
 

 
Author Villani, K.; Kirschhock, C.E.A.; Liang, D.; Van Tendeloo, G.; Martens, J.A.
Title Catalytic carbon oxidation over ruthenium-based catalysts Type A1 Journal article
Year 2006 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 45 Issue (down) 19 Pages 3106-3109
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000237533400016 Publication Date 2006-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 36 Open Access
Notes Approved Most recent IF: 11.994; 2006 IF: 10.232
Call Number UA @ lucian @ c:irua:59449 Serial 291
Permanent link to this record
 

 
Author Tirumalasetty, G.K.; van Huis, M.A.; Fang, C.M.; Xu, Q.; Tichelaar, F.D.; Hanlon, D.N.; Sietsma, J.; Zandbergen, H.W.
Title Characterization of NbC and (Nb, Ti)N nanoprecipitates in TRIP assisted multiphase steels Type A1 Journal article
Year 2011 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 59 Issue (down) 19 Pages 7406-7415
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multiphase steels utilising composite strengthening may be further strengthened via grain refinement or precipitation by the addition of microalloying elements. In this study a Nb microalloyed steel comprising martensite, bainite and retained austenite has been studied. By means of transmission electron microscopy (TEM) we have investigated the size distribution and the structural properties of (Nb, Ti)N and NbC precipitates, their occurrence in the various steel phases, and their relationship with the Fe matrix. (Nb, Ti)N precipitates were found in ferrite, martensite, and bainite, while NbC precipitates were found only in ferrite. All NbC precipitates were found to be small (520 nm in size) and to have a face centred cubic (fcc) crystal structure with lattice parameter a = 4.36 ± 0.05 Å. In contrast, the (Nb, Ti)N precipitates were found to have a broader size range (5150 nm) and to have a fcc crystal structure with lattice parameter a = 8.09 ± 0.05 Å. While the NbC precipitates were found to be randomly oriented, the (Nb, Ti)N precipitates have a well-defined NishiyamaWasserman orientation relationship with the ferrite matrix. An analysis of the lattice mismatch suggests that the latter precipitates have a high potential for effective strengthening. Density functional theory calculations were performed for various stoichiometries of NbCx and NbxTiyNz phases and the comparison with experimental data indicates that both the carbides and nitrides are deficient in C and N content.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000296405200026 Publication Date 2011-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 58 Open Access
Notes Approved Most recent IF: 5.301; 2011 IF: 3.755
Call Number UA @ lucian @ c:irua:93297 Serial 328
Permanent link to this record
 

 
Author Abakumov, A.M.; King, G.; Laurinavichute, V.K.; Rozova, M.G.; Woodward, P.M.; Antipov, E.V.
Title The crystal structure of \alpha-K3AIF6: elpasolites and double perovskites with broken corner-sharing connectivity of the octahedral framework Type A1 Journal article
Year 2009 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 48 Issue (down) 19 Pages 9336-9344
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of α-K3AlF6 was solved and refined from a combination of powder X-ray and neutron diffraction data (a = 18.8385(3)Å, c = 33.9644(6)Å, S.G. I41/a, Z = 80, RP(X-ray) = 0.037, RP(neutron) = 0.053). The crystal structure is of the A2BB′X6 elpasolite type with the a = b ≈ ae√5, c = 4ae superstructure (ae, parameter of the elpasolite subcell) and rock-salt-type ordering of the K and Al cations over the B and B′ positions, respectively. The remarkable feature of α-K3AlF6 is a rotation of 2/5 of the AlF6 octahedra by π/4 around one of the crystal axes of the elpasolite subcell, coinciding with the 4-fold symmetry axes of the AlF6 octahedra. The rotation of the AlF6 octahedra replaces the corner-sharing between the K and Al polyhedra by edge-sharing, resulting in an increase of coordination numbers of the K cations at the B positions up to 7 and 8. Due to significant deformations of the K polyhedra, the corner-sharing connectivity of the octahedral elpasolite framework is broken and the rotations of the AlF6 octahedra do not have a cooperative character. Elpasolites and double perovskites with similar structural organization are discussed. The difference in ionic radii of the B and B′ cations as well as the tolerance factor are proposed to be the parameters governing the formation of elpasolites and double perovskites with broken corner-sharing connectivity of the octahedral framework.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000270091000039 Publication Date 2009-09-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 20 Open Access
Notes Approved Most recent IF: 4.857; 2009 IF: 4.657
Call Number UA @ lucian @ c:irua:79733 Serial 568
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.
Title Energy-loss near-edge structure changes with bond length in carbon systems Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 72 Issue (down) 19 Pages 193104,1-4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000233603700004 Publication Date 2005-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 24 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:56050 Serial 1041
Permanent link to this record
 

 
Author van Daele, B.; Van Tendeloo, G.; Jacobs, K.; Moerman, I.; Leys, M.
Title Formation of metallic In in InGaN/GaN multiquantum wells Type A1 Journal article
Year 2004 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 85 Issue (down) 19 Pages 4379-4381
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000224962800038 Publication Date 2004-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 32 Open Access
Notes IAP V-1; IWT-Project No.980319 Approved Most recent IF: 3.411; 2004 IF: 4.308
Call Number UA @ lucian @ c:irua:54804 Serial 1261
Permanent link to this record
 

 
Author Cloetens, P.; Ludwig, W.; Baruchel, J.; van Dyck, D.; van Landuyt, J.; Guigay, J.P.; Schlenker, M.
Title Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays Type A1 Journal article
Year 1999 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 75 Issue (down) 19 Pages 2912-2914
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000083483900014 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 481 Open Access
Notes Approved Most recent IF: 3.411; 1999 IF: 4.184
Call Number UA @ lucian @ c:irua:29643 Serial 1484
Permanent link to this record
 

 
Author Burriel, M.; Casa-Cabanas, M.; Zapata, J.; Tan, H.; Verbeeck, J.; Solis, C.; Roqueta, J.; Skinner, S.J.; Kilner, J.A.; Van Tendeloo, G.; Santiso, J.
Title Influence of the microstructure on the high-temperature transport properties of GdBaCo2O5.5+\delta epitaxial films Type A1 Journal article
Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 22 Issue (down) 19 Pages 5512-5520
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Epitaxial thin films of GdBaCo2O5.5+δ (GBCO) grown by pulsed laser deposition have been studied as a function of deposition conditions. The variation in film structure, domain orientation, and microstructure upon deviations in the cation composition have been correlated with the charge transport properties of the films. The epitaxial GBCO films mainly consist of single- and double-perovskite regions that are oriented in different directions depending on the deposition temperature. Additionally, cobalt depletion induces the formation of a high density of stacking defects in the films, consisting of supplementary GdO planes along the c-axis of the material. The presence of such defects progressively reduces the electrical conductivity. The films closer to the stoichiometric composition have shown p-type electronic conductivity at high pO2 with values as high as 800 S/cm at 330 °C in 1 atm O2, and with a pO2 power dependence with an exponent as low as 1/25, consistent with the behavior reported for bulk GBCO. These values place GBCO thin films as a very promising material to be applied as cathodes in intermediate temperature solid oxide fuel cells.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000282471000013 Publication Date 2010-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 17 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400
Call Number UA @ lucian @ c:irua:85412UA @ admin @ c:irua:85412 Serial 1648
Permanent link to this record
 

 
Author Turner, S.; Lu, Y.-G.; Janssens, S.D.; da Pieve, F.; Lamoen, D.; Verbeeck, J.; Haenen, K.; Wagner, P.; Van Tendeloo, G.
Title Local boron environment in B-doped nanocrystalline diamond films Type A1 Journal article
Year 2012 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 4 Issue (down) 19 Pages 5960-5964
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Thin films of heavily B-doped nanocrystalline diamond (B:NCD) have been investigated by a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy performed on a state-of-the-art aberration corrected instrument to determine the B concentration, distribution and the local B environment. Concentrations of [similar]1 to 3 at.% of boron are found to be embedded within individual grains. Even though most NCD grains are surrounded by a thin amorphous shell, elemental mapping of the B and C signal shows no preferential embedding of B in these amorphous shells or in grain boundaries between the NCD grains, in contrast with earlier work on more macroscopic superconducting polycrystalline B-doped diamond films. Detailed inspection of the fine structure of the boron K-edge and comparison with density functional theory calculated fine structure energy-loss near-edge structure signatures confirms that the B atoms present in the diamond grains are substitutional atoms embedded tetrahedrally into the diamond lattice.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000308705900026 Publication Date 2012-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 39 Open Access
Notes FWO G056810N; GOA XANES meets ELNES; 246791 COUNTATOMS; Hercules; 262348 ESMI; Methusalem Nano Approved Most recent IF: 7.367; 2012 IF: 6.233
Call Number UA @ lucian @ c:irua:101227UA @ admin @ c:irua:101227 Serial 1825
Permanent link to this record
 

 
Author Gillie, L.J.; Hadermann, J.; Hervieu, M.; Maignan, A.; Martin, C.
Title Oxygen vacancy ordering in the double-layered Ruddlesden-Popper cobaltite Sm2BaCo2O7-\delta Type A1 Journal article
Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 20 Issue (down) 19 Pages 6231-6237
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new oxygen-deficient Ruddlesden−Popper (RP) cobaltite Sm2BaCo2O7−δ (δ ≈ 1.0) has been synthesized and the crystal structure elucidated by Rietveld analysis of X-ray powder diffraction (XRD) data and transmission electron microscopy (TEM). The phase crystallizes in a primitive orthorhombic unit cell, with lattice parameters a = 5.4371(4) Å; b = 5.4405(4) Å and c = 19.8629(6) Å, and space group Pnnm. Contrary to other oxygen-deficient cobalt RP phases, the oxygen vacancies are located in the equatorial positions of the [CoO] layers to give an intralayer structure similar to Sr2Mn2O5, which is not usually observed for cobalt-containing materials. The Sm3+ and Ba2+ cations show a strong preference for distinct sites, with the majority of the larger Ba2+ cations situated in the perovskite block layers and Sm3+ cations predominantly in the rock salt layers. Magnetic susceptibility data demonstrate the strong antiferromagnetic (AFM) character of Sm2BaCo2O7−δ.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000259871500038 Publication Date 2008-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 7 Open Access
Notes Approved Most recent IF: 9.466; 2008 IF: 5.046
Call Number UA @ lucian @ c:irua:72946 Serial 2548
Permanent link to this record
 

 
Author Smeulders, G.; Meynen, V.; van Baelen, G.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Maes, B.U.W.; Cool, P.
Title Rapid microwave-assisted synthesis of benzene bridged periodic mesoporous organosilicas Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue (down) 19 Pages 3042-3048
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)
Abstract Following extended use in organic chemistry, microwave-assisted synthesis is gaining more importance in the field of inorganic chemistry, especially for the synthesis of nanoporous materials. It offers some major advantages such as a significant shortening of the synthesis time and an improved promotion of nucleation. In the research here reported, microwave technology is applied for the synthesis of benzene bridged PMOs (periodic mesoporous organosilicas). PMOs are one of the latest innovations in the field of hybrid ordered mesoporous materials and have attracted much attention because of their feasibility in electronics, catalysis, separation and sorption applications. The different synthesis steps (stirring, aging and extraction) of the classical PMO synthesis are replaced by microwave-assisted synthesis steps. The characteristics of the as-synthesized materials are evaluated by X-ray diffraction, N2-sorption, thermogravimetric analysis, scanning- and transmission electron microscopy. The microwave-assisted synthesis drastically reduces the synthesis time by more than 40 hours without any loss in structural properties, such as mesoscale and molecular ordering. The porosity of the PMO materials has even been improved by more than 25%. Moreover, the number of handling/transfer steps and amounts of chemicals and waste are drastically reduced. The study also shows that there is a clear time (1 to 3 hours) and temperature frame (373 K to 403 K) wherein synthesis of benzene bridged PMO is optimal. In conclusion, the microwave-assisted synthesis pathway allows an improved material to be obtained in a more economical way i.e. a much shorter time with fewer chemicals and less waste.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000265919300024 Publication Date 2009-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 20 Open Access
Notes Fwo; Iwt Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:76844 Serial 2810
Permanent link to this record
 

 
Author Zhang, L.; Erni, R.; Verbeeck, J.; Van Tendeloo, G.
Title Retrieving the dielectric function of diamond from valence electron energy-loss spectroscopy Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue (down) 19 Pages 195119,1-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A data-acquisition and data-processing method is proposed that aims at minimizing the effect of retardation on the Kramers-Kronig analysis of valence electron energy-loss spectra. This method is applied to diamond, which, due to its high dielectric constant, is a material that shows strong retardation effects and thus is a challenging material to be studied by valence electron energy-loss spectroscopy. The results obtained show a significant improvement but still show small discrepancies with respect to optical data, which are most likely due to the residual retardation contributions and the fact that nonzero momentum transfers are measured.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000256971600055 Publication Date 2008-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:70219UA @ admin @ c:irua:70219 Serial 2900
Permanent link to this record
 

 
Author Schröder, F.; Esken, D.; Cokoja, M.; van den Berg, M.W.E.; Lebedev, O.I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H.H.; Chaudret, B.; Fischer, R.A.;
Title Ruthenium nanoparticles inside porous (Zn40(bdC)(3)) by hydrogenolysis of adsorbed (Ru(cod)(cot)): a solid-state reference system for surfactant-stabilized ruthenium colloids Type A1 Journal article
Year 2008 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 130 Issue (down) 19 Pages 6119-6130
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000255620200018 Publication Date 2008-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 272 Open Access
Notes Esteem 026019 Approved Most recent IF: 13.858; 2008 IF: 8.091
Call Number UA @ lucian @ c:irua:68851 Serial 2934
Permanent link to this record
 

 
Author Titantah, J.T.; Pierleoni, C.; Ryckaert, J.-P.
Title Single chain elasticity and thermoelasticity of polyethylene Type A1 Journal article
Year 2002 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 117 Issue (down) 19 Pages 9028-9036
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Single-chain elasticity of polyethylene at theta point up to 90% of stretching with respect to its contour length is computed by Monte Carlo simulation of an atomistic model in continuous space. The elasticity law together with the free-energy and the internal energy variations with stretching are found to be very well represented by the wormlike chain model up to 65% of the chain elongation, provided the persistence length is treated as a temperature-dependent parameter. Beyond this value of elongation simple ideal chain models are not able to describe the Monte Carlo data in a thermodynamic consistent way. This study reinforces the use of the wormlike chain model to interpret experimental data on the elasticity of synthetic polymers in the finite extensibility regime, provided the chain is not yet in its fully stretched regime. Specific solvent effects on the elasticity law and the partition between energetic and entropic contributions to single chain elasticity are investigated. (C) 2002 American Institute of Physics.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000178934700046 Publication Date 2002-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 5 Open Access
Notes Approved Most recent IF: 2.965; 2002 IF: 2.998
Call Number UA @ lucian @ c:irua:103862 Serial 3018
Permanent link to this record
 

 
Author Malo, S.; Abakumov, A.M.; Daturi, M.; Pelloquin, D.; Van Tendeloo, G.; Guesdon, A.; Hervieu, M.
Title Sr21Bi8Cu2(CO3)(2)O-41, a Bi5+ Oxycarbonate with an Original 10L Structure Type A1 Journal article
Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 53 Issue (down) 19 Pages 10266-10275
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The layered structure of Sr21Bi8Cu2(CO3)(2)O-41 (Z = 2) was determined by transmission electron microscopy, infrared spectroscopy, and powder X-ray diffraction refinement in space group P6(3)/mcm (No. 194), with a = 10.0966(3)angstrom and c = 26.3762(5)angstrom. This original 10L-type structure is built from two structural blocks, namely, [Sr15Bi6Cu2(CO3)O-29] and [Sr6Bi2(CO3)O-12]. The Bi5+ cations form [Bi2O10] dimers, whereas the Cu2+ and C atoms occupy infinite tunnels running along (c) over right arrow. The nature of the different blocks and layers is discussed with regard to the existing hexagonal layered compounds. Sr21Bi8Cu2(CO3)(2)O-41 is insulating and paramagnetic.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000342856800039 Publication Date 2014-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record
Impact Factor 4.857 Times cited Open Access
Notes Approved Most recent IF: 4.857; 2014 IF: 4.762
Call Number UA @ lucian @ c:irua:121115 Serial 3114
Permanent link to this record
 

 
Author Kundu, S.; Kundu, P.; Van Tendeloo, G.; Ravishankar, N.
Title Au2Sx/CdS nanorods by cation exchange : mechanistic insights into the competition between cation-exchange and metal ion reduction Type A1 Journal article
Year 2014 Publication Small Abbreviated Journal Small
Volume 10 Issue (down) 19 Pages 3895-3900
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Thumbnail image of graphical abstract It is well known that metals with higher electron affinity like Au tend to undergo reduction rather than cation-exchange. It is experimentally shown that under certain conditions cation-exchange is dominant over reduction. Thermodynamic calculation further consolidates the understanding and paves the way for better predictability of cation-exchange/reduction reactions for other systems.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000344451900011 Publication Date 2014-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 8 Open Access
Notes countatoms Approved Most recent IF: 8.643; 2014 IF: 8.368
Call Number UA @ lucian @ c:irua:118010 Serial 3514
Permanent link to this record
 

 
Author Leroux, F.; Gysemans, M.; Bals, S.; Batenburg, K.J.; Snauwaert, J.; Verbiest, T.; van Haesendonck, C.; Van Tendeloo, G.
Title Three-dimensional characterization of helical silver nanochains mediated by protein assemblies Type A1 Journal article
Year 2010 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 22 Issue (down) 19 Pages 2193-2197
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Characterization methods for the structural investigation of biotemplates for nanodevices remain widely unexplored, despite the fact that biotemplating methods for nanodevice fabrication are becoming more widespread. In this study several techniques are used to characterize the morphology and 3D distribution of silver nanoparticles deposited on insulin fibrils.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000278601400016 Publication Date 2010-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 51 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 19.791; 2010 IF: NA
Call Number UA @ lucian @ c:irua:83296 Serial 3645
Permanent link to this record
 

 
Author Kazakov, S.M.; Abakumov, A.M.; Perz-Mato, J.M.; Ovchinnikov, A.V.; Roslova, M.V.; Boltalin, A.I.; Morozov, I.V.; Antipov, E.V.; Van Tendeloo, G.
Title Uniform patterns of Fe-vacancy ordering in the Kx(Fe,Co)2-ySe2 superconductors Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue (down) 19 Pages 4311-4316
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Fe-vacancy ordering patterns in the superconducting KxFe2ySe2 and nonsuperconducting Kx(Fe,Co)2ySe2 samples have been investigated by electron diffraction and high angle annular dark field scanning transmission electron microscopy. The Fe-vacancy ordering occurs in the ab plane of the parent ThCr2Si2-type structure, demonstrating two types of patterns. Superstructure I retains the tetragonal symmetry and can be described with the aI = bI = as√5 (as is the unit cell parameter of the parent ThCr2Si2-type structure) supercell and I4/m space group. Superstructure II reduces the symmetry to orthorhombic with the aII = as√2, bII = 2as√2 supercell and the Ibam space group. This type of superstructure is observed for the first time in KxFe2ySe2. The Fe-vacancy ordering is inhomogeneous: the disordered areas interleave with the superstructures I and II in the same crystallite. The observed superstructures represent the compositionally dependent uniform ordering patterns of two species (the Fe atoms and vacancies) on a square lattice. More complex uniform ordered configurations, including compositional stripes, can be predicted for different chemical compositions of the KxFe2ySe2 (0 < y < 0.5) solid solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000295487800005 Publication Date 2011-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 20 Open Access
Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:92805 Serial 3810
Permanent link to this record
 

 
Author Guda, A.A.; Smolentsev, N.; Verbeeck, J.; Kaidashev, E.M.; Zubavichus, Y.; Kravtsova, A.N.; Polozhentsev, O.E.; Soldatov, A.V.
Title X-ray and electron spectroscopy investigation of the coreshell nanowires of ZnO:Mn Type A1 Journal article
Year 2011 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 151 Issue (down) 19 Pages 1314-1317
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract ZnO/ZnO:Mn coreshell nanowires were studied by means of X-ray absorption spectroscopy of the Mn K- and L2,3-edges and electron energy loss spectroscopy of the O K-edge. The combination of conventional X-ray and nanofocused electron spectroscopies together with advanced theoretical analysis turned out to be fruitful for the clear identification of the Mn phase in the volume of the coreshell structures. Theoretical simulations of spectra, performed using the full-potential linear augmented plane wave approach, confirm that the shell of the nanowires, grown by the pulsed laser deposition method, is a real dilute magnetic semiconductor with Mn2+ atoms at the Zn sites, while the core is pure ZnO.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000295492200003 Publication Date 2011-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 12 Open Access
Notes We acknowledge the Helmholtz-Zentrum Berlin – Electron storage ring BESSY-II for provision of synchrotron radiation at the Russian-German beamline and financial support. This research was supported by the Russian Ministry to education and science (RPN 2.1.1. 5932 grant and RPN 2.1.1.6758 grant). N.S. and A.G. would like to thank the Russian Ministry of Education for providing the fellowships of President of Russian Federation to study abroad. We would like to thank the UGINFO computer center of Southern federal university for providing the computer time. Approved Most recent IF: 1.554; 2011 IF: 1.649
Call Number UA @ lucian @ c:irua:92831 Serial 3925
Permanent link to this record
 

 
Author Matsubara, M.; Saniz, R.; Partoens, B.; Lamoen, D.
Title Doping anatase TiO2with group V-b and VI-b transition metal atoms: a hybrid functional first-principles study Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue (down) 19 Pages 1945-1952
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We investigate the role of transition metal atoms of group V-b (V, Nb, Ta) and VI-b (Cr, Mo, W) as n- or p-type dopants in anatase TiO$2$ using thermodynamic

principles and density functional theory with the Heyd-Scuseria-Ernzerhof HSE06 hybrid functional. The HSE06 functional provides a realistic value for the band gap, which ensures a correct classification of dopants as shallow or deep donors or acceptors. Defect formation energies and thermodynamic transition levels are calculated taking into account the constraints imposed by the stability of TiO$
2$ and the solubility limit of the impurities.

Nb, Ta, W and Mo are identified as shallow donors. Although W provides two electrons, Nb and Ta show a considerable lower formation energy, in particular under O-poor conditions. Mo donates in principle one electron, but under specific conditions can turn into a double donor. V impurities are deep donors and Cr

shows up as an amphoteric defect, thereby acting as an electron trapping center in n-type TiO$_2$ especially under O-rich conditions. A comparison with the available experimental data yields excellent agreement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000394426400027 Publication Date 2016-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 19 Open Access OpenAccess
Notes We gratefully acknowledge financial support from the IWTVlaanderenthrough projects G.0191.08 and G.0150.13, and the BOF-NOI of the University of Antwerp. This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, which is funded by the Hercules foundation. M. M. acknowledges financial support from the GOA project ‘‘XANES meets ELNES’’ of the University of Antwerp. Approved Most recent IF: 4.123
Call Number EMAT @ emat @ c:irua:140835 Serial 4421
Permanent link to this record
 

 
Author Saniz, R.; Bekaert, J.; Partoens, B.; Lamoen, D.
Title Structural and electronic properties of defects at grain boundaries in CuInSe2 Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue (down) 19 Pages 14770-14780
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We report on a first-principles study of the structural and electronic properties of a Sigma3 (112) grain boundary model in CuInSe2. The study focuses on a coherent, stoichiometry preserving, cation–Se terminated grain boundary, addressing the properties of the grain boundary as such, as well as the effect

of well known defects in CuInSe2. We show that in spite of its apparent simplicity, such a grain boundary exhibits a very rich phenomenology, providing an explanation for several of the experimentally observed properties of grain boundaries in CuInSe2 thin films. In particular, we show that the combined effect of Cu vacancies and cation antisites can result in the observed Cu depletion with no In enrichment at the grain boundaries. Furthermore, Cu vacancies are unlikely to produce a hole barrier at the grain boundaries, but Na may indeed have such an effect. We find that Na-on-Cu defects will tend to form abundantly at

the grain boundaries, and can provide a mechanism for the carrier depletion and/or type inversion experimentally reported.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403327200059 Publication Date 2017-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 12 Open Access OpenAccess
Notes We thank B. Schoeters for his assistance running the GBstudio software. We acknowledge the financial support of FWO-Vlaanderen through project G.0150.13. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 4.123
Call Number EMAT @ emat @ c:irua:143869 Serial 4577
Permanent link to this record
 

 
Author Altantzis, T.; Lobato, I.; De Backer, A.; Béché, A.; Zhang, Y.; Basak, S.; Porcu, M.; Xu, Q.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Van Tendeloo, G.; Van Aert, S.; Bals, S.
Title Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment Type A1 Journal article
Year 2019 Publication Nano letters Abbreviated Journal Nano Lett
Volume 19 Issue (down) 19 Pages 477-481
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Pt nanoparticles play an essential role in a wide variety of catalytic reactions. The activity of the particles strongly depends on their three-dimensional (3D) structure and exposed facets, as well as on the reactive environment. High-resolution electron microscopy has often been used to characterize nanoparticle catalysts but unfortunately most observations so far have been either performed in vacuum and/or using conventional (2D) in situ microscopy. The latter however does not provide direct 3D morphological information. We have implemented a quantitative methodology to measure variations of the 3D atomic structure of nanoparticles under the flow of a selected gas. We were thereby able to quantify refaceting of Pt nanoparticles with atomic resolution during various oxidation−reduction cycles. In a H2 environment, a more faceted surface morphology of the particles was observed with {100} and {111} planes being dominant. On the other hand, in O2 the percentage of {100} and {111} facets decreased and a significant increase of higher order facets was found, resulting in a more rounded morphology. This methodology opens up new opportunities toward in situ characterization of catalytic nanoparticles because for the first time it enables one to directly measure 3D morphology variations at the atomic scale in a specific gaseous reaction environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455561300061 Publication Date 2019-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 82 Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 335078 COLOURATOM to S.B. and Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M., and Q.X. and MUMMERING 765604 to S.B. and Q.X.). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0368.15N, G.0369.15N, and G.0267.18N), postdoctoral grants to T.A. and A.D.B, and an FWO [PEGASUS]2 Marie Sklodowska-Curie fellowship to Y.Z. (12U4917N). L.M.L.-M. acknowledges funding from the Spanish Ministerio de Economía y Competitividad (Grant MAT2017-86659-R). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research. ecas_sara Realnano 815128; sygma Approved Most recent IF: 12.712
Call Number EMAT @ emat @UA @ admin @ c:irua:156390 Serial 5150
Permanent link to this record
 

 
Author Skaggs, C.M.; Kang, C.-J.; Perez, C.J.; Hadermann, J.; Emge, T.J.; Frank, C.E.; Pak, C.; Lapidus, S.H.; Walker, D.; Kotliar, G.; Kauzlarich, S.M.; Tan, X.; Greenblatt, M.
Title Ambient and high pressure CuNiSb₂ : metal-ordered and metal-disordered NiAs-type derivative pnictides Type A1 Journal article
Year 2020 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem
Volume 59 Issue (down) 19 Pages 14058-14069
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The mineral Zlatogorite, CuNiSb2, was synthesized in the laboratory for the first time by annealing elements at ambient pressure (CuNiSb2-AP). Rietveld refinement of synchrotron powder X-ray diffraction data indicates that CuNiSb2-AP crystallizes in the NiAs-derived structure (P (3) over bar m1, #164) with Cu and Ni ordering. The structure consists of alternate NiSb6 and CuSb6 octahedral layers via face-sharing. The formation of such structure instead of metal disordered NiAs-type structure (P6(3)/mmc, #194) is validated by the lower energy of the ordered phase by first-principle calculations. Interatomic crystal orbital Hamilton population, electron localization function, and charge density analysis reveal strong Ni-Sb, Cu-Sb, and Cu-Ni bonding and long weak Sb-Sb interactions in CuNiSb2-AP. The magnetic measurement indicates that CuNiSb2-AP is Pauli paramagnetic. First-principle calculations and experimental electrical resistivity measurements reveal that CuNiSb2-AP is a metal. The low Seebeck coefficient and large thermal conductivity suggest that CuNiSb2 is not a potential thermoelectric material. Single crystals were grown by chemical vapor transport. The high pressure sample (CuNiSb2-8 GPa) was prepared by pressing CuNiSb2-AP at 700 degrees C and 8 GPa. However, the structures of single crystal and CuNiSb2-8 GPa are best fit with a disordered metal structure in the P (3) over bar m1 space group, corroborated by transmission electron microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000580381700028 Publication Date 2020-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.6; 2020 IF: 4.857
Call Number UA @ admin @ c:irua:174331 Serial 6714
Permanent link to this record