|   | 
Details
   web
Records
Author Altantzis, T.; Lobato, I.; De Backer, A.; Béché, A.; Zhang, Y.; Basak, S.; Porcu, M.; Xu, Q.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Van Tendeloo, G.; Van Aert, S.; Bals, S.
Title Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment Type A1 Journal article
Year 2019 Publication Nano letters Abbreviated Journal Nano Lett
Volume 19 Issue (up) 19 Pages 477-481
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Pt nanoparticles play an essential role in a wide variety of catalytic reactions. The activity of the particles strongly depends on their three-dimensional (3D) structure and exposed facets, as well as on the reactive environment. High-resolution electron microscopy has often been used to characterize nanoparticle catalysts but unfortunately most observations so far have been either performed in vacuum and/or using conventional (2D) in situ microscopy. The latter however does not provide direct 3D morphological information. We have implemented a quantitative methodology to measure variations of the 3D atomic structure of nanoparticles under the flow of a selected gas. We were thereby able to quantify refaceting of Pt nanoparticles with atomic resolution during various oxidation−reduction cycles. In a H2 environment, a more faceted surface morphology of the particles was observed with {100} and {111} planes being dominant. On the other hand, in O2 the percentage of {100} and {111} facets decreased and a significant increase of higher order facets was found, resulting in a more rounded morphology. This methodology opens up new opportunities toward in situ characterization of catalytic nanoparticles because for the first time it enables one to directly measure 3D morphology variations at the atomic scale in a specific gaseous reaction environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455561300061 Publication Date 2019-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 82 Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 335078 COLOURATOM to S.B. and Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M., and Q.X. and MUMMERING 765604 to S.B. and Q.X.). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0368.15N, G.0369.15N, and G.0267.18N), postdoctoral grants to T.A. and A.D.B, and an FWO [PEGASUS]2 Marie Sklodowska-Curie fellowship to Y.Z. (12U4917N). L.M.L.-M. acknowledges funding from the Spanish Ministerio de Economía y Competitividad (Grant MAT2017-86659-R). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research. ecas_sara Realnano 815128; sygma Approved Most recent IF: 12.712
Call Number EMAT @ emat @UA @ admin @ c:irua:156390 Serial 5150
Permanent link to this record
 

 
Author van den Broek, W.; Van Aert, S.; van Dyck, D.
Title Fully automated measurement of the modulation transfer function of charge-coupled devices above the Nyquist frequency Type A1 Journal article
Year 2012 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 18 Issue (up) 2 Pages 336-342
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The charge-coupled devices used in electron microscopy are coated with a scintillating crystal that gives rise to a severe modulation transfer function (MTF). Exact knowledge of the MTF is imperative for a good correspondence between image simulation and experiment. We present a practical method to measure the MTF above the Nyquist frequency from the beam blocker's shadow image. The image processing has been fully automated and the program is made public. The method is successfully tested on three cameras with various beam blocker shapes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000302084700011 Publication Date 2012-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 15 Open Access
Notes Fwo Approved Most recent IF: 1.891; 2012 IF: 2.495
Call Number UA @ lucian @ c:irua:96557 Serial 1297
Permanent link to this record
 

 
Author den Dekker, A.J.; Van Aert, S.; van den Bos, A.; van Dyck, D.
Title Maximum likelihood estimation of structure parameters from high resolution electron microscopy images: part 1: a theoretical framework Type A1 Journal article
Year 2005 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 104 Issue (up) 2 Pages 83-106
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000230526400001 Publication Date 2005-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 70 Open Access
Notes Approved Most recent IF: 2.843; 2005 IF: 2.490
Call Number UA @ lucian @ c:irua:57229 Serial 1959
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van den Bos, A.; van Dyck, D.; Chen, J.H.
Title Maximum likelihood estimation of structure parameters from high resolution electron microscopy images : part 2 : a practical example Type A1 Journal article
Year 2005 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 104 Issue (up) 2 Pages 107-125
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000230526400002 Publication Date 2005-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 37 Open Access
Notes Approved Most recent IF: 2.843; 2005 IF: 2.490
Call Number UA @ lucian @ c:irua:57131 Serial 1960
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; van Thiel, T.C.; Brzezicki, W.; Hortensius, J.R.; Afanasiev, D.; Gauquelin, N.; Barone, P.; van den Bos, K.H.W.; van Aert, S.; Verbeeck, J.; Filippetti, A.; Picozzi, S.; Cuoco, M.; Caviglia, A.D.
Title Berry phase engineering at oxide interfaces Type A1 Journal article
Year 2020 Publication Abbreviated Journal Phys. Rev. Research
Volume 2 Issue (up) 2 Pages 023404
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Three-dimensional strontium ruthenate (SrRuO3) is an itinerant ferromagnet that features Weyl points acting as sources of emergent magnetic fields, anomalous Hall conductivity, and unconventional spin dynamics. Integrating SrRuO3 in oxide heterostructures is potentially a novel route to engineer emergent electrodynamics, but its electronic band topology in the two-dimensional limit remains unknown. Here we show that ultrathin SrRuO3 exhibits spin-polarized topologically nontrivial bands at the Fermi energy. Their band anticrossings show an enhanced Berry curvature and act as competing sources of emergent magnetic fields. We control their balance by designing heterostructures with symmetric (SrTiO3/SrRuO3/SrTiO3 and SrIrO3/SrRuO3/SrIrO3) and asymmetric interfaces (SrTiO3/SrRuO3/SrIrO3). Symmetric structures exhibit an interface-tunable single-channel anomalous Hall effect, while ultrathin SrRuO3 embedded in asymmetric structures shows humplike features consistent with multiple Hall contributions. The band topology of two-dimensional SrRuO3 proposed here naturally accounts for these observations and harmonizes a large body of experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000603642700008 Publication Date 2020-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2643-1564 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 58 Open Access OpenAccess
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek; European Research Council; Horizon 2020, 677458 770887 731473 ; Fondazione Cariplo, 2013-0726 ; Narodowe Centrum Nauki, 2016/23/B/ST3/00839 ; Fundacja na rzecz Nauki Polskiej; Universiteit Antwerpen; Vlaamse regering; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:172462 Serial 6401
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; Altantzis, T.; Heidari, H.; Van Aert, S.; Van Tendeloo, G.
Title Seeing and measuring in 3D with electrons Type A1 Journal article
Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys
Volume 15 Issue (up) 2-3 Pages 140-150
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Modern TEM enables the investigation of nanostructures at the atomic scale. However, TEM images are only two-dimensional (2D) projections of a three-dimensional (3D) object. Electron tomography can overcome this limitation. The technique is increasingly focused towards quantitative measurements and reaching atomic resolution in 3D has been the ultimate goal for many years. Therefore, one needs to optimize the acquisition of the data, the 3D reconstruction techniques as well as the quantification methods. Here, we will review a broad range of methodologies and examples. Finally, we will provide an outlook and will describe future challenges in the field of electron tomography.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000334013600005 Publication Date 2014-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.048 Times cited 15 Open Access OpenAccess
Notes (FWO;Belgium); European Research Council under the 7th Framework Program (FP7); ERC grant No.246791 – COUNTATOMS; ERC grant No.335078 – COLOURATOMS; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.048; 2014 IF: 2.035
Call Number UA @ lucian @ c:irua:113855 Serial 2960
Permanent link to this record
 

 
Author Verbeeck, J.; Van Aert, S.
Title Model based quantification of EELS spectra Type A1 Journal article
Year 2004 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 101 Issue (up) 2/4 Pages 207-224
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recent advances in model based quantification of electron energy loss spectra (EELS) are reported. The maximum likelihood method for the estimation of physical parameters describing an EELS spectrum, the validation of the model used in this estimation procedure, and the computation of the attainable precision, that is, the theoretical lower bound on the variance of these estimates, are discussed. Experimental examples on An and GaAs samples show the power of the maximum likelihood method and show that the theoretical prediction of the attainable precision can be closely approached even for spectra with overlapping edges where conventional EELS quantification fails. To provide end-users with a low threshold alternative to conventional quantification, a user friendly program was developed which is freely available under a GNU public license. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000224046100016 Publication Date 2004-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 147 Open Access
Notes Fwo; Iuap P5/01 Approved Most recent IF: 2.843; 2004 IF: 2.215
Call Number UA @ lucian @ c:irua:57130UA @ admin @ c:irua:57130 Serial 2101
Permanent link to this record
 

 
Author Boschker, H.; Huijben, M.; Vailinois, A.; Verbeeck, J.; Van Aert, S.; Luysberg, M.; Bals, S.; Van Tendeloo, G.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G.
Title Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics Type A1 Journal article
Year 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 44 Issue (up) 20 Pages 205001-205001,9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper, an overview of the fabrication and properties of high-quality La0.67Sr0.33MnO3 (LSMO) thin films is given. A high-quality LSMO film combines a smooth surface morphology with a large magnetization and a small residual resistivity, while avoiding precipitates and surface segregation. In the literature, typically only a few of these issues are adressed. We therefore present a thorough characterization of our films, which were grown by pulsed laser deposition. The films were characterized with reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, magnetization and transport measurements, x-ray photoelectron spectroscopy and scanning transmission electron microscopy. The films have a saturation magnetization of 4.0 µB/Mn, a Curie temperature of 350 K and a residual resistivity of 60 µΩ cm. These results indicate that high-quality films, combining both large magnetization and small residual resistivity, were realized. A comparison between different samples presented in the literature shows that focussing on a single property is insufficient for the optimization of the deposition process. For high-quality films, all properties have to be adressed. For LSMO devices, the thin-film quality is crucial for the device performance. Therefore, this research is important for the application of LSMO in devices.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000290150900001 Publication Date 2011-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 99 Open Access
Notes This research was financially supported by the Dutch Science Foundation, by NanoNed, a nanotechnology program of the Dutch Ministry of Economic Affairs, and by the NanOxide program of the European Science Foundation. This work is supported in part by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515. Approved Most recent IF: 2.588; 2011 IF: 2.544
Call Number UA @ lucian @ c:irua:89557UA @ admin @ c:irua:89557 Serial 2491
Permanent link to this record
 

 
Author Müller-Caspary, K.; Krause, F.F.; Winkler, F.; Béché, A.; Verbeeck, J.; Van Aert, S.; Rosenauer, A.
Title Comparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 203 Issue (up) 203 Pages 95-104
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study addresses the comparison of scanning transmission electron microscopy (STEM) measurements of momentum transfers using the first moment approach and the established method that uses segmented annular detectors. Using an ultrafast pixelated detector to acquire four-dimensional, momentum-resolved STEM signals, both the first moment calculation and the calculation of the differential phase contrast (DPC) signals are done for the same experimental data. In particular, we investigate the ability to correct the segment-based signal to yield a suitable approximation of the first moment for cases beyond the weak phase object approximation. It is found that the measurement of momentum transfers using segmented detectors can approach the first moment measurement as close as 0.13 h/nm in terms of a root mean square (rms) difference in 10 nm thick SrTiO3 for a detector with 16 segments. This amounts to 35% of the rms of the momentum transfers. In addition, we present a statistical analysis of the precision of first moment STEM as a function of dose. For typical experimental settings with recent hardware such as a Medipix3 Merlin camera attached to a probe-corrected STEM, we find that the precision of the measurement of momentum transfers stagnates above certain doses. This means that other instabilities such as specimen drift or scan noise have to be taken into account seriously for measurements that target, e.g., the detection of bonding effects in the charge density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465021000013 Publication Date 2018-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 25 Open Access OpenAccess
Notes ; The direct electron detector (Medipix3 Merlin) was funded by the Hercules fund from the Flemish Government. K. Muller-Caspary acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the framework of the Helmholtz Young Investigator Group moreSTEM (VH-NG-1317) at Forschungszentrum Julich, Germany. F. F. Krause acknowledges funding from the Central Research Development Fund of the University of Bremen, Germany. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) and the Research Fund of the University of Antwerp. ; Approved Most recent IF: 2.843
Call Number UA @ admin @ c:irua:160213 Serial 5242
Permanent link to this record
 

 
Author Morozov, V.A.; Bertha, A.; Meert, K.W.; Van Rompaey, S.; Batuk, D.; Martinez, G.T.; Van Aert, S.; Smet, P.F.; Raskina, M.V.; Poelman, D.; Abakumov, A.M.; Hadermann, J.;
Title Incommensurate modulation and luminescence in the CaGd2(1-x)Eu2x(MoO4)4(1-y)(WO)4y (0\leq x\leq1, 0\leq y\leq1) red phosphors Type A1 Journal article
Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 25 Issue (up) 21 Pages 4387-4395
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Scheelite related compounds (A',A '') [(B',B '')O-4], with B', B '' = W and/or Mo are promising new light-emitting materials for photonic applications, including phosphor converted LEDs (light-emitting diodes). In this paper, the creation and ordering of A-cation vacancies and the effect of cation substitutions in the scheelite-type framework are investigated as a factor for controlling the scheelite-type structure and luminescent properties. CaGd2(1-x)Eu2x(MoO4)(4(1-y))(WO4)(4y) (0 <= x <= 1, 0 <= y <= 1) solid solutions with scheelite-type structure were synthesized by a solid state method, and their structures were investigated using a combination of transmission electron microscopy techniques and powder X-ray diffraction. Within this series all complex molybdenum oxides have (3 + 2)D incommensurately modulated structures with superspace group I4(1)/a(alpha,beta,0)00(-beta,alpha,0)00, while the structures of all tungstates are (3 + 1)D incommensurately modulated with superspace group I2/b(alpha beta 0)00. In both cases the modulation arises because of cation-vacancy ordering at the A site. The prominent structural motif is formed by columns of A-site vacancies running along the c-axis. These vacant columns occur in rows of two or three aligned along the [110] direction of the scheelite subcell. The replacement of the smaller Gd3+ by the larger Eu3+ at the A-sublattice does not affect the nature of the incommensurate modulation, but an increasing replacement of Mo6+ by W6+ switches the modulation from (3 + 2)D to (3 + 1)D regime. Thus, these solid solutions can be considered as a model system where the incommensurate modulation can be monitored as a function of cation nature while the number of cation vacancies at the A sites remain constant upon the isovalent cation replacement. All compounds' luminescent properties were measured, and the optical properties were related to the structural properties of the materials. CaGd2(1-x)(MoO4)(4(1-y))(WO4)(4y) phosphors emit intense red light dominated by the D-5(0)-F-7(2) transition at 612 nm, along with other transitions from the D-5(1) and D-5(0) excited states. The intensity of the 5D0-7F2 transition reaches a maximum at x = 0.5 for y = 0 and 1.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000327045000030 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 63 Open Access
Notes Approved Most recent IF: 9.466; 2013 IF: 8.535
Call Number UA @ lucian @ c:irua:112776 Serial 1594
Permanent link to this record
 

 
Author Liao, Z; , Green, R.J; Gauquelin, N; Macke, S.; Li, L.; Gonnissen, J; Sutarto, R.; Houwman, E.P.; Zhong, Z.; Van Aert, S.; Verbeeck, J.; Sawatzky, G.A.; Huijben, M.; Koster, G.; Rijnders, G.
Title Long-Range Domain Structure and Symmetry Engineering by Interfacial Oxygen Octahedral Coupling at Heterostructure Interface Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue (up) 26 Pages 6627-6634
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In epitaxial thin film systems, the crystal structure and its symmetry deviate from the bulk counterpart due to various mechanisms such as epitaxial strain and interfacial structural coupling, which is accompanyed by a change in their properties. In perovskite materials, the crystal symmetry can be described by rotations of sixfold coordinated transition metal oxygen octahedra, which are found to be altered at interfaces. Here, it is unraveled how the local oxygen octahedral coupling at perovskite heterostructural interfaces strongly influences the domain structure and symmetry of the epitaxial films resulting in design rules to induce various structures in thin films using carefully selected combinations of substrate/buffer/film. Very interestingly it is discovered that these combinations lead to structure changes throughout the full thickness of the film. The results provide a deep insight into understanding the origin of induced structures in a perovskite heterostructure and an intelligent route to achieve unique functional properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384809800010 Publication Date 2016-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 23 Open Access
Notes We thank B. Keimer for valuable discussions. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0044.13N, G.0374.13N, G.0368.15N, G.0369.15N). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G., J.G., S.V.A., J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan.; esteem2jra2; esteem2jra3; ECASJO_; Approved Most recent IF: 12.124
Call Number EMAT @ emat @ c:irua:144663UA @ admin @ c:irua:144663 Serial 4106
Permanent link to this record
 

 
Author Gonnissen, J.; Batuk, D.; Nataf, G.F.; Jones, L.; Abakumov, A.M.; Van Aert, S.; Schryvers, D.; Salje, E.K.H.
Title Direct Observation of Ferroelectric Domain Walls in LiNbO3: Wall-Meanders, Kinks, and Local Electric Charges Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue (up) 26 Pages 7599-7604
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Direct observations of the ferroelectric domain boundaries in LiNbO3 are performed using high-resolution high-angle annular dark field scanning transmission electron microscopy imaging, revealing a very narrow width of the domain wall between the 180° domains. The domain walls demonstrate local side-way meandering, which results in inclinations even when the overall wall orientation follows the ferroelectric polarization. These local meanders contain kinks with “head-to-head” and “tail-to-tail” dipolar configurations and are therefore locally charged. The charged meanders are confined to a few cation layers along the polarization direction and are separated by longer stretches of straight domain walls.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388166700006 Publication Date 2016-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 23 Open Access
Notes J.G. acknowledges the support from the Research Foundation Flanders (FWO, Belgium) through various project fundings (G.0368.15N, G.0369.15N, and G.0374.13N), as well as the financial support from the European Union Seventh Framework Program (FP7/2007–2013) under Grant agreement no. 312483 (ESTEEM2). The authors thank J. Hadermann for useful suggestions on the interpretation of the HAADFSTEM images. E.K.H.S. thanks the EPSRC (EP/K009702/1) and the Leverhulme Trust (EM-2016-004) for support. G.F.N. thanks the National Research Fund, Luxembourg (FNR/P12/4853155/Kreisel) for support.; esteem2_jra2 Approved Most recent IF: 12.124
Call Number c:irua:135336 c:irua:135336 Serial 4129
Permanent link to this record
 

 
Author Molina-Luna, L.; Duerrschnabel, M.; Turner, S.; Erbe, M.; Martinez, G.T.; Van Aert, S.; Holzapfel, B.; Van Tendeloo, G.
Title Atomic and electronic structures of BaHfO3-doped TFA-MOD-derived YBa2Cu3O7−δthin films Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue (up) 28 Pages 115009
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Tailoring the properties of oxide-based nanocomposites is of great importance for a wide range of materials relevant for energy technology. YBa2Cu3O7−δ (YBCO) superconducting thin films containing nanosized BaHfO3 (BHO) particles yield a significant improvement of the magnetic flux pinning properties and a reduced anisotropy of the critical current density. These films were prepared by chemical solution deposition (CSD) on (100) SrTiO3 (STO) substrates yielding critical current densities up to 3.6 MA cm−2 at 77 K and self-field. Transport in-field J c measurements demonstrated a high pinning force maximum of around 6 GN/m3 for a sample annealed at T = 760 °C that has a doping of 12 mol% of BHO. This sample was investigated by scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) yielding strain and spectral maps. Spherical BHO nanoparticles of 15 nm in size were found in the matrix, whereas the particles at the interface were flat. A 2 nm diffusion layer containing Ti was found at the YBCO (BHO)/STO interface. Local lattice deformation mapping at the atomic scale revealed crystal defects induced by the presence of both sorts of BHO nanoparticles, which can act as pinning centers for magnetic flux lines. Two types of local lattice defects were identified and imaged: (i) misfit edge dislocations and (ii) Ba-Cu-Cu-Ba stacking faults (Y-248 intergrowths). The local electronic structure and charge transfer were probed by high energy resolution monochromated electron energy-loss spectroscopy. This technique made it possible to distinguish superconducting from non-superconducting areas in nanocomposite samples with atomic resolution in real space, allowing the identification of local pinning sites on the order of the coherence length of YBCO (~1.5 nm) and the determination of 0.25 nm dislocation cores.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366193000018 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 4 Open Access
Notes The authors thank financial support from the European Union under the Framework 6 program as a contract for an Integrated Infrastructure Initiative (References No. 026019 ESTEEM) and by the EUFP6 Research Project “NanoEngineered Superconductors for Power Applications” NESPA no. MRTN-CT-2006-035619. This work was supported by funding from the European Research Council under the Seventh Framework Programme (FP7). L.M.L, S.T. and G.V.T acknowledge ERC grant N°246791 – COUNTATOMS and funding under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2, as well as the EC project EUROTAPES. G.T.M. and S.V.A acknowledge financial support from the Fund for Scientific Research-Flanders (Reference G.0064.10N and G.0393.11N). M.D. acknowledges financial support from the LOEWE research cluster RESPONSE (Hessen, Germany). M.E. has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement n° NMP-LA-2012-280432.; esteem2jra2; esteem2jra3 Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:129199 c:irua:129199 Serial 3942
Permanent link to this record
 

 
Author Peters, J.L.; van den Bos, K.H.W.; Van Aert, S.; Goris, B.; Bals, S.; Vanmaekelbergh, D.
Title Ligand-Induced Shape Transformation of PbSe Nanocrystals Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue (up) 29 Pages 4122-4128
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present a study of the relation between the surface chemistry and nanocrystal shape of PbSe nanocrystals with a variable Pb-to-Se stoichiometry and density of oleate ligands. The oleate ligand density and binding configuration are monitored by nuclear magnetic resonance and Fourier transform infrared absorbance spectroscopy, allowing us to quantify the number of surface-attached ligands per NC and the nature of the surface−Pb−oleate configuration. The three-dimensional shape of the PbSe nanocrystals is obtained from high-angle annular dark field scanning transmission electron microscopy combined with an atom counting method. We show that the enhanced oleate capping results in a stabilization and extension of the {111} facets, and a crystal shape transformation from a truncated nanocube to a truncated octahedron.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401221700034 Publication Date 2017-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 45 Open Access OpenAccess
Notes D.V. acknowledges the European Research Council, ERC advanced grant, Project 692691-First Step, for financial support. We also acknowledge the Dutch FOM programme “Designing Dirac carriers in honeycomb semiconductor superlattices” (FOM Program 152) for financial support. The authors gratefully acknowledge funding from the Research Foundation Flanders (G.036915, G.037413, and funding of a Ph.D. research grant to K.H.W.v.d.B. and a postdoctoral grant to B.G.). S.B. acknowledges the European Research Council, ERC Grant 335078-Colouratom. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 9.466
Call Number EMAT @ emat @ c:irua:143750 c:irua:142983UA @ admin @ c:irua:143750 Serial 4571
Permanent link to this record
 

 
Author Van Aert, S.
Title Atomen in 3D : Antwerpenaren brengen atomaire structuur nanodeeltjes in beeld Type Newspaper/Magazine/blog article
Year 2011 Publication Chemie magazine Abbreviated Journal
Volume 7 Issue (up) 3 Pages 9
Keywords Newspaper/Magazine/blog article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0379-7651 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94122 Serial 163
Permanent link to this record
 

 
Author Van Aert, S.; Chang, L.Y.; Bals, S.; Kirkland, A.I.; Van Tendeloo, G.
Title Effect of amorphous layers on the interpretation of restored exit waves Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue (up) 3 Pages 237-246
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The effects of amorphous layers on the quality of exit wave restorations have been investigated. Two independently developed software implementations for exit wave restoration have been used to simulated focal series of images of SrTiO3 with amorphous carbon layers incorporated. The restored exit waves have been compared both qualitatively and quantitatively. We have shown that amorphous layers have a strong impact on the quantitative measurements of atomic column positions, however, the error in the position measurements is still in the picometer range.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000264280200005 Publication Date 2008-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 10 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:76421 Serial 796
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Van Tendeloo, G.
Title High resolution electron tomography Type A1 Journal article
Year 2013 Publication Current opinion in solid state and materials science Abbreviated Journal Curr Opin Solid St M
Volume 17 Issue (up) 3 Pages 107-114
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Reaching atomic resolution in 3D has been the ultimate goal in the field of electron tomography for many years. Significant progress, both on the theoretical as well as the experimental side has recently resulted in several exciting examples demonstrating the ability to visualise atoms in 3D. In this paper, we will review the different steps that have pushed the resolution in 3D to the atomic level. A broad range of methodologies and practical examples together with their impact on materials science will be discussed. Finally, we will provide an outlook and will describe future challenges in the field of high resolution electron tomography.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000323869800003 Publication Date 2013-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-0286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.938 Times cited 24 Open Access
Notes Fwo; 312483 Esteem; Countatoms; Approved Most recent IF: 6.938; 2013 IF: 7.167
Call Number UA @ lucian @ c:irua:109454 Serial 1457
Permanent link to this record
 

 
Author Van Aert, S.; De Backer, A.; Martinez, G.T.; den Dekker, A.J.; Van Dyck, D.; Bals, S.; Van Tendeloo, G.
Title Advanced electron crystallography through model-based imaging Type A1 Journal article
Year 2016 Publication IUCrJ Abbreviated Journal Iucrj
Volume 3 Issue (up) 3 Pages 71-83
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab; Engineering Management (ENM)
Abstract The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368590900010 Publication Date 2015-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-2525; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.793 Times cited 30 Open Access OpenAccess
Notes The authors gratefully acknowledge the Research Foundation Flanders (FWO, Belgium) for funding and for a PhD grant to ADB. The research leading to these results has received funding from the European Union 7th Framework Program (FP7/20072013) under grant agreement No. 312483 (ESTEEM2). SB and GVT acknowledge the European Research Council under the 7th Framework Program (FP7), ERC grant No. 335078 – COLOURATOMS and ERC grant No. 246791 – COUNTATOMS.; esteem2jra2; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 5.793
Call Number c:irua:129589 c:irua:129589 Serial 3965
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Altantzis, T.; De Backer, A.; Van Aert, S.; Bals, S.
Title Recent breakthroughs in scanning transmission electron microscopy of small species Type A1 Journal article
Year 2018 Publication Advances in Physics: X Abbreviated Journal Advances in Physics: X
Volume 3 Issue (up) 3 Pages 1480420
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Over the last decade, scanning transmission electron microscopy has become one of the most powerful tools to characterise nanomaterials at the atomic scale. Often, the ultimate goal is to retrieve the three-dimensional structure, which is very challenging since small species are typically sensitive to electron irradiation. Nevertheless, measuring individual atomic positions is crucial to understand the relation between the structure and physicochemical properties of these (nano)materials. In this review, we highlight the latest approaches that are available to reveal the 3D atomic structure of small species. Finally, we will provide an outlook and will describe future challenges where the limits of electron microscopy will be pushed even further.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441619500001 Publication Date 2018-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2374-6149 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 8 Open Access OpenAccess
Notes This work was supported by the Research Foundation Flanders (FWO, Belgium) under Grant G.0368.15N, G.0369.15N, and G.0267.18N, by personal FWO Grants to K. H. W. van den Bos, T. Altantzis, and A. De Backer, and the European Research Council under Grant 335078 COLOURATOM to S. Bals. The authors would like to thank the colleagues who have contributed to this work over the years, including A. M. Abakumov, K. J. Batenburg, E. Countiño-Gonzalez, C. de Mello Donega, R. Erni, J. J. Geuchies, B. Goris, J. Hofkens, L. Jones, P. Lievens, L. M. Liz-Marzán, I. Lobato, G. T. Martinez, P. D. Nellist, B. Partoens, M. B. J. Roeffaers, M.D. Rossell, B. Schoeters, M. J. Van Bael, W. van der Stam, M. van Huis, G. Van Tendeloo, D. Vanmaekelbergh, and N. Winckelmans. (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:152820UA @ admin @ c:irua:152820 Serial 5007
Permanent link to this record
 

 
Author Ren, P.; Zhang, T.; Jain, N.; Ching, H.Y.V.; Jaworski, A.; Barcaro, G.; Monti, S.; Silvestre-Albero, J.; Celorrio, V.; Chouhan, L.; Rokicinska, A.; Debroye, E.; Kustrowski, P.; Van Doorslaer, S.; Van Aert, S.; Bals, S.; Das, S.
Title An atomically dispersed Mn-photocatalyst for generating hydrogen peroxide from seawater via the Water Oxidation Reaction (WOR) Type A1 Journal article
Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal
Volume 145 Issue (up) 30 Pages 16584-16596
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Organic synthesis (ORSY); Theory and Spectroscopy of Molecules and Materials (TSM²)
Abstract In this work, we have fabricatedan aryl amino-substitutedgraphiticcarbon nitride (g-C3N4) catalyst with atomicallydispersed Mn capable of generating hydrogen peroxide (H2O2) directly from seawater. This new catalyst exhibitedexcellent reactivity, obtaining up to 2230 & mu;M H2O2 in 7 h from alkaline water and up to 1800 & mu;Mfrom seawater under identical conditions. More importantly, the catalystwas quickly recovered for subsequent reuse without appreciable lossin performance. Interestingly, unlike the usual two-electron oxygenreduction reaction pathway, the generation of H2O2 was through a less common two-electron water oxidation reaction(WOR) process in which both the direct and indirect WOR processesoccurred; namely, photoinduced h(+) directly oxidized H2O to H2O2 via a one-step 2e(-) WOR, and photoinduced h(+) first oxidized a hydroxide (OH-) ion to generate a hydroxy radical ((OH)-O-& BULL;), and H2O2 was formed indirectly by thecombination of two (OH)-O-& BULL;. We have characterized thematerial, at the catalytic sites, at the atomic level using electronparamagnetic resonance, X-ray absorption near edge structure, extendedX-ray absorption fine structure, high-resolution transmission electronmicroscopy, X-ray photoelectron spectroscopy, magic-angle spinningsolid-state NMR spectroscopy, and multiscale molecular modeling, combiningclassical reactive molecular dynamics simulations and quantum chemistrycalculations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001034983300001 Publication Date 2023-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited 21 Open Access Not_Open_Access
Notes S.D. thanks the IOF grant and Francqui start up grant from the University of Antwerp, Belgium, for the financial support. P.R. thanks CSC and T.Z. thanks FWO for their financial assistance to finish this work. E.D. would like to thank the KU Leuven Research Fund for financial support through STG/21/010. J.S.A. acknowledges financial support from MCIN/AEI/10.13039/501100011033 and EU NextGeneration/PRTR (Project PCI2020-111968/3D-Photocat) and Diamond Synchrotron (rapid access proposal SP32609). This work was supported by the European Research Council (grant 770887-PICOMETRICS to S.V.A. and Grant 815128-REALNANO to S.B.). S.B. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium, project G.0346.21 N). We also thank Mr. Jian Zhu and Mr. Shahid Ullah Khan from the University of Antwerp, Belgium, for helpful discussions. Approved Most recent IF: 15; 2023 IF: 13.858
Call Number UA @ admin @ c:irua:198426 Serial 8831
Permanent link to this record
 

 
Author Varambhia, A.M.; Jones, L.; De Backer, A.; Fauske, V.T.; Van Aert, S.; Ozkaya, D.; Nellist, P.D.
Title Quantifying a Heterogeneous Ru Catalyst on Carbon Black Using ADF STEM Type A1 Journal article
Year 2016 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 33 Issue (up) 33 Pages 438-444
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ru catalysts are part of a set of late transition metal nanocatalysts that have garnered much interest for catalytic applications such as ammonia synthesis and fuel cell production. Their performance varies greatly depending on their morphology and size, these catalysts are widely studied using electron microscopy. Using recent developments in Annular Dark Field (ADF) Scanning Transmission Electron Microscopy (STEM) quantification techniques, a rapid atom counting procedure was utilized to document the evolution of a heterogeneous Ru catalyst supported on carbon black. Areas of the catalyst were imaged for approximately 15 minutes using ADF STEM. When the Ru clusters were exposed to the electron beam, the clusters changed phase from amorphous to crystalline. To quantify the thickness of the crystalline clusters, two techniques were applied (simulation and statistical decomposition) and compared. These techniques show that stable face centredcubic crystal structures in the form of rafts, between 2 and 8 atoms thick, were formed after the initial wetting of the carbon support.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379970000012 Publication Date 2016-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 4 Open Access
Notes The authors would like to thank the EPSRC and Johnson Matthey for funding this work as part of a CASE-Award studentship. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). We would like to thank Brian Theobald and Jonathan Sharman from JMTC for provision of the samples The authors gratefully acknowledge the Research Foundation Flanders (FWO, Belgium) for funding and for a postdoctoral grant to ADB. The microscope used was funded by the INFRASTRUKTUR Grant 197405 (NORTEM) program of the Research Council of Norway.; esteem2_jra2 Approved Most recent IF: 4.474
Call Number c:irua:134036 c:irua:134036 Serial 4086
Permanent link to this record
 

 
Author Amini, M.N.; Altantzis, T.; Lobato, I.; Grzelczak, M.; Sánchez-Iglesias, A.; Van Aert, S.; Liz-Marzán, L.M.; Partoens, B.; Bals, S.; Neyts, E.C.
Title Understanding the Effect of Iodide Ions on the Morphology of Gold Nanorods Type A1 Journal article
Year 2018 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 35 Issue (up) 35 Pages 1800051
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The presence of iodide ions during the growth of gold nanorods strongly affects the shape of the final products, which is proposed to be due to selective iodide adsorption on certain crystallographic facets. Therefore, a detailed structural and morphological characterization of the starting rods is crucial toward understanding this effect. Electron tomography is used to determine the crystallographic indices of the lateral facets of gold nanorods, as well as those present at the tips. Based on this information, density functional theory calculations are used to determine the surface and interface energies of the observed facets and provide insight into the relationship between the amount of iodide ions in the growth solution and the final morphology of anisotropic gold nanoparticles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441893400002 Publication Date 2018-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 6 Open Access OpenAccess
Notes This work was supported by the European Research Council (grant 335078 COLOURATOM to S.B.). T.A., S.V.A. S.B. and E.C.N., acknowledge funding from the Research Foundation Flanders (FWO, Belgium), through project funding (G.0218.14N and G.0369.15N) and a postdoctoral grant to T.A. L.M.L.-M. and M.G. acknowledge funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013-46101-R). Mozhgan N. Amini and Thomas Altantzis contributed equally to this work. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.474
Call Number EMAT @ emat @c:irua:152998UA @ admin @ c:irua:152998 Serial 5010
Permanent link to this record
 

 
Author Nerl, H.C.; Pokle, A.; Jones, L.; Müller‐Caspary, K.; Bos, K.H.W.; Downing, C.; McCarthy, E.K.; Gauquelin, N.; Ramasse, Q.M.; Lobato, I.; Daly, D.; Idrobo, J.C.; Van Aert, S.; Van Tendeloo, G.; Sanvito, S.; Coleman, J.N.; Cucinotta, C.S.; Nicolosi, V.
Title Self‐Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus Type A1 Journal article
Year 2019 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 29 Issue (up) 37 Pages 1903120
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000478478400001 Publication Date 2019-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 1 Open Access OpenAccess
Notes European Research Council, 2DNanoCaps TC2D CoG 3D2DPrint CoG Picometrics grant agreement No. 770887; Engineering and Physical Sciences Research Council, EP/P033555/1 EP/R029431 ; Science Foundation Ireland, HPC1600932 ; Approved Most recent IF: 12.124
Call Number EMAT @ emat @c:irua:161901 Serial 5362
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G.
Title Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
Year 2018 Publication America Abbreviated Journal P Natl Acad Sci Usa
Volume 115 Issue (up) 38 Pages 9515-9520
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000447224900057 Publication Date 2018-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.661 Times cited 50 Open Access OpenAccess
Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved Most recent IF: 9.661
Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial 5059
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Salje, E.K.H.
Title Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy Type A1 Journal article
Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 24 Issue (up) 4 Pages 523-527
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High-resolution aberration-corrected transmission electron microscopy aided by statistical parameter estimation theory is used to quantify localized displacements at a (110) twin boundary in orthorhombic CaTiO3. The displacements are 36 pm for the Ti atoms and confined to a thin layer. This is the first direct observation of the generation of ferroelectricity by interfaces inside this material which opens the door for domain boundary engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000299156400011 Publication Date 2011-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 150 Open Access
Notes Fwo Approved Most recent IF: 19.791; 2012 IF: 14.829
Call Number UA @ lucian @ c:irua:94110 Serial 717
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van den Bos, A.; van Dyck, D.
Title High-resolution electron microscopy : from imaging toward measuring Type A1 Journal article
Year 2002 Publication IEEE transactions on instrumentation and measurement Abbreviated Journal Ieee T Instrum Meas
Volume 51 Issue (up) 4 Pages 611-615
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000178992000010 Publication Date 2003-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9456; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.456 Times cited 13 Open Access
Notes Approved Most recent IF: 2.456; 2002 IF: 0.592
Call Number UA @ lucian @ c:irua:47521 Serial 1450
Permanent link to this record
 

 
Author Van Aert, S.; van den Broek, W.; Goos, P.; van Dyck, D.
Title Model-based electron microscopy : from images toward precise numbers for unknown structure parameters Type A1 Journal article
Year 2012 Publication Micron Abbreviated Journal Micron
Volume 43 Issue (up) 4 Pages 509-515
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT); Vision lab
Abstract Statistical parameter estimation theory is proposed as a method to quantify electron microscopy images. It aims at obtaining precise and accurate values for the unknown structure parameters including, for example, atomic column positions and types. In this theory, observations are purely considered as data planes, from which structure parameters have to be determined using a parametric model describing the images. The method enables us to measure positions of atomic columns with a precision of the order of a few picometers even though the resolution of the electron microscope is one or two orders of magnitude larger. Moreover, small differences in averaged atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark field scanning transmission electron microscopy images. Finally, it is shown how to optimize the experimental design so as to attain the highest precision. As an example, the optimization of the probe size for nanoparticle radius measurements is considered. It is also shown how to quantitatively balance signal-to-noise ratio and resolution by adjusting the probe size.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000301702400003 Publication Date 2011-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 7 Open Access
Notes Fwo Approved Most recent IF: 1.98; 2012 IF: 1.876
Call Number UA @ lucian @ c:irua:94114 Serial 2099
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; de Backer, A.; Van Aert, S.; Van Tendeloo, G.
Title Atomic resolution electron tomography Type A1 Journal article
Year 2016 Publication MRS bulletin Abbreviated Journal Mrs Bull
Volume 41 Issue (up) 41 Pages 525-530
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Over the last two decades, three-dimensional (3D) imaging by transmission electron microscopy or “electron tomography” has evolved into a powerful tool to investigate a variety of nanomaterials in different fields, such as life sciences, chemistry, solid-state physics, and materials science. Most of these results were obtained with nanometer-scale resolution, but different approaches have recently pushed the resolution to the atomic level. Such information is a prerequisite to understand the specific relationship between the atomic structure and the physicochemical properties of (nano) materials. We provide an overview of the latest progress in the field of atomic-resolution electron tomography. Different imaging and reconstruction approaches are presented, and state-of-the-art results are discussed. This article demonstrates the power and importance of electron tomography with atomic-scale resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Pittsburgh, Pa Editor
Language Wos 000382508100012 Publication Date 2016-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.199 Times cited 19 Open Access OpenAccess
Notes ; The authors gratefully acknowledge funding from the Research Foundation Flanders (G.0381.16N, G.036915, G.0374.13, and funding of postdoctoral grants to B.G. and A.D.B.). S.B. acknowledges the European Research Council, ERC Grant Number 335078-Colouratom. The research leading to these results received funding from the European Union Seventh Framework Program under Grant Agreements 312483 (ESTEEM2). The authors would like to thank the colleagues who have contributed to this work, including K.J. Batenburg, J. De Beenhouwer, R. Erni, M.D. Rossell, W. Van den Broek, L. Liz-Marzan, E. Carbo-Argibay, S. Gomez-Grana, P. Lievens, M. Van Bael, B. Partoens, B. Schoeters, and J. Sijbers. ; ecas_sara Approved Most recent IF: 5.199
Call Number UA @ lucian @ c:irua:135690 Serial 4299
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D.
Title Advanced electron microscopy for advanced materials Type A1 Journal article
Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 24 Issue (up) 42 Pages 5655-5675
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000310602200001 Publication Date 2012-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 107 Open Access
Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829
Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70
Permanent link to this record
 

 
Author Huijben, M.; Koster, G.; Kruize, M.K.; Wenderich, S.; Verbeeck, J.; Bals, S.; Slooten, E.; Shi, B.; Molegraaf, H.J.A.; Kleibeuker, J.E.; Van Aert, S.; Goedkoop, J.B.; Brinkman, A.; Blank, D.H.A.; Golden, M.S.; Van Tendeloo, G.; Hilgenkamp, H.; Rijnders, G.;
Title Defect engineering in oxide heterostructures by enhanced oxygen surface exchange Type A1 Journal article
Year 2013 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 23 Issue (up) 42 Pages 5240-5248
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The synthesis of materials with well-controlled composition and structure improves our understanding of their intrinsic electrical transport properties. Recent developments in atomically controlled growth have been shown to be crucial in enabling the study of new physical phenomena in epitaxial oxide heterostructures. Nevertheless, these phenomena can be influenced by the presence of defects that act as extrinsic sources of both doping and impurity scattering. Control over the nature and density of such defects is therefore necessary to fully understand the intrinsic materials properties and exploit them in future device technologies. Here, it is shown that incorporation of a strontium copper oxide nano-layer strongly reduces the impurity scattering at conducting interfaces in oxide LaAlO3SrTiO3(001) heterostructures, opening the door to high carrier mobility materials. It is proposed that this remote cuprate layer facilitates enhanced suppression of oxygen defects by reducing the kinetic barrier for oxygen exchange in the hetero-interfacial film system. This design concept of controlled defect engineering can be of significant importance in applications in which enhanced oxygen surface exchange plays a crucial role.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000327480900003 Publication Date 2013-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 87 Open Access
Notes Countatoms; Vortex; Fwo; Ifox ECASJO_; Approved Most recent IF: 12.124; 2013 IF: 10.439
Call Number UA @ lucian @ c:irua:109273UA @ admin @ c:irua:109273 Serial 615
Permanent link to this record