toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De Dobbelaere, C.; Lourdes Calzada, M.; Bretos, I.; Jimenez, R.; Ricote, J.; Hadermann, J.; Hardy, A.; Van Bael, M.K. doi  openurl
  Title Gaining new insight into low-temperature aqueous photochemical solution deposited ferroelectric PbTiO3 films Type A1 Journal article
  Year 2016 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys  
  Volume 174 Issue (up) Pages 28-40  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The nature of the low-temperature photochemical assisted formation process of ferroelectric lead titanate (PbTiO3) films is studied in the present work. Films are obtained by the deposition of an aqueous solution containing citric acid based (citrato) metal ion complexes with intrinsic UV activity. This UV activity is crucial for the aqueous photochemical solution deposition (aqueous PCSD) route being used. UV irradiation enhances the early decomposition of organics and results in improved electrical properties for the crystalline oxide film, even if the film is crystallized at low temperature. GATR-FTIR shows that UV irradiation promotes the decomposition of organic precursor components, resulting in homogeneous films if applied in the right temperature window during film processing. The organic content, morphology and crystallinity of the irradiated films, achieved at different processing atmospheres and temperatures, is studied and eventually correlated to the functional behavior of the obtained films. This is an important issue, as crystalline films obtained at low temperatures often lack ferroelectric responses. In this work, the film prepared in pure oxygen at the very low temperature of 400 degrees C and after an optimized UV treatment presents a significant remanent polarization value of P-r = 8.8 mu C cm(-2). This value is attributed to the better crystallinity, the larger grain size and the reduced porosity obtained thanks to the early film crystallization effectively achieved through the UV treatment in oxygen. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000373865700005 Publication Date 2016-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.084 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.084  
  Call Number UA @ lucian @ c:irua:144729 Serial 4659  
Permanent link to this record
 

 
Author Bogaerts, A.; Ameye, L.; Bijlholt, M.; Amuli, K.; Heynickx, D.; Devlieger, R. url  doi
openurl 
  Title INTER-ACT : prevention of pregnancy complications through an e-health driven interpregnancy lifestyle intervention: study protocol of a multicentre randomised controlled trial Type A1 Journal article
  Year 2017 Publication BMC pregnancy and childbirth Abbreviated Journal Bmc Pregnancy Childb  
  Volume 17 Issue (up) Pages 154  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Centre for Research and Innovation in Care (CRIC)  
  Abstract Background Excessive maternal pre-pregnancy and gestational weight gain are related to pregnancy- and birth outcomes. The interpregnancy time window offers a unique opportunity to intervene in order to acquire a healthy lifestyle before the start of a new pregnancy. Methods INTER-ACT is an e-health driven multicentre randomised controlled intervention trial targeting women at high risk of pregnancy- and birth related complications. Eligible women are recruited for the study at day 2 or 3 postpartum. At week 6 postpartum, participants are randomised into the intervention or control arm of the study. The intervention focuses on weight, diet, physical activity and mental well-being, and comprises face-to-face coaching, in which behavioural change techniques are central, and use of a mobile application, which is Bluetooth-connected to a weighing scale and activity tracker. The intervention is rolled out postpartum (4 coaching sessions between week 6 and month 6) and in a new pregnancy (3 coaching sessions, one in each trimester of pregnancy); the mobile app is used throughout the two intervention phases. Data collection includes data from the medical record of the participants (pregnancy outcomes and medical history), anthropometric data (height, weight, waist- and hip circumferences, skinfold thickness and body composition by bio-electrical impedance analysis), data from the mobile app (physical activity and weight; intervention group only) and questionnaires (socio-demographics, breastfeeding, food intake, physical activity, lifestyle, psychosocial factors and process evaluation). Medical record data are collected at inclusion and at delivery of the subsequent pregnancy. All other data are collected at week 6 and month 6 postpartum and every subsequent 6 months until a new pregnancy, and in every trimester in the new pregnancy. Primary outcome is the composite endpoint score of pregnancy-induced hypertension, gestational diabetes mellitus, caesarean section, and large-for-gestational-age infant in the subsequent pregnancy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000402116300002 Publication Date 2017-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2393 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.263 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 2.263  
  Call Number UA @ lucian @ c:irua:143234 Serial 4663  
Permanent link to this record
 

 
Author Chin, C.-M.; Sena, R.P.; Hunter, E.C.; Hadermann, J.; Battle, P.D. url  doi
openurl 
  Title Interplay of structural chemistry and magnetism in perovskites : a study of CaLn2Ni2WO9: Ln=La, Pr, Nd Type A1 Journal article
  Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 251 Issue (up) Pages 224-232  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of CaLn(2)Ni(2)WO(9) (Ln=La, Pr, Nd) have been synthesized and characterised by a combination of X-ray and neutron diffraction, electron microscopy and magnetometry. Each composition adopts a perovskite-like structure with a similar to 5.50, b similar to 5.56, c similar to 7.78 angstrom beta similar to 90.1 degrees in space group P2(1)/n. Of the two crystallographically distinct six-coordinate sites, one is occupied entirely (Ln=Pr) or predominantly (Ln=La, Nd) by Ni2+ and the other by Ni2+ and W6+ in a ratio of approximately 1:2. None of the compounds shows long-range magnetic order at 5 K. The magnetometry data show that the magnetic moments of the Ni2+ cations form a spin glass below 30 K in each case. The Pr3+ moments in CaPr2Ni2WO9 also freeze but the Nd3+ moments in CaNd2Ni2WO9 do not. This behaviour is contrasted with that observed in other (A,A')B2B'O-9 perovskites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000402581200030 Publication Date 2017-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 5 Open Access OpenAccess  
  Notes ; We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful to Ivan da Silva who provided experimental assistance at ISIS and to Maria Batuk for help with the STEM-EDX analysis. ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:144179 Serial 4664  
Permanent link to this record
 

 
Author De Decker, J.; Folens, K.; De Clercq, J.; Meledina, M.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P. pdf  url
doi  openurl
  Title Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption Type A1 Journal article
  Year 2017 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater  
  Volume 335 Issue (up) Pages 1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Mesoporous MIL-101(Cr) is used as host for a ship-in-a-bottle type adsorbent for selective U(VI) recovery from aqueous environments. The acid-resistant cage-type MOF is built in-situ around N,N-Diisobutyl-2-(octylphenylphosphoryl)acetamide (CMPO), a sterically demanding ligand with high U(VI) affinity. This one-step procedure yields an adsorbent which is an ideal compromise between homogeneous and heterogeneous systems, where the ligand can act freely within the pores of MIL-101, without leaching, while the adsorbent is easy separable and reusable. The adsorbent was characterized by XRD, FTIR spectroscopy, nitrogen adsorption, XRF, ADF-STEM and EDX, to confirm and quantify the successful encapsulation of the CMPO in MIL-101, and the preservation of the host. Adsorption experiments with a central focus on U(VI) recovery were performed. Very high selectivity for U(VI) was observed, while competitive metal adsorption (rare earths, transition metals...) was almost negligible. The adsorption capacity was calculated at 5.32 mg U/g (pH 3) and 27.99 mg U/g (pH 4), by fitting equilibrium data to the Langmuir model. Adsorption kinetics correlated to the pseudo-second-order model, where more than 95% of maximum uptake is achieved within 375 min. The adsorbed U(VI) is easily recovered by desorption in 0.1 M HNO3. Three adsorption/desorption cycles were performed. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000402948600001 Publication Date 2017-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.065 Times cited 35 Open Access OpenAccess  
  Notes ; The authors acknowledge the AUGent/UGent for financial support, Grant Number DEF12/AOP/008 fund IV1. ; Approved Most recent IF: 6.065  
  Call Number UA @ lucian @ c:irua:144153 Serial 4685  
Permanent link to this record
 

 
Author Gholampour, N.; Chaemchuen, S.; Hu, Z.-Y.; Mousavi, B.; Van Tendeloo, G.; Verpoort, F. pdf  url
doi  openurl
  Title Simultaneous creation of metal nanoparticles in metal organic frameworks via spray drying technique Type A1 Journal article
  Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 322 Issue (up) Pages 702-709  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In-situ fabrication of palladium(0) nanoparticles inside zeolitic imidazolate frameworks (ZIF-8) has been established via one-step facile spray-dry technique. Crystal structures and morphologies of the Pd@ZIF-8 samples are investigated by powder XRD, TEM, SAED, STEM, and EDX techniques. High angle annular dark field scanning transmission electron microscopy (HAAD-STEM) and 3D tomographic analysis confirm the presence of palladium nanoparticles inside the ZIF-8 structure. The porosity, surface area and N-2 physisorption properties are evaluated for Pd@ZIF-8 with various palladium contents. Furthermore, Pd@ZIF-8 samples are effectively applied as heterogeneous catalysts in alkenes hydrogenation. This straightforward method is able to speed up the synthesis of encapsulation of metal nanoparticles in metal organic frameworks. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000401594200069 Publication Date 2017-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 0300-9467 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 14 Open Access OpenAccess  
  Notes ; The authors would like to express their deep accolade to “State Key Laboratory of Advanced Technology for Materials Synthesis and Processing” for financial support. S.C. appreciates of the National Natural Science Foundation of China (303-41150231), the Fundamental Research Funds for the Central Universities (WUT: 2016IVA092) and the Research Fund for the Doctoral Program of Higher Education of China (471-40120222). N.G. thanks the Chinese Scholarship Council (CSC) for her Ph.D. study grant 2013GXZ985. Z.-Y. H and G. V.T. acknowledge the support from the EC Framework 7 program ESTEEM2 (Reference 312483). ; Approved Most recent IF: 6.216  
  Call Number UA @ lucian @ c:irua:144152 Serial 4686  
Permanent link to this record
 

 
Author Voorhaar, L.; Diaz, M.M.; Leroux, F.; Rogers, S.; Abakumov, A.M.; Van Tendeloo, G.; Van Assche, G.; Van Mele, B.; Hoogenboom, R. url  doi
openurl 
  Title Supramolecular thermoplastics and thermoplastic elastomer materials with self-healing ability based on oligomeric charged triblock copolymers Type A1 Journal article
  Year 2017 Publication NPG Asia materials Abbreviated Journal Npg Asia Mater  
  Volume 9 Issue (up) Pages e385  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Supramolecular polymeric materials constitute a unique class of materials held together by non-covalent interactions. These dynamic supramolecular interactions can provide unique properties such as a strong decrease in viscosity upon relatively mild heating, as well as self-healing ability. In this study we demonstrate the unique mechanical properties of phase-separated electrostatic supramolecular materials based on mixing of low molar mass, oligomeric, ABA-triblock copolyacrylates with oppositely charged outer blocks. In case of well-chosen mixtures and block lengths, the charged blocks are phase separated from the uncharged matrix in a hexagonally packed nanomorphology as observed by transmission electron microscopy. Thermal and mechanical analysis of the material shows that the charged sections have a T-g closely beyond room temperature, whereas the material shows an elastic response at temperatures far above this T-g ascribed to the electrostatic supramolecular interactions. A broad set of materials having systematic variations in triblock copolymer structures was used to provide insights in the mechanical properties and and self-healing ability in correlation with the nanomorphology of the materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402065300005 Publication Date 2017-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1884-4049; 1884-4057 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.157 Times cited 8 Open Access OpenAccess  
  Notes ; This research was conducted in the framework of the SIM-SHE/NAPROM project and SIM is gratefully acknowledged for the financial support. ; Approved Most recent IF: 9.157  
  Call Number UA @ lucian @ c:irua:144263 Serial 4691  
Permanent link to this record
 

 
Author Wu, K.; Torun, E.; Sahin, H.; Chen, B.; Fan, X.; Pant, A.; Wright, D.P.; Aoki, T.; Peeters, F.M.; Soignard, E.; Tongay, S. url  doi
openurl 
  Title Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3 Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue (up) Pages 12952  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of TiS3 both experimentally and theoretically. Unlike other two-dimensional systems, the Raman active peaks of TiS3 have only out-of-plane vibrational modes, and interestingly some of these vibrations involve unique rigid-chain vibrations and S-S molecular oscillations. High-pressure Raman studies further reveal that the A(g)(S-S) S-S molecular mode has an unconventional negative pressure dependence, whereas other peaks stiffen as anticipated. Various vibrational modes are doubly degenerate at ambient pressure, but the degeneracy is lifted at high pressures. These results establish the unusual vibrational properties of TiS3 with strong in-plane anisotropy, and may have relevance to understanding of vibrational properties in other anisotropic two-dimensional material systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385444300004 Publication Date 2016-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 50 Open Access  
  Notes ; S.T. acknowledges support from the National Science Foundation (DMR-1552220) and (CMMI-1561839). F.M.P., H.S. and E.T. were supported by the Flemish Science Foundation (FWO-Vl). Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e Infrastructure). H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP programme. F.P. acknowledges the funding from Flemish Science Foundation (FWO-Vl). K.W. acknowledges helpful discussions with H. Cai, W. Kong and X. Meng. We gratefully acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. ; Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:144662 Serial 4700  
Permanent link to this record
 

 
Author Jelić, Z.L.; Milošević, M.V.; Silhanek, A.V. doi  openurl
  Title Velocimetry of superconducting vortices based on stroboscopic resonances Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue (up) Pages 35687  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract An experimental determination of the mean vortex velocity in superconductors mostly relies on the measurement of flux-flow resistance with magnetic field, temperature, or driving current. In the present work we introduce a method combining conventional transport measurements and a frequency-tuned flashing pinning potential to obtain reliable estimates of the vortex velocity. The proposed device is characterized using the time-dependent Ginzburg-Landau formalism, where the velocimetry method exploits the resonances in mean vortex dissipation when temporal commensuration occurs between the vortex crossings and the flashing potential. We discuss the sensitivity of the proposed technique on applied current, temperature and heat diffusion, as well as the vortex core deformations during fast motion.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000385919600001 Publication Date 2016-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 22 Open Access  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO) and EU COST action MP1201. The work of Z.L.J. and A.V.S. was partially supported by “Mandat d'Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:144636 Serial 4701  
Permanent link to this record
 

 
Author Jones, E.; Cooper, D.; Rouvière, J.-L.; Béché, A.; Azize, M.; Palacios, T.; Gradecak, S. doi  openurl
  Title Towards rapid nanoscale measurement of strain in III-nitride heterostructures Type A1 Journal article
  Year 2013 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue (up) Pages 231904  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the structural and compositional nanoscale characterization of InAlN/GaN nanoribbon-structured high electron mobility transistors (HEMTs) through the use of geometric phase analysis (GPA) and nanobeam electron diffraction (NBED). The strain distribution in the HEMT layer is quantified and compared to the expected strain profile for the nominal structure predicted by finite element analysis (FEA). Using the experimental strain results, the actual structure is determined and used to modify the FEA model. The improved fit of the model demonstrates that GPA and NBED provide a powerful platform for routine and rapid characterization of strain in III-V semiconducting device systems leading to insights into device evolution during processing and future device optimization.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000328634900025 Publication Date 2013-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:136443 Serial 4513  
Permanent link to this record
 

 
Author de Backer, A.; De wael, A.; Gonnissen, J.; Martinez, G.T.; Béché, A.; MacArthur, K.E.; Jones, L.; Nellist, P.D.; Van Aert, S. url  doi
openurl 
  Title Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting : what are the limits? Type A1 Journal article
  Year 2015 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 644 Issue (up) Pages 012034-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atomcounting diagnosed by combining a thorough statistical method and detailed image simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:129198 Serial 4506  
Permanent link to this record
 

 
Author Cooper, D.; Rouvière, J.-L.; Béché, A.; Kadkhodazadeh, S.; Semenova, E.S.; Dunin-Borkowsk, R. doi  openurl
  Title Quantitative strain mapping of InAs/InP quantum dots with 1 nm spatial resolution using dark field electron holography Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue (up) Pages 261911-261913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The optical properties of semiconductor quantum dots are greatly influenced by their strain state. Dark field electron holography has been used to measure the strain in InAsquantum dotsgrown in InP with a spatial resolution of 1 nm. A strain value of 5.4% ± 0.1% has been determined which is consistent with both measurements made by geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images and with simulations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000298638500027 Publication Date 2012-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 26 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:136428 Serial 4507  
Permanent link to this record
 

 
Author Cooper, D.; Le Royer, C.; Béché, A.; Rouvière, J.-L. doi  openurl
  Title Strain mapping for the silicon-on-insulator generation of semiconductor devices by high-angle annular dark field scanning electron transmission microscopy Type A1 Journal article
  Year 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue (up) Pages 233121  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The strain in pMOS p-type metal-oxide-semiconductor devicesgrown on silicon-on-insulator substrates has been measured by using the geometrical phase analysis of high angle annular dark field scanning electron microscopy. We show that by using the latest generations of electron microscopes, the strain can now be quantitatively measured with a large field of view, a spatial resolution as low as 1 nm with a sensitivity as good as 0.15%. This technique is extremely flexible, provides both structural and strain information, and can be applied to all types of nanoscale materials both quickly and easily.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos Publication Date 2012-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited Open Access  
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:136432 Serial 4509  
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Barnes, J.-P.; Hartmann, J.-M.; Hutin, L.; Le Royer, C.; Béché, A.; Rouvière, J.-L. doi  openurl
  Title Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy Type A1 Journal article
  Year 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 112 Issue (up) Pages 124505  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Strain engineering in the conduction channel is a cost effective method of boosting the performance in state-of-the-art semiconductor devices. However, given the small dimensions of these devices, it is difficult to quantitatively measure the strain with the required spatial resolution. Three different transmission electron microscopy techniques, high-angle annular dark field scanning transmission electron microscopy, dark field electron holography, and nanobeam electron diffraction have been applied to measure the strain in simple bulk and SOI calibration specimens. These techniques are then applied to different gate length SiGe SOI pFET devices in order to measure the strain in the conduction channel. For these devices, improved spatial resolution is required, and strain maps with spatial resolutions as good as 1 nm have been achieved. Finally, we discuss the relative advantages and disadvantages of using these three different techniques when used for strain measurement.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000312829400128 Publication Date 2012-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:136433 Serial 4510  
Permanent link to this record
 

 
Author Rouvière, J.-L.; Béché, A.; Martin, Y.; Denneulin, T.; Cooper, D. doi  openurl
  Title Improved strain precision with high spatial resolution using nanobeam precession electron diffraction Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue (up) Pages 241913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract NanoBeam Electron Diffraction is a simple and efficient technique to measure strain in nanostructures. Here, we show that improved results can be obtained by precessing the electron beam while maintaining a few nanometer probe size, i.e., by doing Nanobeam Precession Electron Diffraction (N-PED). The precession of the beam makes the diffraction spots more uniform and numerous, making N-PED more robust and precise. In N-PED, smaller probe size and better precision are achieved by having diffraction disks instead of diffraction dots. Precision in the strain measurement better than 2 × 10−4 is obtained with a probe size approaching 1 nm in diameter.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000328706500031 Publication Date 2013-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 53 Open Access  
  Notes Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:136442 Serial 4502  
Permanent link to this record
 

 
Author Longo, R.; Ferrarotti, M.; Garcia Sánchez, C.; Derudi, M.; Parente, A. pdf  doi
openurl 
  Title Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings Type A1 Journal article
  Year 2017 Publication Journal of wind engineering and industrial aerodynamics Abbreviated Journal J Wind Eng Ind Aerod  
  Volume 167 Issue (up) Pages 160-182  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract When dealing with Atmospheric Boundary Layer (ABL) simulations, commercial computational fluid dynamics (CFD) acquires a strategic resonance. Thanks to its good compromise between accuracy of results and calculation time, RANS still represents a valid alternative to more resource-demanding methods. However, focusing on the models' performances in urban studies, LES generally outmatches RANS results, even if the former is at least one order of magnitude more expensive. Consequently, the present work aims to propose a variety of approaches meant to solve some of the major problems linked to RANS simulations and to further improve its accuracy in typical urban contexts. All of these models are capable of switching from an undisturbed flux formulation to a disturbed one through a local deviation or a marker function. For undisturbed flows, a comprehensive approach is adopted, solving the issue of the erroneous stream-wise gradients affecting the turbulent profiles. Around obstacles, Non-Linear Eddy-Viscosity closures are adopted, due to their prominent capability in capturing the anisotropy of turbulence. The purpose of this work is then to propose a new Building Influence Area concept and to offer more affordable alternatives to LES simulations without sacrificing a good grade of accuracy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000405766600013 Publication Date 2017-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-6105 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.049 Times cited 9 Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: 2.049  
  Call Number UA @ lucian @ c:irua:145191 Serial 4713  
Permanent link to this record
 

 
Author Vladimirova, S.A.; Rumyantseva, M.N.; Filatova, D.G.; Chizhov, A.S.; Khmelevsky, N.O.; Konstantinova, E.A.; Kozlovsky, V.F.; Marchevsky, A.V.; Karakulina, O.M.; Hadermann, J.; Gaskov, A.M. pdf  doi
openurl 
  Title Cobalt location in p-CoOxIn-SnO2 nanocomposites : correlation with gas sensor performances Type A1 Journal article
  Year 2017 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 721 Issue (up) Pages 249-260  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanocomposites CoOx/SnO2 based on tin oxide powders with different crystallinity have been prepared by wet chemical synthesis and characterized in detail by ICP-MS, XPS, EPR, XRD, HAADF-STEM imaging and EDX-STEM mapping. It was shown that cobalt is distributed differently between the bulk and surface of SnO2 nanocrystals, which depends on the crystallinity of the SnO2 matrix. The measurements of gas sensor properties have been carried out during exposure to CO (10 ppm), and H2S (2 ppm) in dry air. The decrease of sensor signal toward CO was attributed to high catalytic activity of Co3O4 leading to oxidation of carbon monoxide entirely on the surface of catalyst particles. The formation of a p-CoOx/n-SnO2 heterojunction results in high sensitivity of nanocomposites in H2S detection. The conductance significantly changed in the presence of H2S, which was attributed to the formation of metallic cobalt sulfide and removal of the p – n junction. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited Open Access Not_Open_Access: Available from 10.10.2019  
  Notes ; This work was supported by ERA-Net.Plus grant N 096 FON-SENS. EPR experiments were performed using the facilities of the Collective Use Center at the Moscow State University. ; Approved Most recent IF: 3.133  
  Call Number UA @ lucian @ c:irua:145142 Serial 4714  
Permanent link to this record
 

 
Author Embon, L.; Anahory, Y.; Jelić, Z.L.; Lachman, E.O.; Myasoedov, Y.; Huber, M.E.; Mikitik, G.P.; Silhanek, A.V.; Milošević, M.V.; Gurevich, A.; Zeldov, E. url  doi
openurl 
  Title Imaging of super-fast dynamics and flow instabilities of superconducting vortices Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue (up) Pages 85  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. While the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channels which undergo cascades of bifurcations as the current and magnetic field increase. Our numerical simulations predict metamorphosis of fast Abrikosov vortices into mixed Abrikosov-Josephson vortices at even higher velocities. This work offers an insight into the fundamental physics of dynamic vortex states of superconductors at high current densities, crucial for many applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405900400002 Publication Date 2017-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 124 Open Access  
  Notes ; We would like to thank M.L. Rappaport for fruitful discussions and technical support. This work was supported by the US-Israel Binational Science Foundation (BSF) grant No. 2014155 and the Israel Science Foundation grant No. 132/14. A.G. was also supported by the United States Department of Energy under Grant No. DE-SC0010081. M.V.M. acknowledges support from Research Foundation-Flanders (FWO). The work of Z.L.J. and A.V.S. was partially supported by “Mandat d'Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. This work benefited from the support of COST action MP-1201. ; Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:144832 Serial 4720  
Permanent link to this record
 

 
Author Magnus, W.; Lemmens, L.; Brosens, F. pdf  doi
openurl 
  Title Quantum canonical ensemble : a projection operator approach Type A1 Journal article
  Year 2017 Publication Physica: A : theoretical and statistical physics Abbreviated Journal Physica A  
  Volume 482 Issue (up) Pages 1-13  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function Z(N) and the Helmholtz free energy F-N as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 – F-N, as illustrated for a two-dimensional fermion gas. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000405885500001 Publication Date 2017-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4371 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.243 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 2.243  
  Call Number UA @ lucian @ c:irua:145145 Serial 4722  
Permanent link to this record
 

 
Author Bal, K.M.; Cautereels, J.; Blockhuys, F. pdf  url
doi  openurl
  Title Structures and spectroscopic properties of sulfur-nitrogen-pnictogen chains : R2P-N=S=N-PR2 and R2P-N=S=N-AsR2 Type A1 Journal article
  Year 2017 Publication Journal of molecular structure Abbreviated Journal J Mol Struct  
  Volume 1132 Issue (up) Pages 102-108  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The conformational and configurational preferences of Me2PNSNPMe2 (3) and Me2PNSNAsMe2 (4) have been identified using quantum chemical calculations at the DFT/B3LYP/6-311+G* level of theory. An approach in which energetic, structural (geometries and bond orders), electronic (analysis of the electron density) and spectroscopic properties are combined leads to the conclusion that these sulfur-nitrogen-pnictogen chains share many of the properties of their chalcogen-nitrogen analogues but that the through-space intramolecular interactions favouring the Z,Z configuration are even weaker than in these latter compounds. The results of this analysis also lead to an unambiguous assignment of the variable-temperature 31P and 15N NMR spectra of these compounds and their structures both in solution and in the solid state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000393254400015 Publication Date 2016-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2860 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.753 Times cited Open Access Not_Open_Access: Available from 03.10.2019  
  Notes Approved Most recent IF: 1.753  
  Call Number UA @ lucian @ c:irua:145533 Serial 4726  
Permanent link to this record
 

 
Author Zarenia, M.; Neilson, D.; Peeters, F.M. url  doi
openurl 
  Title Inhomogeneous phases in coupled electron-hole bilayer graphene sheets : charge density waves and coupled wigner crystals Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue (up) Pages 11510  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Recently proposed accurate correlation energies are used to determine the phase diagram of strongly coupled electron-hole graphene bilayers. The control parameters of the phase diagram are the charge carrier density and the insulating barrier thickness separating the bilayers. In addition to the electron-hole superfluid phase we find two new inhomogeneous ground states, a one dimensional charge density wave phase and a coupled electron-hole Wigner crystal. The elementary crystal structure of bilayer graphene plays no role in generating these new quantum phases, which are completely determined by the electrons and holes interacting through the Coulomb interaction. The experimental parameters for the new phases lie within attainable ranges and therefore coupled electron-hole bilayer graphene presents itself as an experimental system where novel emergent many-body phases can be realized.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000410739000008 Publication Date 2017-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 13 Open Access  
  Notes ; We thank Alex Hamilton, Bart Partoens, and Andrea Perali for useful discussions. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. D.N. acknowledges support by the University of Camerino FAR project CESEMN. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:145620 Serial 4742  
Permanent link to this record
 

 
Author Tang, Y.; Sena, R.P.; Aydeev, M.; Battle, P.D.; Cadogan, J.M.; Hadermann, J.; Hunter, E.C. url  doi
openurl 
  Title Magnetic properties of the 6H perovskite Ba3Fe2TeO9 Type A1 Journal article
  Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 253 Issue (up) Pages 347-354  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of Ba3Fe2TeO9 having the 6H perovskite structure has been prepared in a solid-state reaction and studied by a combination of electron microscopy, Mossbauer spectroscopy, magnetometry, X-ray diffraction and neutron diffraction. Partial ordering of Fe3+ and Te6+ cations occurs over the six-coordinate sites; the corner-sharing octahedra are predominantly occupied by the former and the face-sharing octahedra by a 1:1 mixture of the two. On cooling through the temperature range 18 < T/K < 295 an increasing number of spins join an antiferromagnetic backbone running through the structure while the remainder show complex relaxation effects. At 3 K an antiferromagnetic phase and a spin glass coexist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000406572600047 Publication Date 2017-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 6 Open Access OpenAccess  
  Notes ; We thank EPSRC for financial support through grant EP/M018954/1. ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:145692 Serial 4743  
Permanent link to this record
 

 
Author García Sánchez, C.; Van Tendeloo, G.; Gorle, C. pdf  url
doi  openurl
  Title Quantifying inflow uncertainties in RANS simulations of urban pollutant dispersion Type A1 Journal article
  Year 2017 Publication Atmospheric environment : an international journal Abbreviated Journal Atmos Environ  
  Volume 161 Issue (up) Pages 263-273  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Numerical simulations of flow and pollutant dispersion in urban environments have the potential to support design and policy decisions that could reduce the population's exposure to air pollution. Reynolds-averaged Navier-Stokes simulations are a common modeling technique for urban flow and dispersion, but several sources of uncertainty in the simulations can affect the accuracy of the results. The present study proposes a method to quantify the uncertainty related to variability in the inflow boundary conditions. The method is applied to predict flow and pollutant dispersion in downtown Oklahoma City and the results are compared to field measurements available from the Joint Urban 2003 measurement campaign. Three uncertain parameters that define the inflow profiles for velocity, turbulence kinetic energy and turbulence dissipation are defined: the velocity magnitude and direction, and the terrain roughness length. The uncertain parameter space is defined based on the available measurement data, and a non-intrusive propagation approach that employs 729 simulations is used to quantify the uncertainty in the simulation output. A variance based sensitivity analysis is performed to identify the most influential uncertain parameters, and it is shown that the predicted tracer concentrations are influenced by all three uncertain variables. Subsequently, we specify different probability distributions for the uncertain inflow variables based on the available measurement data and calculate the corresponding means and 95% confidence intervals for comparison with the field measurements at 35 locations in downtown Oklahoma City. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000403515900025 Publication Date 2017-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.629 Times cited 17 Open Access OpenAccess  
  Notes ; The first author's contribution to this work was supported by the doctoral (PhD) grant number 131423 for strategic basic research from the Agency for Innovation by Science and Technology in Flanders (IWT). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number CTS160009 (Towns et al., 2014). ; Approved Most recent IF: 3.629  
  Call Number UA @ lucian @ c:irua:145761 Serial 4749  
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Dietz, W.; Verwerft, M. pdf  url
doi  openurl
  Title Thermal creep properties of Ti-stabilized DIN 1.4970 (15-15Ti) austenitic stainless steel pressurized cladding tubes Type A1 Journal article
  Year 2017 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 493 Issue (up) Pages 154-167  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This paper presents a large database of thermal creep data from pressurized unirradiated DIN 1.4970 Ti-stabilized austenitic stainless steel (i.e. EN 1515CrNiMoTiB or “15-15Ti”) cladding tubes from more than 1000 bi-axial creep tests conducted during the fast reactor R&D program of the DeBeNe (Deutschland-Belgium- Netherlands) consortium between the 1960's to the late 1980's. The data comprises creep rate and time-to-rupture between 600 and 750 degrees C and a large range of stresses. The data spans tests on material from around 70 different heats and 30 different melts. Around one fourth of the data was obtained from cold worked material, the rest was obtained on cold worked + aged (800 degrees C, 2 h) material. The data are graphically presented in log-log graphs. The creep rate data is fit with a sinh correlation, the time to rupture data is fit with a modified exponential function through the Larson-Miller parameter. Local equivalent parameters to Norton's law are calculated and compared to literature values for these types of steels and related to possible creep mechanisms. Some time to rupture data above 950 degrees C is compared to literature dynamic recrystallization data. Time to rupture data between 600 and 750 degrees C is also compared to literature data from 316 steel. Time to rupture was correlated directly to creep rate with the Monkman-Grant relationship at different temperatures. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000408044000018 Publication Date 2017-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 5 Open Access OpenAccess  
  Notes ; ; Approved Most recent IF: 2.048  
  Call Number UA @ lucian @ c:irua:145686 Serial 4753  
Permanent link to this record
 

 
Author Leus, K.; Perez, J.P.H.; Folens, K.; Meledina, M.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P. pdf  doi
openurl 
  Title UiO-66-(SH)2 as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions Type A1 Journal article
  Year 2017 Publication Faraday discussions Abbreviated Journal Faraday Discuss  
  Volume 201 Issue (up) Pages 145-161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The dithiol functionalized UiO-66-(SH)(2) is developed as an efficient adsorbent for the removal of mercury in aqueous media. Important parameters for the application of MOFs in real-life circumstances include: stability and recyclability of the adsorbents, selectivity for the targeted Hg species in the presence of much higher concentrations of interfering species, and ability to purify wastewater below international environmental limits within a short time. We show that UiO-66-(SH)(2) meets all these criteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000409366000009 Publication Date 2017-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6640 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.588 Times cited 18 Open Access Not_Open_Access  
  Notes ; J. P. H. P. is grateful for the funding from the Vlaamse Interuniversitaire Raad-Universitaire Ontwikkelingssamenwerking (VLIR-UOS). K. L. acknowledges the financial support from the Ghent University BOF Postdoctoral Grant (01P06813T). ; Approved Most recent IF: 3.588  
  Call Number UA @ lucian @ c:irua:145653 Serial 4757  
Permanent link to this record
 

 
Author Van de Put, M.L.; Sorée, B.; Magnus, W. pdf  doi
openurl 
  Title Efficient solution of the Wigner-Liouville equation using a spectral decomposition of the force field Type A1 Journal article
  Year 2017 Publication Journal of computational physics Abbreviated Journal J Comput Phys  
  Volume 350 Issue (up) Pages 314-325  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Wigner-Liouville equation is reformulated using a spectral decomposition of the classical force field instead of the potential energy. The latter is shown to simplify the Wigner-Liouville kernel both conceptually and numerically as the spectral force Wigner-Liouville equation avoids the numerical evaluation of the highly oscillatory Wigner kernel which is nonlocal in both position and momentum. The quantum mechanical evolution is instead governed by a term local in space and non-local in momentum, where the non locality in momentum has only a limited range. An interpretation of the time evolution in terms of two processes is presented; a classical evolution under the influence of the averaged driving field, and a probability-preserving quantum-mechanical generation and annihilation term. Using the inherent stability and reduced complexity, a direct deterministic numerical implementation using Chebyshev and Fourier pseudo-spectral methods is detailed. For the purpose of illustration, we present results for the time evolution of a one-dimensional resonant tunneling diode driven out of equilibrium. (C) 2017 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000413379000016 Publication Date 2017-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.744 Times cited 5 Open Access  
  Notes ; ; Approved Most recent IF: 2.744  
  Call Number UA @ lucian @ c:irua:146630 Serial 4780  
Permanent link to this record
 

 
Author Klinkhammer, C.; Verlackt, C.; Smilowicz, D.; Kogelheide, F.; Bogaerts, A.; Metzler-Nolte, N.; Stapelmann, K.; Havenith, M.; Lackmann, J.-W. url  doi
openurl 
  Title Elucidation of plasma-induced chemical modifications on glutathione and glutathione disulphide Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue (up) Pages 13828  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric pressure plasmas are gaining increased interest in the medical sector and clinical trials to treat skin diseases are underway. Plasmas are capable of producing several reactive oxygen and nitrogen species (RONS). However, there are open questions how plasma-generated RONS interact on a molecular level in a biological environment, e.g. cells or cell components. The redox pair glutathione (GSH) and glutathione disulphide (GSSG) forms the most important redox buffer in organisms responsible for detoxification of intracellular reactive species. We apply Raman spectroscopy, mass spectrometry, and molecular dynamics simulations to identify the time-dependent chemical modifications on GSH and GSSG that are caused by dielectric barrier discharge under ambient conditions. We find GSSG, S-oxidised glutathione species, and S-nitrosoglutathione as oxidation products with the latter two being the final products, while glutathione sulphenic acid, glutathione sulphinic acid, and GSSG are rather reaction intermediates. Experiments using stabilized pH conditions revealed the same main oxidation products as were found in unbuffered solution, indicating that the dominant oxidative or nitrosative reactions are not influenced by acidic pH. For more complex systems these results indicate that too long treatment times can cause difficult-to-handle modifications to the cellular redox buffer which can impair proper cellular function.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000413401300003 Publication Date 2017-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 17 Open Access OpenAccess  
  Notes Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:146666 Serial 4783  
Permanent link to this record
 

 
Author Zografos, O.; Manfrini, M.; Vaysset, A.; Sorée, B.; Ciubotaru, F.; Adelmann, C.; Lauwereins, R.; Raghavan, P.; Radu, I.P. url  doi
openurl 
  Title Exchange-driven magnetic logic Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue (up) Pages 12154  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Direct exchange interaction allows spins to be magnetically ordered. Additionally, it can be an efficient manipulation pathway for low-powered spintronic logic devices. We present a novel logic scheme driven by exchange between two distinct regions in a composite magnetic layer containing a bistable canted magnetization configuration. By applying a magnetic field pulse to the input region, the magnetization state is propagated to the output via spin-to-spin interaction in which the output state is given by the magnetization orientation of the output region. The dependence of this scheme with input field conditions is extensively studied through a wide range of micromagnetic simulations. These results allow different logic operating modes to be extracted from the simulation results, and majority logic is successfully demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000411434900020 Publication Date 2017-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:146742 Serial 4784  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Hernandez-Nieves, A.D.; Peeters, F.M.; Dominguez, D. url  doi
openurl 
  Title Microfluidic manipulation of magnetic flux domains in type-I superconductors : droplet formation, fusion and fission Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue (up) Pages 12129  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The magnetic flux domains in the intermediate state of type-I superconductors are known to resemble fluid droplets, and their dynamics in applied electric current is often cartooned as a “dripping faucet”. Here we show, using the time-depended Ginzburg-Landau simulations, that microfluidic principles hold also for the determination of the size of the magnetic flux-droplet as a function of the applied current, as well as for the merger or splitting of those droplets in the presence of the nanoengineered obstacles for droplet motion. Differently from fluids, the flux-droplets in superconductors are quantized and dissipative objects, and their pinning/depinning, nucleation, and splitting occur in a discretized form, all traceable in the voltage measured across the sample. At larger applied currents, we demonstrate how obstacles can cause branching of laminar flux streams or their transformation into mobile droplets, as readily observed in experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000411416700032 Publication Date 2017-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 1 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO) and the MINCYT-FWO FW/14/04 bilateral project. A.D.H. and D.D. acknowledge support from CONICET (Grant No. PIP111220150100218), CNEA and ANPCyT (Grant No. PICT2014-1382). ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:146743 Serial 4789  
Permanent link to this record
 

 
Author Grieb, T.; Krause, F.F.; Mahr, C.; Zillmann, D.; Müller-Caspary, K.; Schowalter, M.; Rosenauer, A. pdf  doi
openurl 
  Title Optimization of NBED simulations for disc-detection measurements Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 181 Issue (up) Pages 50-60  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nano-beam electron diffraction (NBED) is a method which can be applied to measure lattice strain and polarisation fields in strained layer heterostructures and transistors. To investigate precision, accuracy and spatial resolution of such measurements in dependence of properties of the specimen as well as electron optical parameters, simulations of NBED patterns are required which allow to predict the result of common disc-detection algorithms. In this paper we demonstrate by focusing on the detection of the central disc in crystalline silicon that such simulations require to take several experimental characteristics into account in order to obtain results which are comparable to those from experimental NBED patterns. These experimental characteristics are the background intensity, the presence of Poisson noise caused by electron statistics and blurring caused by inelastic scattering and by the transfer quality of the microscope camera. By means of these optimized simulations, different effects of specimen properties on disc detection – such as strain, surface morphology and compositional changes on the nanometer scale – are investigated and discussed in the context of misinterpretation in experimental NBED evaluations. It is shown that changes in surface morphology and chemical composition lead to measured shifts of the central disc in the NBED pattern of tens to hundreds of grad. These shifts are of the same order of magnitude or even larger than shifts that could be caused by an electric polarisation field in the range of MV/cm. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000411170800006 Publication Date 2017-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 6 Open Access Not_Open_Access  
  Notes ; This work was supported by the German Research Foundation (DFG) under Contract No. R02057/11-1, R02057/4-2 and MU3660/1-1. ; Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:146725 Serial 4792  
Permanent link to this record
 

 
Author Torfs, E.; Vajs, J.; Bidart de Macedo, M.; Cools, F.; Vanhoutte, B.; Gorbanev, Y.; Bogaerts, A.; Verschaeve, L.; Caljon, G.; Maes, L.; Delputte, P.; Cos, P.; Komrlj, J.; Cappoen, D. pdf  url
doi  openurl
  Title Synthesis and in vitro investigation of halogenated 1,3-bis(4-nitrophenyl)triazenide salts as antitubercular compounds Type A1 Journal article
  Year 2017 Publication Chemical biology and drug design Abbreviated Journal Chem Biol Drug Des  
  Volume Issue (up) Pages 1-10  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The diverse pharmacological properties of the diaryltriazenes have sparked the interest to investigate their potential to be repurposed as antitubercular drug candidates. In an attempt to improve the antitubercular activity of a previously constructed diaryltriazene library, eight new halogenated nitroaromatic triazenides were synthesized and underwent biological evaluation. The potency of the series was confirmed against the Mycobacterium tuberculosis lab strain H37Ra, and for the most potent derivative, we observed a minimal inhibitory concentration of 0.85 μm. The potency of the triazenide derivatives against M. tuberculosis H37Ra was found to be highly dependent on the nature of the halogenated phenyl substituent and less dependent on cationic species used for the preparation of the salts. Although the inhibitory concentration against J774A.1 macrophages was observed at 3.08 μm, the cellular toxicity was not mediated by the generation of nitroxide intermediate as confirmed by electron paramagnetic resonance spectroscopy, whereas no in vitro mutagenicity could be observed for the new halogenated nitroaromatic triazenides when a trifluoromethyl substituent was present on both the aryl moieties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000422952300027 Publication Date 2017-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1747-0277; 1747-0285; 1397-002x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.396 Times cited 5 Open Access OpenAccess  
  Notes Approved Most recent IF: 2.396  
  Call Number UA @ lucian @ c:irua:147182 Serial 4794  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: