|   | 
Details
   web
Records
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M.
Title Electronic properties of graphene nano-flakes : energy gap, permanent dipole, termination effect, and Raman spectroscopy Type A1 Journal article
Year 2014 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 140 Issue 7 Pages 074304-74309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C-Nc X-Nx (X = F or H). We studied GNFs with 10 < N-c < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Delta between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N-c, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000332039900020 Publication Date 2014-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 30 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 2.965; 2014 IF: 2.952
Call Number UA @ lucian @ c:irua:115857 Serial 1002
Permanent link to this record
 

 
Author Hamid, I.; Jalali, H.; Peeters, F.M.; Neek-Amal, M.
Title Abnormal in-plane permittivity and ferroelectricity of confined water : from sub-nanometer channels to bulk Type A1 Journal article
Year 2021 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
Volume 154 Issue 11 Pages 114503
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Dielectric properties of nano-confined water are important in several areas of science, i.e., it is relevant in the dielectric double layer that exists in practically all heterogeneous fluid-based systems. Molecular dynamics simulations are used to predict the in-plane dielectric properties of confined water in planar channels of width ranging from sub-nanometer to bulk. Because of suppressed rotational degrees of freedom near the confining walls, the dipole of the water molecules tends to be aligned parallel to the walls, which results in a strongly enhanced in-plane dielectric constant (epsilon (parallel to)) reaching values of about 120 for channels with height 8 angstrom < h < 10 angstrom. With the increase in the width of the channel, we predict that epsilon (parallel to) decreases nonlinearly and reaches the bulk value for h > 70 angstrom. A stratified continuum model is proposed that reproduces the h > 10 angstrom dependence of epsilon (parallel to). For sub-nanometer height channels, abnormal behavior of epsilon (parallel to) is found with two orders of magnitude reduction of epsilon (parallel to) around h similar to 7.5 angstrom, which is attributed to the formation of a particular ice phase that exhibits long-time (similar to mu s) stable ferroelectricity. This is of particular importance for the understanding of the influence of confined water on the functioning of biological systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000629831900001 Publication Date 2021-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 9 Open Access OpenAccess
Notes Approved Most recent IF: 2.965
Call Number UA @ admin @ c:irua:177579 Serial 6967
Permanent link to this record
 

 
Author Seyed-Talebi, S.M.; Beheshtian, J.; Neek-Amal, M.
Title Doping effect on the adsorption of NH3 molecule onto graphene quantum dot : from the physisorption to the chemisorption Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 114 Issue 12 Pages 124307-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The adsorption of ammonia molecule onto a graphene hexagonal flake, aluminum (Al) and boron (B) doped graphene flakes (graphene quantum dots, GQDs) are investigated using density functional theory. We found that NH3 molecule is absorbed to the hollow site through the physisorption mechanism without altering the electronic properties of GQD. However, the adsorption energy of NH3 molecule onto the Al- and B-doped GQDs increases with respect GQD resulting chemisorption. The adsorption of NH3 onto the Al-doped and B-doped GQDs makes graphene locally buckled, i.e., B-doped and Al-doped GQDs are not planar. The adsorption mechanism onto a GQD is different than that of graphene. This study reveals important features of the edge passivation and doping effects of the adsorption mechanism of external molecules onto the graphene quantum dots. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000325391100057 Publication Date 2013-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 10 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF Fellowship/299855 for M.-N.A. ; Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:112201 Serial 750
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Neek-Amal, M.; Partoens, B.; Neyts, E.C.
Title The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes Type A1 Journal article
Year 2017 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
Volume 687 Issue Pages 188-193
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000412453700030 Publication Date 2017-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.815 Times cited 2 Open Access Not_Open_Access: Available from 01.11.2019
Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 1.815
Call Number UA @ lucian @ c:irua:146646 Serial 4795
Permanent link to this record
 

 
Author Xu, P.; Qi, D.; Schoelz, J.K.; Thompson, J.; Thibado, P.M.; Wheeler, V.D.; Nyakiti, L.O.; Myers-Ward, R.L.; Eddy, C.R.; Gaskill, D.K.; Neek-Amal, M.; Peeters, F.M.;
Title Multilayer graphene, Moire patterns, grain boundaries and defects identified by scanning tunneling microscopy on the m-plane, non-polar surface of SiC Type A1 Journal article
Year 2014 Publication Carbon Abbreviated Journal Carbon
Volume 80 Issue Pages 75-81
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Epitaxial graphene is grown on a non-polar n(+) 6H-SiC m-plane substrate and studied using atomic scale scanning tunneling microscopy. Multilayer graphene is found throughout the surface and exhibits rotational disorder. Moire patterns of different spatial periodicities are found, and we found that as the wavelength increases, so does the amplitude of the modulations. This relationship reveals information about the interplay between the energy required to bend graphene and the interaction energy, i.e. van der Waals energy, with the graphene layer below. Our experiments are supported by theoretical calculations which predict that the membrane topographical amplitude scales with the Moire pattern wavelength, L as L-1 + alpha L-2. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000344132400009 Publication Date 2014-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 14 Open Access
Notes ; P.X. and P.M.T. gratefully acknowledge the financial support of ONR under grant N00014-10-1-0181 and NSF under grant DMR-0855358. L.O.N. acknowledges the support of American Society for Engineering Education and Naval Research Laboratory Postdoctoral Fellow Program. Work at the U.S. Naval Research Laboratory is supported by the Office of Naval Research. This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, and the EUROgraphene project CONGRAN. M.N.-A was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; Approved Most recent IF: 6.337; 2014 IF: 6.196
Call Number UA @ lucian @ c:irua:121194 Serial 2221
Permanent link to this record
 

 
Author Dehdast, M.; Valiollahi, Z.; Neek-Amal, M.; Van Duppen, B.; Peeters, F.M.; Pourfath, M.
Title Tunable natural terahertz and mid-infrared hyperbolic plasmons in carbon phosphide Type A1 Journal article
Year 2021 Publication Carbon Abbreviated Journal Carbon
Volume 178 Issue Pages 625-631
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Hyperbolic polaritons in ultra thin materials such as few layers of van derWaals heterostructures provide a unique control over light-matter interaction at the nanoscale and with various applications in flat optics. Natural hyperbolic surface plasmons have been observed on thin films of WTe2 in the light wavelength range of 16-23 mu m (similar or equal to 13-18 THz) [Nat. Commun. 11, 1158 (2020)]. Using time-dependent density functional theory, it is found that carbon doped monolayer phosphorene (beta-allotrope of carbon phosphide monolayer) exhibits natural hyperbolic plasmons at frequencies above similar or equal to 5 THz which is not observed in its parent materials, i.e. monolayer of black phosphorous and graphene. Furthermore, we found that by electrostatic doping the plasmonic frequency range can be extended to the mid-infrared. (C) 2021 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000648729800057 Publication Date 2021-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 6 Open Access Not_Open_Access
Notes Approved Most recent IF: 6.337
Call Number UA @ admin @ c:irua:179033 Serial 7039
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Graphene on boron-nitride : Moiré pattern in the van der Waals energy Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 4 Pages 041909-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The spatial dependence of the van der Waals (vdW) energy between graphene and hexagonal boron-nitride (h-BN) is investigated using atomistic simulations. The van der Waals energy between graphene and h-BN shows a hexagonal superlattice structure identical to the observed Moire pattern in the local density of states, which depends on the lattice mismatch and misorientation angle between graphene and h-BN. Our results provide atomistic features of the weak van der Waals interaction between graphene and BN which are in agreement with experiment and provide an analytical expression for the size of the spatial variation of the weak van der Waals interaction. We also found that the A-B-lattice symmetry of graphene is broken along the armchair direction. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000331209900028 Publication Date 2014-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 61 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A was supported by the EU-Marie Curie IIF postdoctoral Fellowship/299855. ; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:115802 Serial 1374
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Graphene on hexagonal lattice substrate : stress and pseudo-magnetic field Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 17 Pages 173106
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Moire patterns in the pseudo-magnetic field and in the strain profile of graphene (GE) when put on top of a hexagonal lattice substrate are predicted from elasticity theory. The van der Waals interaction between GE and the substrate induces out-of-plane deformations in graphene which results in a strain field, and consequently in a pseudo-magnetic field. When the misorientation angle is about 0.5 degrees, a three-fold symmetric strain field is realized that results in a pseudo-magnetic field very similar to the one proposed by F. Guinea, M. I. Katsnelson, and A. K. Geim [Nature Phys. 6, 30 (2010)]. Our results show that the periodicity and length of the pseudo-magnetic field can be tuned in GE by changing the misorientation angle and substrate adhesion parameters and a considerable energy gap (23 meV) can be obtained due to out-of-plane deformation of graphene which is in the range of recent experimental measurements (20-30 meV). (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000336142500066 Publication Date 2014-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:117724 Serial 1375
Permanent link to this record
 

 
Author Neek-Amal, M.; Sadeghi, A.; Berdiyorov, G.R.; Peeters, F.M.
Title Realization of free-standing silicene using bilayer graphene Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue 26 Pages 261904-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The available synthesized silicene-like structures have been only realized on metallic substrates which are very different from the standalone buckled silicene, e. g., the Dirac cone of silicene is destroyed due to lattice distortion and the interaction with the substrate. Using graphene bilayer as a scaffold, a route is proposed to synthesize silicene with electronic properties decoupled from the substrate. The buckled hexagonal arrangement of silicene between the graphene layers is found to be very similar to the theoretically predicted standalone buckled silicene which is only very weakly van der Waals coupled to the graphene layers with a graphite-like interlayer distance of 3.42 angstrom and without any lattice distortion. We found that these stacked layers are stable well above room temperature. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000329977400022 Publication Date 2013-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 74 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship/299855. ; Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:114849 Serial 2837
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Defected graphene nanoribbons under axial compression Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 97 Issue 15 Pages 153118,1-153118,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The buckling of defected rectangular graphene nanoribbons when subjected to axial stress with supported boundary conditions is investigated using atomistic simulations. The buckling strain and mechanical stiffness of monolayer graphene decrease with the percentage of randomly distributed vacancies. The elasticity to plasticity transition in the stress-strain curve, at low percentage of vacancies, are found to be almost equal to the buckling strain thresholds and they decrease with increasing percentage of vacancies.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000283216900069 Publication Date 2010-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 43 Open Access
Notes ; This work was supported by the Flemish Science Foundation (WO-Vl) and the Belgian Science Policy (IAP) ; Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:85789 Serial 624
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Effect of grain boundary on the buckling of graphene nanoribbons Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue 10 Pages 101905-101905,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The buckling of graphene nano-ribbons containing a grain boundary is studied using atomistic simulations where free and supported boundary conditions are invoked. We consider the buckling transition of two kinds of grain boundaries with special symmetry. When graphene contains a large angle grain boundary with theta = 21.8 degrees, the buckling strains are larger than those of perfect graphene when the ribbons with free (supported) boundary condition are subjected to compressive tension parallel (perpendicular) to the grain boundary. This is opposite for the results of theta = 32.2 degrees. The shape of the deformations of the buckled graphene nanoribbons depends on the boundary conditions, the presence of the particular used grain boundaries, and the direction of applied in-plane compressive tension. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692573]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000301655500021 Publication Date 2012-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 18 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:97794 Serial 809
Permanent link to this record