|   | 
Details
   web
Records
Author Van Tendeloo, G.
Title High resolution electron microscopy in materials research Type A1 Journal article
Year 1998 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 8 Issue 4 Pages 797-808
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000073072600001 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 8 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:25657 Serial 1451
Permanent link to this record
 

 
Author Esken, D.; Zhang, X.; Lebedev, O.I.; Schröder, F.; Fischer, R.A.
Title Pd@MOF-5: limitations of gas-phase infiltration and solution impregnation of [Zn4O(bdc)3] (MOF-5) with metalorganic palladium precursors for loading with Pd nanoparticles Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue 9 Pages 1314-1319
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The limitations of the loading of the porous metalorganic framework [Zn4O(bdc)3] (bdc = benzene-1,4-dicarboxylate; MOF-5 or IRMOF-1) with Pd nanoparticles was investigated. First, the volatile organometallic precursor [Pd(5-C5H5)(3-C3H5)] was employed to get the inclusion compound [Pd(5-C5H5)(3-C3H5)]x@MOF-5 via gas-phase infiltration at 10-3 mbar. A loading of four molecules of [Pd(5-C5H5)(3-C3H5)] per formula unit of MOF-5 (x = 4) can be reached (35 wt.% Pd). Second, the metalorganic precursor [Pd(acac)2] (acac = 2,4-pentanedionate) was used and the inclusion materials [Pd(acac)2]x@MOF-5 of different Pd loadings were obtained by incipient wetness infiltration. However, the maximum loading was lower as compared with the former case with about two precursor molecules per formula unit of MOF-5. Both loading routes are suitable for the synthesis of Pd nanoparticles inside the porous host matrix. Homogeneously distributed nanoparticles with diameter of 2.4(±0.2) nm can be achieved by photolysis of the inclusion compounds [Pd(5-C5H5)(3-C3H5)]x@MOF-5 (x 4), while the hydrogenolysis of [Pd(acac)2]x@MOF-5 (x 2) leads to a mixture of small particles inside the network (< 3 nm) and large Pd agglomerates (40 nm) on the outer surface of the MOF-5 specimens. The pure Pdx@MOF-5 materials proved to be stable under hydrogen pressure (2 bar) at 150 °C over many hours. Neither hydrogenation of the bdc linkers nor particle growth was observed. The new composite materials were characterized by 1H/13C-MAS-NMR, powder XRD, ICP-AES, FT-IR, N2 sorption measurements and high resolution TEM. Raising the Pd loading of a representative sample Pd4@MOF-5 (35 wt.% Pd) by using [Pd(5-C5H5)(3-C3H5)] as precursor in a second cycle of gas-phase infiltration and photolysis was accompanied by the collapse of the long-range crystalline order of the MOF.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000263450300015 Publication Date 2009-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 100 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:76318 Serial 2565
Permanent link to this record
 

 
Author Smeulders, G.; Meynen, V.; van Baelen, G.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Maes, B.U.W.; Cool, P.
Title Rapid microwave-assisted synthesis of benzene bridged periodic mesoporous organosilicas Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue 19 Pages 3042-3048
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)
Abstract Following extended use in organic chemistry, microwave-assisted synthesis is gaining more importance in the field of inorganic chemistry, especially for the synthesis of nanoporous materials. It offers some major advantages such as a significant shortening of the synthesis time and an improved promotion of nucleation. In the research here reported, microwave technology is applied for the synthesis of benzene bridged PMOs (periodic mesoporous organosilicas). PMOs are one of the latest innovations in the field of hybrid ordered mesoporous materials and have attracted much attention because of their feasibility in electronics, catalysis, separation and sorption applications. The different synthesis steps (stirring, aging and extraction) of the classical PMO synthesis are replaced by microwave-assisted synthesis steps. The characteristics of the as-synthesized materials are evaluated by X-ray diffraction, N2-sorption, thermogravimetric analysis, scanning- and transmission electron microscopy. The microwave-assisted synthesis drastically reduces the synthesis time by more than 40 hours without any loss in structural properties, such as mesoscale and molecular ordering. The porosity of the PMO materials has even been improved by more than 25%. Moreover, the number of handling/transfer steps and amounts of chemicals and waste are drastically reduced. The study also shows that there is a clear time (1 to 3 hours) and temperature frame (373 K to 403 K) wherein synthesis of benzene bridged PMO is optimal. In conclusion, the microwave-assisted synthesis pathway allows an improved material to be obtained in a more economical way i.e. a much shorter time with fewer chemicals and less waste.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000265919300024 Publication Date 2009-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 20 Open Access
Notes Fwo; Iwt Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:76844 Serial 2810
Permanent link to this record
 

 
Author Canioni, R.; Roch-Marchal, C.; Sécheresse, F.; Horcajada, P.; Serre, C.; Hardi-Dan, M.; Férey, G.; Grenèche, J.-M.; Lefebvre, F.; Chang, J.-S.; Hwang, Y.-K.; Lebedev, O.; Turner, S.; Van Tendeloo, G.
Title Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe) Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue 4 Pages 1226-1233
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Successful encapsulation of polyoxometalate (POM) within the framework of a mesoporous iron trimesate MIL-100(Fe) sample has been achieved by direct hydrothermal synthesis in the absence of fluorine. XRPD, 31P MAS NMR, IR, EELS, TEM and 57Fe Mössbauer spectrometry corroborate the insertion of POM within the cavities of the MOF. The experimental Mo/Fe ratio is 0.95, in agreement with the maximum theoretical amount of POM loaded within the pores of MIL-100(Fe), based on steric hindrance considerations. The POM-MIL-100(Fe) sample exhibits a pore volume of 0.373 cm3 g−1 and a BET surface area close to 1000 m2 g−1, indicating that small gas molecules can easily diffuse inside the cavities despite the presence of heavy phosphomolybdates. These latter contribute to the decrease in the overall surface area, due to the increase in molar weight, by 65%. Moreover, the resulting Keggin containing MIL-100(Fe) solid is stable in aqueous solution with no POM leaching even after more than 2 months. In addition, no exchange of the Keggin anions by tetrabutylammonium perchlorate in organic media has been observed.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000286110400042 Publication Date 2010-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 158 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:88642 Serial 3145
Permanent link to this record
 

 
Author Colomer, J.-F.; Henrard, L.; Van Tendeloo, G.; Lucas, A.; Lambin, P.
Title Study of the packing of double-walled carbon nanotubes into bundles by transmission electron microscopy and electron diffraction Type A1 Journal article
Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 14 Issue 4 Pages 603-606
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000220224100021 Publication Date 2004-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 27 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54758 Serial 3339
Permanent link to this record
 

 
Author Veith, G.M.; Lobanov, M.V.; Emge, T.J.; Greenblatt, M.; Croft, M.; Stowasser, F.; Hadermann, J.; Van Tendeloo, G.
Title Synthesis and charactreization of the new Ln(2)FeMoO(7) (Ln = Y, Dy, Ho) compounds Type A1 Journal article
Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 14 Issue Pages 1623-1630
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000221507200021 Publication Date 2004-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 17 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:47319 Serial 3421
Permanent link to this record
 

 
Author Abakumov, A.M.; Rossell, M.D.; Seryakov, S.A.; Rozova, M.G.; Markina, M.M.; Van Tendeloo, G.; Antipov, E.V.
Title Synthesis and crystal structure of novel CaRMnSnO6(R = La, Pr, Nd, Sm-Dy) double perovskites Type A1 Journal article
Year 2005 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 15 Issue 46 Pages 4899-4905
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000233439300005 Publication Date 2005-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 8 Open Access
Notes Iap V-1 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:56069 Serial 3424
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; d' Hondt, H.; Kalyuzhnaya, A.S.; Rozova, M.G.; Markina, M.M.; Mikheev, M.G.; Tristan, N.; Klingeler, R.; Büchner, B.; Antipov, E.V.
Title Synthesis and crystal structure of the Sr2Al1.07Mn0.93O5 brownmillerite Type A1 Journal article
Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 17 Issue 7 Pages 692-698
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000244085100016 Publication Date 2006-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 31 Open Access
Notes Iap V-1 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:62061 Serial 3430
Permanent link to this record
 

 
Author Yang, T.; Perkisas, T.; Hadermann, J.; Croft, M.; Ignatov, A.; Van Tendeloo, G.; Greenblatt, M.
Title Synthesis and structure determination of ferromagnetic semiconductors LaAMnSnO6(A = Sr, Ba) Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue 1 Pages 199-205
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract LaAMnSnO(6) (A = Sr, Ba) have been synthesized by high temperature solid-state reactions under dynamic 1% H(2)/Ar flow. Rietveld refinements on room temperature powder X-ray diffraction data indicate that LaSrMnSnO(6) crystallizes in the GdFeO(3)-structure, with space group Pnma and, combined with transmission electron microscopy, LaBaMnSnO(6) in Imma. Both space groups are common in disordered double-perovskites. The Mn(3+) and Sn(4+) ions whose valence states were confirmed by X-ray absorption spectroscopy, are completely disordered over the B-sites and the BO(6) octahedra are slightly distorted. LaAMnSnO(6) are ferromagnetic semiconductors with a T(C) = 83 K for the Sr- and 66 K for the Ba-compound. The title compounds, together with the previously reported LaCaMnSnO(6) provide an interesting example of progression from Pnma to Imma as the tolerance factor increases. An analysis of the relationship between space group and tolerance factor for the series LaAMnMO(6) (A = Ca, Sr, Ba; M = Sn, Ru) provides a better understanding of the symmetry determination for double perovskites.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000285067300025 Publication Date 2010-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:95527 Serial 3440
Permanent link to this record
 

 
Author Mandal, T.K.; Croft, M.; Hadermann, J.; Van Tendeloo, G.; Stephens, P.W.; Greenblatt, M.
Title La2MnVO6 double perovskite: a structural, magnetic and X-ray absorption investigation Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue 25 Pages 4382-4390
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The synthesis, electron diffraction (ED), synchrotron X-ray and neutron structure, X-ray absorption spectroscopy (XAS) and magnetic property studies of La2MnVO6 double perovskite are described. Analysis of the synchrotron powder X-ray diffraction data for La2MnVO6 indicates a disordered arrangement of Mn and V at the B-site of the perovskite structure. Absence of super-lattice reflections in the ED patterns for La2MnVO6 supports the disordered cation arrangement. Room temperature time-of-flight (TOF) neutron powder diffraction (NPD) data show no evidence of cation ordering, in corroboration with the ED and synchrotron studies (orthorhombic Pnma, a = 5.6097(3), b = 7.8837(5) and c = 5.5668(3) ; 295 K, NPD). A comparison of XAS analyses of La2TVO6 with T = Ni and Co shows T2+ formal oxidation state while the T = Mn material evidences a Mn3+ admixture into a dominantly Mn2+ ground state. V-K edge measurements manifest a mirror image behavior with a V4+ state for T = Ni and Co with a V3+ admixture arising in the T = Mn material. The magnetic susceptibility data for La2MnVO6 show ferromagnetic correlations; the observed effective moment, µeff (5.72 µB) is much smaller than the calculated moment (6.16 µB) based on the spin-only formula for Mn2+ (d5, HS) /V4+ (d1), supportive of the partly oxidized Mn and reduced V scenario (Mn3+/V3+).
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000266989800015 Publication Date 2009-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 10 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:77367 Serial 3540
Permanent link to this record
 

 
Author Grodzinska, D.; Pietra, F.; van Huis, M.A.; Vanmaekelbergh, D.; de Mello Donegá, C.
Title Thermally induced atomic reconstruction of PbSe/CdSe core/shell quantum dots into PbSe/CdSe bi-hemisphere hetero-nanocrystals Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue 31 Pages 11556-11565
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The properties of hetero-nanocrystals (HNCs) depend strongly on the mutual arrangement of the nanoscale components. In this work we have investigated the structural and morphological evolution of colloidal PbSe/CdSe core/shell quantum dots upon annealing under vacuum. Prior to annealing the PbSe core has an approximately octahedral morphology with eight {111} facets, and the CdSe shell has zinc-blende crystal structure. Thermal annealing under vacuum at temperatures between 150 °C and 200 °C induces a structural and morphological reconstruction of the HNCs whereby the PbSe core and the CdSe shell are reorganized into two hemispheres joined by a common {111} Se plane. This thermally induced reconstruction leads to considerable changes in the optical properties of the colloidal PbSe/CdSe HNCs.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000293190200018 Publication Date 2011-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 44 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:91945 Serial 3632
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M.
Title A three-dimensional model for artificial atoms and molecules: influence of substrate orientation and magnetic field dependence Type A1 Journal article
Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 17 Issue 35 Pages 3687-3695
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000249080100013 Publication Date 2007-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 7 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:66124 Serial 3653
Permanent link to this record
 

 
Author Simon, Q.; Barreca, D.; Gasparotto, A.; Maccato, C.; Montini, T.; Gombac, V.; Fornasiero, P.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.
Title Vertically oriented CuO/ZnO nanorod arrays : from plasma-assisted synthesis to photocatalytic H2 production Type A1 Journal article
Year 2012 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 22 Issue 23 Pages 11739-11747
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract 1D CuO/ZnO nanocomposites were grown on Si(100) substrates by means of an original two-step synthetic strategy. ZnO nanorod (NR) arrays were initially deposited by plasma enhanced-chemical vapor deposition (PE-CVD) from an ArO2 atmosphere. Subsequently, tailored amounts of CuO were dispersed over zinc oxide matrices by radio frequency (RF)-sputtering of Cu from Ar plasmas, followed by thermal treatment in air. A thorough characterization of the obtained systems was carried out by X-ray photoelectron and X-ray excited-Auger electron spectroscopies (XPS and XE-AES), glancing incidence X-ray diffraction (GIXRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS), atomic force microscopy (AFM), transmission electron microscopy (TEM), electron diffraction (ED) and energy filtered-TEM (EF-TEM). Pure and highly oriented CuO/ZnO NR arrays, free from ternary ZnCuO phases and characterized by a copper(II) oxide content controllable as a function of the adopted RF-power, were successfully obtained. Interestingly, the structural relationships between the two oxides at the CuO/ZnO interface were found to depend on the overall CuO loading. The obtained nanocomposites displayed promising photocatalytic performances in H2 production by reforming of ethanolwater solutions under simulated solar illumination, paving the way to the sustainable conversion of solar light into chemical energy.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000304351400046 Publication Date 2012-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 74 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:98382 Serial 3840
Permanent link to this record
 

 
Author Esken, D.; Noei, H.; Wang, Y.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A.
Title ZnO@ZIF-8 : stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue 16 Pages 5907-5915
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microporous and activated zeolitic imidazolate framework (Zn(MeIM)2; MeIM = imidazolate-2-methyl; ZIF-8) was loaded with the MOCVD precursor diethyl zinc [Zn(C2H5)2]. Exposure of ZIF-8 to the vapour of the volatile organometallic molecule resulted in the formation of the inclusion compound [Zn(C2H5)2]0.38@ZIF-8 revealing two precursor molecules per cavity. In a second step the obtained material was treated with oxygen (5 vol% in argon) at various temperatures (oxidative annealing) to achieve the composite material ZnO0.35@ZIF-8. The new material was characterized with powder XRD, FT-IR, UV-vis, solid state NMR, elemental analysis, N2 sorption measurements, and transmission electron microscopy. The data give evidence for the presence of nano-sized ZnO particles stabilized by ZIF-8 showing a blue-shift of the UV-vis absorption caused by quantum size effect (QSE). The surface structure and reactivity of embedded ZnO nanoparticles were characterized via carbon dioxide adsorption at different temperatures monitored by ultra-high vacuum FTIR techniques. It was found that the surface of ZnO nanoparticles is dominated by polar OZnO and ZnZnO facets as well as by defect sites, which all exhibit high reactivity towards CO2 activation forming various adsorbed carbonate and chemisorbed CO2δ− species.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000289260000012 Publication Date 2011-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 76 Open Access
Notes Esteem 026019 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:88641 Serial 3936
Permanent link to this record
 

 
Author Vannier, R.-N.; Théry, O.; Kinowski, C.; Huvé, M.; Van Tendeloo, G.; Suard, E.; Abraham, F.
Title Zr substituted bismuth uranate Type A1 Journal article
Year 1999 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 9 Issue Pages 435-443
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000078572900019 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:29714 Serial 3937
Permanent link to this record
 

 
Author Yandouzi, M.; Toth, L.; Schryvers, D.
Title High resolution transmission electron microscopy study of nanoscale Ni-rich Ni-Al films evaporated onto NaCl and KCl Type A1 Journal article
Year 1998 Publication Nanostructured materials Abbreviated Journal Nanostruct Mater
Volume 10 Issue Pages 99-115
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000073840600011 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0965-9773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48370 Serial 1463
Permanent link to this record
 

 
Author Oleshko, V.P.; van Daele, A.; Gijbels, R.H.; Jacob, W.A.
Title Structural and analytical characterization of Ag(Br,I) nanocrystals by cryo-AEM techniques Type A1 Journal article
Year 1998 Publication Journal of nanostructured materials Abbreviated Journal Nanostruct Mater
Volume 10 Issue 8 Pages 1225-1246
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000079226900001 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0965-9773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:24909 Serial 3190
Permanent link to this record
 

 
Author Ding, L.; Zhao, M.; Ehlers, F.J.H.; Jia, Z.; Zhang, Z.; Weng, Y.; Schryvers, D.; Liu, Q.; Idrissi, H.
Title “Branched” structural transformation of the L12-Al3Zr phase manipulated by Cu substitution/segregation in the Al-Cu-Zr alloy system Type A1 Journal article
Year 2024 Publication Journal of materials science & technology Abbreviated Journal Journal of Materials Science & Technology
Volume 185 Issue Pages 186-206
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The effect of Cu on the evolution of the Al3Zr phase in an Al-Cu-Zr cast alloy during solution treatment at 500 °C has been thoroughly studied by combining atomic resolution high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy and first-principles cal- culations. The heat treatment initially produces a pure L12-Al3Zr microstructure, allowing for about 13 % Cu to be incorporated in the dispersoid. Cu incorporation increases the energy barrier for anti-phase boundary (APB) activation, thus stabilizing the L12 structure. Additional heating leads to a Cu-induced “branched”path for the L12 structural transformation, with the latter process accelerated once the first APB has been created. Cu atoms may either (i) be repelled by the APBs, promoting the transformation to a Cu-poor D023 phase, or (ii) they may segregate at one Al-Zr layer adjacent to the APB, promoting a transformation to a new thermodynamically favored phase, Al4CuZr, formed when these segregation layers are periodically arranged. Theoretical studies suggest that the branching of the L12 transformation path is linked to the speed at which an APB is created, with Cu attraction triggered by a comparatively slow process. This unexpected transformation behavior of the L12-Al3Zr phase opens a new path to understanding, and potentially regulating the Al3Zr dispersoid evolution for high temperature applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001154261100001 Publication Date 2023-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1005-0302 ISBN Additional Links UA library record; WoS full record
Impact Factor 10.9 Times cited Open Access Not_Open_Access
Notes This work was supported by the National Key Research and Development Program (No. 2020YFA0405900), the National Natural Science Foundation of China (Grant No. 52371111 and U2141215 ), the Natural Science Foundation of Jiangsu Province (No. BE2022159 ). We are grateful to the High Performance Computing Center of Nanjing Tech University for supporting the computational resources. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR- FNRS). Approved Most recent IF: 10.9; 2024 IF: 2.764
Call Number EMAT @ emat @c:irua:202392 Serial 8981
Permanent link to this record
 

 
Author Ji, G.; Tan, Z.; Lu, Y.; Schryvers, D.; Li, Z.; Zhang, D.
Title Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite Type A1 Journal article
Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 112 Issue 112 Pages 129-133
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Heterogeneous Al/Al4C3/Al2O3/diamond{111}, Al/nanolayered Al4C3/diamond{111} and Al12W particle/Al4C3/Al2O3/diamond{111} multi-interfaces have been developed at the nanoscale in a W-coated diamond/Al composite produced by vacuum hot pressing. The formation of nanoscale Al4C3 crystals is strongly associated with local O enrichment and can be further promoted by Al12W interfacial particles. The latter effectively contributes to enhance interfacial chemical bonding reducing interfacial thermal resistance and, in turn, enhancing thermal conductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370109200015 Publication Date 2015-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 7 Open Access
Notes This work is financially supported by the FWO project of Belgium (No. U2 FA 070100/3506), the travel funding BQR (No. R8DIV AUE) provided by Université Lille 1, the National Natural Science Foundation of China (Grant No. 51401123) and the China Postdoctoral Science Foundation (Grant No. 2014 M561469) for Dr. Z.Q. Tan. Dr. W.G. Grünewald (LeicaMicrosystems, Germany) is also thanked for the assistance of surface preparation. Approved Most recent IF: 2.714
Call Number c:irua:129976 Serial 3987
Permanent link to this record
 

 
Author Yan, L.; Tan, Z.; Ji, G.; Li, Z.; Fan, G.; Schryvers, D.; Shan, A.; Zhang, D.
Title A quantitative method to characterize the Al4C3-formed interfacial reaction: the case study of MWCNT/Al composites Type A1 Journal article
Year 2015 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 112 Issue 112 Pages 213-218
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The Al4C3-formed interfacial reaction plays an important role in tuning the mechanical and thermal properties of carbon/aluminum (C/Al) composites reinforced with carbonaceous materials such as multi-wall carbon nanotube (MWCNT) and graphene nanosheet. In terms of the hydrolysis nature of Al4C3, an electrochemical dissolution method was developed to quantitatively characterize the extent of C/Al interfacial reaction, which involves dissolving the composite samples in alkaline solution first, then collecting and measuring the CH4 gas released by Al4C3 hydrolysis with a gas chromatograph. Through a case study with powder metallurgy fabricated 2.0 wt.% MWCNT/Al composites, the detectability limit of the proposed method is 0.4 wt.% Al4C3, corresponding to 5 % extent of interfacial reaction with a measurement error of ±3 %. And then, with the already known MWCNT/Al reaction extent vs different sintering temperature and time, the reaction kinetics with an activation energy of 281 kJ mol-1 was successfully derived. Therefore, this rapid, sensitive, accurate method supplies an useful tool to optimize the processing and properties of all kinds of C/Al composites via interface design/control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370109200026 Publication Date 2015-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 24 Open Access
Notes The authors would like to acknowledge the financial support of the National Basic Research Program of China (973 Program, No. 2012CB619600), the National High-Tech R&D Program (863 Program, No. 2012AA030611), the National Natural Science Foundation (Nos. 51071100, 51131004, 51401123, 51511130038) and the research grant (Nos. 14DZ2261200, 15JC1402100, 14520710100) from Shanghai government. Dr. Z.Q. Tan would also like to thank the project funded by the China Postdoctoral Science Foundation (No. 2014M561469). The research leading to these results has partially received funding from the European Union Seventh Framework Program under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative – I3).; esteem2_jra2 Approved Most recent IF: 2.714; 2015 IF: 1.845
Call Number c:irua:130066 c:irua:130066 Serial 3997
Permanent link to this record
 

 
Author Lu, J.B.; Schryvers, D.
Title Microstructure and phase composition characterization in a Co38Ni33Al29 ferromagnetic shape memory alloy Type A1 Journal article
Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 118 Issue 118 Pages 9-13
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy was performed to investigate the microstructures of a secondary phase and its surrounding matrix in a Co38Ni33Al29 ferromagnetic shape memory alloy. The secondary phase shows a γ′ L12 structure exhibiting a dendritic morphology with enclosed B2 austenite regions while the matrix shows the L10 martensitic structure. A secondary phase-austenite-martensite sandwich structure with residual austenite ranging from several hundred nanometers to several micrometers wide is observed at the secondary phase-martensite interface due to the depletion of Co and enrichment of Al in the chemical gradient zone and the effect of the strong martensitic start temperature dependency of the element concentrations. The crystallographic orientation relationship of the secondary phase and the B2 austenite fits the Kurdjumov-Sachs relationship.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383292000002 Publication Date 2016-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 3 Open Access
Notes J.B. Lu thanks the Belgian Science Ministry (Belspo) for support of his post-doctoral research stay at EMAT. We thank S. Sedlakova-Ignacova from the Institute of Physics in Prague, Czech Republic, for providing samples. Approved Most recent IF: 2.714
Call Number c:irua:133100 Serial 4071
Permanent link to this record
 

 
Author Li, K.; Idrissi, H.; Sha, G.; Song, M.; Lu, J.; Shi, H.; Wang, W.; Ringer, S.P.; Du, Y.; Schryvers, D.
Title Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys Type A1 Journal article
Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 118 Issue 118 Pages 352-362
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cut by the foil surface. The method can be performed on a regular foil specimen with a modem LaB6 or field-emission-gun transmission electron microscope. Precisions around +/- 16% have been obtained for precipitate volume fractions of needle-like beta ''/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is dose to that directly obtained using 3DAP analysis by a misfit of 45%, and the estimated precision for number density measurement is about +/- 11%. The limitations of the method are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383292000042 Publication Date 2016-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 9 Open Access
Notes This work is financially supported by National Natural Science Foundation of China (51501230 and 51531009) and Postdoctoral Science Foundation of Central South University (502042057). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21 and FWO project G.0576.09N. Approved Most recent IF: 2.714
Call Number EMAT @ emat @ c:irua:137171 Serial 4334
Permanent link to this record
 

 
Author Du, C.; Hoefnagels, J.P.M.; Kolling, S.; Geers, M.G.D.; Sietsma, J.; Petrov, R.; Bliznuk, V.; Koenraad, P.M.; Schryvers, D.; Amin-Ahmadi, B.
Title Martensite crystallography and chemistry in dual phase and fully martensitic steels Type A1 Journal article
Year 2018 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 139 Issue Pages 411-420
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Lath martensite is important in industry because it is the key strengthening component in many advanced high strength steels. The study of crystallography and chemistry of lath martensite is extensive in the literature, however, mostly based on fully martensitic steels. In this work, lath martensite in dual phase steels is investigated with a focus on the substructure identification of the martensite islands and microstructural bands using electron backscattered diffraction, and on the influence of the accompanied tempering process during industrial coating process on the distribution of alloying elements using atom probe tomography. Unlike findings for the fully martensitic steels, no martensite islands with all 24 Kurdjumov-Sachs variants have been observed. Almost all martensite islands contain only one main packet with all six variants and minor variants from the remaining three packets of the same prior austenite grain. Similarly, the martensite bands are typically composed of connected domains originating from prior austenite grains, each containing one main packets (mostly with all variants) and few separate variants. The effect of tempering at similar to 450 degrees C (due to the industrial zinc coating process) has also been investigated. The results show a strong carbon partitioning to lath boundaries and Cottrell atmospheres at dislocation core regions due to the thermal process of coating. In contrast, auto-tempering contributes to the carbon redistribution only in a limited manner. The substitutional elements are all homogenously distributed. The phase transformation process has two effects on the material: mechanically, the earlier-formed laths are larger and softer and therefore more ductile (as revealed by nanoindentation); chemically, due to the higher dislocation density inside the later-formed laths, which are generally smaller, carbon Cottrell atmospheres are predominantly observed.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000431469300044 Publication Date 2018-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.714
Call Number UA @ lucian @ c:irua:151554 Serial 5033
Permanent link to this record
 

 
Author Pourbabak, S.; Montero-Sistiaga, M.L.; Schryvers, D.; Van Humbeeck, J.; Vanmeensel, K.
Title Microscopic investigation of as built and hot isostatic pressed Hastelloy X processed by Selective Laser Melting Type A1 Journal article
Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 153 Issue Pages 366-371
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Microstructural characteristics of Hastelloy X produced by Selective Laser Melting have been investigated by various microscopic techniques in the as built (AB) condition and after hot isostatic pressing (HIP). At sub-grain level the AB material consists of columnar high density dislocation cells while the HIP sample consists of columnar sub-grains with lower dislocation density that originate from the original dislocation cells, contradicting existing models. The sub-grains contain nanoscale precipitates enriched in Al, Ti, Cr and O, located at sub-grain boundaries in the AB condition and within the grains after HIP. At some grain boundaries, micrometer sized chromium carbides are detected after HIP. Micro hardness within the grains was found to decrease after HIP, which was attributed to the decrease in dislocation density due to recovery annealing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472696900040 Publication Date 2019-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 2 Open Access Not_Open_Access
Notes S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine and financial support. This work was also made possible through the AUHA13009 grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: 2.714
Call Number EMAT @ emat @UA @ admin @ c:irua:159974 Serial 5178
Permanent link to this record
 

 
Author Boyat, X.; Ballat-Durand, D.; Marteau, J.; Bouvier, S.; Favergeon, J.; Orekhov, A.; Schryvers, D.
Title Interfacial characteristics and cohesion mechanisms of linear friction welded dissimilar titanium alloys: Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) and Ti–6Al–2Sn–4Zr–2Mo (Ti6242) Type A1 Journal article
Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 158 Issue Pages 109942
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A detailed microstructural examination endeavoring to understand the interfacial phenomena yielding to cohesion

in solid-state assembling processes was performed. This study focuses on the transition zone of a dissimilar

titanium alloy joint obtained by Linear Friction Welding (LFW) the β-metastable Ti17 to the near-α

Ti6242. The transition zone delimitating both alloys is characterized by a sharp microstructure change from

acicular HCP (Hexagonal Close-Packed) α′ martensitic laths in the Ti6242 to equiaxed BCC β (Body-Centered

Cubic) subgrains in the Ti17; these α′ plates were shown to precipitate within prior-β subgrains remarkably more

rotated than the ones formed in the Ti17. Both α′ and β microstructures were found to be intermingled within

transitional subgrains demarcating a limited gradient from one chemical composition to the other. These peculiar

interfacial grains revealed that the cohesive mechanisms between the rubbing surfaces occurred in the

single-phase β domain under severe strain and high-temperature conditions. During the hot deformation process,

the mutual migration of the crystalline interfaces from one material to another assisted by a continuous dynamic

recrystallization process was identified as the main adhesive mechanism at the junction zone. The latter led to

successful cohesion between the rubbing surfaces. Once the reciprocating motion stopped, fast cooling caused

both materials to experience either a βlean→α′ or βlean→βmetastable transformation in the interfacial zone depending

on their local chemical composition. The limited process time and the subsequent hindered chemical

homogenization at the transition zone led to retaining the so-called intermingled α’/βm subgrains constituting

the border between both Ti-alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000503314000018 Publication Date 2019-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited Open Access
Notes The authors gratefully acknowledge the financial support of the French National Research Agency (ANR) through the OPTIMUM ANR- 14-CE27-0017 project. The authors would also like to thank the Hautsde- France Region and the European Regional Development Fund (ERDF) 2014/2020 for the co-funding of this work. The authors would also like to thank ACB for providing LFW samples as well as Airbus for their technical support. Approved Most recent IF: 2.714
Call Number EMAT @ emat @c:irua:165084 Serial 5441
Permanent link to this record
 

 
Author Wei, P.; Ke, B.; Xing, L.; Li, C.; Ma, S.; Nie, X.; Zhu, W.; Sang, X.; Zhang, Q.; Van Tendeloo, G.; Zhao, W.
Title Atomic-resolution interfacial structures and diffusion kinetics in Gd/Bi0.5Sb1.5Te3 magnetocaloric/thermoelectric composites Type A1 Journal article
Year 2020 Publication Materials Characterization Abbreviated Journal Mater Charact
Volume 163 Issue Pages 110240-110248
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The demand of a full solid-state cooling technology based on magnetocaloric and thermoelectric effects has led to a growing interest in screening candidate materials with high-efficiency cooling performance, which also stimulates the exploration of magnetocaloric/thermoelectric hybrid cooling materials. A series of Gd/Bi0.5Sb1.5Te3 composites was fabricated in order to develop the hybrid cooling technology. The chemical composition, phase structure and diffusion kinetics across the reaction layers in Gd/Bi0.5Sb1.5Te3 composites were analyzed at different reaction temperatures. Micro-area elemental analysis indicates that the formation of interfacial phases is dominated by the diffusion of Gd and Te while the diffusion of Bi and Sb is impeded. The interfacial phases, including GdTe2, GdTe3, and intermediate phases GdTex, are identified by atomic-resolution electron microscopy. The concentration modulation of Gd and Te is adapted by altering the stacking of the Te square-net sheets and the corrugated GdTe sheets. Boltzmann-Marano analysis was applied to reveal the diffusion kinetics of Gd and Te in the interfacial layers. The diffusion coefficients of Te in GdTe2 and GdTe3 are much higher than that of Gd while in GdTe the situation is reversed. This study provides a clear picture to understand the interfacial phase structures down to an atomic scale as well as the interfacial diffusion kinetics in Gd/Bi0.5Sb1.5Te3 hybrid cooling materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000551341700045 Publication Date 2020-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited 1 Open Access Not_Open_Access
Notes ; This work was supported by National Natural Science Foundation of China (Nos. 91963122, 11834012, 51620105014, 51521001, 51902237), National Key Research and Development Program of China (No. 2018YFB0703603), the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX, 183101006). XRD and EPMA experiments were performed at the Center for Materials Research and Testing of Wuhan University of Technology. ; Approved Most recent IF: 4.7; 2020 IF: 2.714
Call Number UA @ admin @ c:irua:171317 Serial 6456
Permanent link to this record
 

 
Author Cao, S.; Zeng, C.Y.; Li, Y.Y.; Yao, X.; Ma, X.; Samaee, V.; Schryvers, D.; Zhang, X.P.
Title Quantitative FIB/SEM three-dimensional characterization of a unique Ni₄Ti₃ network in a porous Ni50.8Ti49.2 alloy undergoing a two-step martensitic transformation Type A1 Journal article
Year 2020 Publication Materials Characterization Abbreviated Journal Mater Charact
Volume 169 Issue Pages 110595
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The three-dimensional (3D) nanostructure of Ni4Ti3 precipitates in a porous Ni50.8Ti49.2 alloy has been re-constructed by “Slice-and-View” in a Focused Ion Beam/Scanning Electron Microscope (FIB/SEM). The 3D configuration of these precipitates forming a network structure in the B2 austenite matrix has been characterized via 3D visualization and quantitative analysis including volume fraction, skeleton, degree of anisotropy and local thickness. It is found that dense Ni4Ti3 precipitates occupy 54% of the volume in the B2 austenite matrix. Parallel Ni4Ti3 precipitates grow alongside the surface of a micro-pore, yielding an asymmetric structure, while nano voids do not seem to affect the growth of Ni4Ti3 precipitates. The small average local thickness of the precipitates around 60 nm allows their coherency with the matrix, and further induces the R-phase transformation in the matrix. On the other hand, the B2 matrix exhibits a winding and narrow structure with a skeleton of 18.20 mm and a thickness similar to the precipitates. This discontinuous matrix segmented by the Ni4Ti3 network and pores is responsible for the gradual transformation by stalling the martensite propagation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000584353100001 Publication Date 2020-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access OpenAccess
Notes ; This work was supported by the National Natural Science Foundation of China under Grant Nos. 51401081 and 51571092, the Natural Science Foundation of Guangdong Province through Key Project under Grant No. 2018B0303110012 and General Project under Grant No. 2017A030313323, and China Scholarship Council (CSC). ; Approved Most recent IF: 4.7; 2020 IF: 2.714
Call Number UA @ admin @ c:irua:173547 Serial 6590
Permanent link to this record
 

 
Author Ding, L.; Raskin, J.-P.; Lumbeeck, G.; Schryvers, D.; Idrissi, H.
Title TEM investigation of the role of the polycrystalline-silicon film/substrate interface in high quality radio frequency silicon substrates Type A1 Journal article
Year 2020 Publication Materials Characterization Abbreviated Journal Mater Charact
Volume 161 Issue Pages 110174-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The microstructural characteristics of two polycrystalline silicon (poly-Si) films with different electrical properties produced by low-pressure chemical vapour deposition on top of high resistivity silicon substrates were investigated by advanced transmission electron microscopy (TEM), including high resolution aberration corrected TEM and automated crystallographic orientation mapping in TEM. The results reveal that the nature of the poly-Si film/Si substrate interface is the main factor controlling the electrical resistivity of the poly-Si films. The high resistivity and high electrical linearity of poly-Si films are strongly promoted by the Sigma 3 twin type character of the poly-Si/Si substrate interface, leading to the generation of a huge amount of extended defects including stacking faults, Sigma 3 twin boundaries as well as Sigma 9 grain boundaries at this interface. Furthermore, a high density of interfacial dislocations has been observed at numerous common and more exotic grain boundaries deviating from their standard crystallographic planes. In contrast, poly-Si film/Si substrate interfaces with random character do not favour the formation of such complex patterns of defects, leading to poor electrical resistivity of the poly-Si film. This finding opens windows for the development of high resistivity silicon substrates for Radio Frequency (RF) integrated circuits (ICs) applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000521515800027 Publication Date 2020-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access Not_Open_Access
Notes ; H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). ; Approved Most recent IF: 4.7; 2020 IF: 2.714
Call Number UA @ admin @ c:irua:168664 Serial 6621
Permanent link to this record
 

 
Author Charalampopoulou, E.; Lambrinou, K.; Van der Donck, T.; Paladino, B.; Di Fonzo, F.; Azina, C.; Eklund, P.; Mraz, S.; Schneider, J.M.; Schryvers, D.; Delville, R.
Title Early stages of dissolution corrosion in 316L and DIN 1.4970 austenitic stainless steels with and without anticorrosion coatings in static liquid lead-bismuth eutectic (LBE) at 500 degrees C Type A1 Journal article
Year 2021 Publication Materials Characterization Abbreviated Journal Mater Charact
Volume 178 Issue Pages 111234
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This work addresses the early stages (<= 1000 h) of the dissolution corrosion behavior of 316L and DIN 1.4970 austenitic stainless steels in contact with oxygen-poor (C-O < 10(-8) mass%), static liquid lead-bismuth eutectic (LBE) at 500 degrees C for 600-1000 h. The objective of this study was to determine the relative early-stage resistance of the uncoated steels to dissolution corrosion and to assess the protectiveness of select candidate coatings (Cr2AlC, Al2O3, V2AlxCy). The simultaneous exposure of steels with intended differences in microstructure and thermomechanical state showed the effects of steel grain size, density of annealing/deformation twins, and secondary precipitates on the steel dissolution corrosion behavior. The findings of this study provide recommendations on steel manufacturing with the aim of using the steels to construct Gen-IV lead-cooled fast reactors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000752582700001 Publication Date 2021-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.714
Call Number UA @ admin @ c:irua:186509 Serial 7061
Permanent link to this record
 

 
Author Krishnamurthy, S.C.; Arseenko, M.; Kashiwar, A.; Dufour, P.; Marchal, Y.; Delahaye, J.; Idrissi, H.; Pardoen, T.; Mertens, A.; Simar, A.
Title Controlled precipitation in a new Al-Mg-Sc alloy for enhanced corrosion behavior while maintaining the mechanical performance Type A1 Journal article
Year 2023 Publication Materials characterization Abbreviated Journal
Volume 200 Issue Pages 112886-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The hot working of 5xxx series alloys with Mg ≥3.5 wt% is a concern due to the precipitation of β (Al3Mg2) phase at grain boundaries favoring Inter Granular Corrosion (IGC). The mechanical and corrosion properties of a new 5028-H116 Al-Mg-Sc alloy under various β precipitates distribution is analyzed by imposing different cooling rates from the hot forming temperature (i.e. 325 °C). The mechanical properties are maintained regardless of the heat treatment. However, the different nucleation sites and volume fractions of β precipitates for different cooling rates critically affect IGC. Controlled furnace cooling after the 325 °C heat treatment is ideal in 5028-H116 alloy to reduce susceptibility to IGC after sensitization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000977059100001 Publication Date 2023-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.7; 2023 IF: 2.714
Call Number UA @ admin @ c:irua:195598 Serial 7291
Permanent link to this record