toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Espinosa, I.M.P.; Karaaslan, Y.; Sevik, C.; Martini, A.
  Title Atomistic model of the anisotropic response of ortho-Mo₂C to indentation Type A1 Journal article
  Year 2023 Publication AIP advances Abbreviated Journal
  Volume 13 Issue 6 Pages 065125-65127
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Molybdenum carbide has various applications for which studying the material using classical molecular dynamics simulations would be valuable. Here, we develop an empirical potential within the Tersoff formalism using particle swarm optimization for the orthorhombic phase of Mo2C. The developed potential is shown to predict lattice constants, elastic properties, and equation of state results that are consistent with current and previously reported results from experiments and first principles calculations. We demonstrate the potential with simulations of indentation using multiple indenter sizes that load and unload in three different directions relative to the crystallographic lattice of orthorhombic Mo2C. Direction-dependent force-displacement trends are analyzed and explained in terms of the spatial distributions of stress and strain within the material during indentation. This study reveals the anisotropic elasticity of orthorhombic Mo2C and, more generally, provides researchers with a new empirical potential that can be used to explore the properties and behavior of the material going forward.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001016472500005 Publication Date 2023-06-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2158-3226 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:198333 Serial 8834
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Lu, Y.-G.; Turner, S.; Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Verbeeck, J.; Baranov, A.N.; Moshchalkov, V.V.
  Title Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters Type A1 Journal article
  Year 2012 Publication Optical materials express Abbreviated Journal Opt Mater Express
  Volume 2 Issue 6 Pages 723-734
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Nanocrystalline ZnO doped with Ag-nanoclusters has been synthesized by a salt solid state reaction. Three overlapping broad emission bands due to the Ag nanoclusters have been detected at about 570, 750 and 900 nm. These emission bands are excited by an energy transfer from the exciton state of the ZnO host when pumped in the wavelength range from 250 to 400 nm. The 900 nm emission band shows characteristic orbital splitting into three components pointing out that the anisotropic crystalline wurtzite host of ZnO is responsible for this feature. Heat-treatment and temperature dependence studies confirm the origin of these emission bands. An energy level diagram for the emission process and a model for Ag nanoclusters sites are suggested. The emission of nanocrystalline ZnO doped with Ag nanoclusters may be applied for white light generation, displays driven by UV light, down-convertors for solar cells and luminescent lamps.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000304953700004 Publication Date 2012-04-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2159-3930; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.591 Times cited Open Access
  Notes We are grateful to the Methusalem Funding of Flemish Government for the support of this work. Y.-G. L. and S. T. acknowledge funding from the Fund for Scientific Research Flanders (FWO) for a postdoctoral grant and under grant number G056810N. The microscope used in this study was partially financed by the Hercules Foundation. J.V. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No246791 – COUNTATOMS and ERC Starting Grant 278510 VORTEX. The authors acknowledge the guidance of Prof. G. Van Tendeloo, EMAT Antwerpen University, in transmission electron microscopy study in this work. ECASJO_; Approved Most recent IF: 2.591; 2012 IF: 2.616
  Call Number UA @ lucian @ c:irua:97709UA @ admin @ c:irua:97709 Serial 2707
Permanent link to this record
 

 
Author Sankaran, K.J.; Deshmukh, S.; Korneychuk, S.; Yeh, C.-J.; Thomas, J.P.; Drijkoningen, S.; Pobedinskas, P.; Van Bael, M.K.; Verbeeck, J.; Leou, K.-C.; Leung, K.-T.; Roy, S.S.; Lin, I.-N.; Haenen, K.
  Title Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods Type A1 Journal article
  Year 2018 Publication MRS communications Abbreviated Journal Mrs Commun
  Volume 8 Issue 3 Pages 1311-1320
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Vertically aligned nitrogen-doped nanocrystalline diamond nanorods are fabricated from nitrogen-doped nanocrystalline diamond films using reactive ion etching in oxygen plasma. These nanorods show enhanced thermionic electron emission (TEE) characteristics, viz.. a high current density of 12.0 mA/cm(2) and a work function value of 4.5 eV with an applied voltage of 3 Vat 923 K. The enhanced TEE characteristics of these nanorods are ascribed to the induction of nanographitic phases at the grain boundaries and the field penetration effect through the local field enhancement from nanorods owing to a high aspect ratio and an excellent field enhancement factor.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000448887900089 Publication Date 2018-08-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2159-6859; 2159-6867 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.01 Times cited 1 Open Access
  Notes The authors thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. The Hercules Foundation Flanders is acknowledged for financial support of the Raman equipment. The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S.K. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. K.J. Sankaran and P. Pobedinskas are Postdoctoral Fellows of FWO. Approved Most recent IF: 3.01
  Call Number UA @ admin @ c:irua:155521 Serial 5364
Permanent link to this record
 

 
Author Varykhalov, A.; Marchenko, D.; Sanchez-Barriga, J.; Scholz, M.R.; Verberck, B.; Trauzettel, B.; Wehling, T.O.; Carbone, C.; Rader, O.
  Title Intact dirac cones at broken sublattice symmetry : photoemission study of graphene on Ni and Co Type A1 Journal article
  Year 2012 Publication Physical review X Abbreviated Journal Phys Rev X
  Volume 2 Issue 4 Pages 041017-10
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The appearance of massless Dirac fermions in graphene requires two equivalent carbon sublattices of trigonal shape. While the generation of an effective mass and a band gap at the Dirac point remains an unresolved problem for freestanding extended graphene, it is well established by breaking translational symmetry by confinement and by breaking sublattice symmetry by interaction with a substrate. One of the strongest sublattice-symmetry-breaking interactions with predicted and measured band gaps ranging from 400 meV to more than 3 eV has been attributed to the interfaces of graphene with Ni and Co, which are also promising spin-filter interfaces. Here, we apply angle-resolved photoemission to epitaxial graphene on Ni (111) and Co(0001) to show the presence of intact Dirac cones 2.8 eV below the Fermi level. Our results challenge the common belief that the breaking of sublattice symmetry by a substrate and the opening of the band gap at the Dirac energy are in a straightforward relation. A simple effective model of a biased bilayer structure composed of graphene and a sublattice-symmetry-broken layer, corroborated by density-functional-theory calculations, demonstrates the general validity of our conclusions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication College Park, Md Editor
  Language Wos 000312703200001 Publication Date 2012-12-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2160-3308; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.789 Times cited 86 Open Access
  Notes ; A. V. acknowledges helpful discussions with N. Sandler. This work was supported by SPP 1459 of the Deutsche Forschungsgemeinschaft. B. V. acknowledges support from the Research Foundation Flanders (FWO-Vlaanderen). B. T. and T. O. W. would like to thank the KITP at Santa Barbara for hospitality during the completion of this work. ; Approved Most recent IF: 12.789; 2012 IF: 6.711
  Call Number UA @ lucian @ c:irua:105964 Serial 1677
Permanent link to this record
 

 
Author Goux, L.; Fantini, A.; Govoreanu, B.; Kar, G.; Clima, S.; Chen, Y.-Y.; Degraeve, R.; Wouters, D.J.; Pourtois, G.; Jurczak, M.
  Title Asymmetry and switching phenomenology in TiN\ (Al2O3) \ HfO2 \ Hf systems Type A1 Journal article
  Year 2012 Publication ECS solid state letters Abbreviated Journal Ecs Solid State Lett
  Volume 1 Issue 4 Pages 63-65
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this letter, we address the bipolar resistive switching phenomenology in scaled TiN\HfO2\Hf cells. By means of stack engineering using a thin Al2O3 layer inserted either at the TiN\HfO2 or at the Hf\HfO2 interface, we demonstrate that the reset operation takes place close to the TiNanode. Due to the increase of the oxygen-vacancy profile from the TiN to the Hf interface, the filament-confining and wide band-gap Al2O3 layer should indeed be engineered at the interface with the TiN electrode in order to further improve the switching control and to allow reaching larger state resistances. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.003204ssl] All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
  Language Wos 000318340300005 Publication Date 2012-08-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2162-8742;2162-8750; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.184 Times cited 11 Open Access
  Notes Approved Most recent IF: 1.184; 2012 IF: NA
  Call Number UA @ lucian @ c:irua:108530 Serial 160
Permanent link to this record
 

 
Author Delabie, A.; Jayachandran, S.; Caymax, M.; Loo, R.; Maggen, J.; Pourtois, G.; Douhard, B.; Conard, T.; Meersschaut, J.; Lenka, H.; Vandervorst, W.; Heyns, M.;
  Title Epitaxial chemical vapor deposition of silicon on an oxygen monolayer on Si(100) substrates Type A1 Journal article
  Year 2013 Publication ECS solid state letters Abbreviated Journal Ecs Solid State Lett
  Volume 2 Issue 11 Pages P104-P106
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Crystalline superlattices consisting of alternating periods of Si layers and O-atomic layers are potential new channel materials for scaled CMOS devices. In this letter, we investigate Chemical Vapor Deposition (CVD) for the controlled deposition of O-atoms with O-3 as precursor on Si(100) substrates and Si epitaxy on the O-layer. The O-3 reaction at 50 degrees C on the H-terminated Si results in the formation of Si-OH and/or Si-O-Si-H surface species with monolayer O-content. Defect-free epitaxial growth of Si on an O-layer containing 6.4E+14 O-atoms/cm(2) is achieved from SiH4 at 500 degrees C. (C) 2013 The Electrochemical Society. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
  Language Wos 000324582600006 Publication Date 2013-09-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2162-8742;2162-8750; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.184 Times cited 12 Open Access
  Notes Approved Most recent IF: 1.184; 2013 IF: 0.781
  Call Number UA @ lucian @ c:irua:111208 Serial 1070
Permanent link to this record
 

 
Author Dabral, A.; Pourtois, G.; Sankaran, K.; Magnus, W.; Yu, H.; de de Meux, A.J.; Lu, A.K.A.; Clima, S.; Stokbro, K.; Schaekers, M.; Collaert, N.; Horiguchi, N.; Houssa, M.
  Title Study of the intrinsic limitations of the contact resistance of metal/semiconductor interfaces through atomistic simulations Type A1 Journal article
  Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc
  Volume 7 Issue 6 Pages N73-N80
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this contribution, we report a fundamental study of the factors that set the contact resistivity between metals and highly doped n-type 2D and 3D semiconductors. We investigate the case of n-type doped Si contacted with amorphous TiSi combining first principles calculations with Non-Equilibrium Green functions transport simulations. The evolution of the intrinsic contact resistivity with the doping concentration is found to saturate at similar to 2 x 10(-10) Omega.cm(2) for the case of TiSi and imposes an intrinsic limit to the ultimate contact resistance achievable for n-doped Silamorphous-TiSi (aTiSi). The limit arises from the intrinsic properties of the semiconductors and of the metals such as their electron effective masses and Fermi energies. We illustrate that, in this regime, contacting heavy electron effective mass metals with semiconductor helps reducing the interface intrinsic contact resistivity. This observation seems to hold true regardless of the 3D character of the semiconductor, as illustrated for the case of three 2D semiconducting materials, namely MoS2, ZrS2 and HfS2. (C) The Author(s) 2018. Published by ECS.
  Address
  Corporate Author Thesis
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
  Language Wos 000440836000004 Publication Date 2018-05-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.787 Times cited 2 Open Access Not_Open_Access
  Notes ; The authors thank the imec core CMOS program members, the European Commission, its TAKEMI5 ECSEL research project and the local authorities for their support. ; Approved Most recent IF: 1.787
  Call Number UA @ lucian @ c:irua:153205UA @ admin @ c:irua:153205 Serial 5130
Permanent link to this record
 

 
Author Vohra, A.; Makkonen, I.; Pourtois, G.; Slotte, J.; Porret, C.; Rosseel, E.; Khanam, A.; Tirrito, M.; Douhard, B.; Loo, R.; Vandervorst, W.
  Title Source/drain materials for Ge nMOS devices: phosphorus activation in epitaxial Si, Ge, Ge1-xSnx and SiyGe1-x-ySnx Type A1 Journal article
  Year 2020 Publication Ecs Journal Of Solid State Science And Technology Abbreviated Journal Ecs J Solid State Sc
  Volume 9 Issue 4 Pages 044010-44012
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract This paper benchmarks various epitaxial growth schemes based on n-type group-IV materials as viable source/drain candidates for Ge nMOS devices. Si:P grown at low temperature on Ge, gives an active carrier concentration as high as 3.5 x 10(20) cm(-3) and a contact resistivity down to 7.5 x 10(-9) Omega.cm(2). However, Si:P growth is highly defective due to large lattice mismatch between Si and Ge. Within the material stacks assessed, one option for Ge nMOS source/drain stressors would be to stack Si:P, deposited at contact level, on top of a selectively grown n-SiyGe1-x-ySnx at source/drain level, in line with the concept of Si passivation of n-Ge surfaces to achieve low contact resistivities as reported in literature (Martens et al. 2011 Appl. Phys. Lett., 98, 013 504). The saturation in active carrier concentration with increasing P (or As)-doping is the major bottleneck in achieving low contact resistivities for as-grown Ge or SiyGe1-x-ySnx. We focus on understanding various dopant deactivation mechanisms in P-doped Ge and Ge1-xSnx alloys. First principles simulation results suggest that P deactivation in Ge and Ge1-xSnx can be explained both by P-clustering and donor-vacancy complexes. Positron annihilation spectroscopy analysis, suggests that dopant deactivation in P-doped Ge and Ge1-xSnx is primarily due to the formation of P-n-V and SnmPn-V clusters. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000531473500002 Publication Date 2020-04-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.2 Times cited Open Access
  Notes ; The imec core CMOS program members, European Commission, the TAKEMI5 ECSEL project, local authorities and the imec pilot line are acknowledged for their support. Air Liquide Advanced Materials is acknowledged for providing advanced precursor gases. A. V. acknowledges his long stay abroad grant and a grant for participation in congress abroad from the Research Foundation-Flanders (Application No. V410518N and K159219N). I. M. acknowledges financial support from Academy of Finland (Project Nos. 285 809, 293 932 and 319 178). CSC-IT Center for Science, Finland is acknowledged for providing the computational resources. ; Approved Most recent IF: 2.2; 2020 IF: 1.787
  Call Number UA @ admin @ c:irua:169502 Serial 6607
Permanent link to this record
 

 
Author Sankaran, K.; Clima, S.; Mees, M.; Pourtois, G.
  Title Exploring alternative metals to Cu and W for interconnects applications using automated first-principles simulations Type A1 Journal article
  Year 2015 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc
  Volume 4 Issue 4 Pages N3127-N3133
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The bulk properties of elementary metals and copper based binary alloys have been investigated using automated first-principles simulations to evaluate their potential to replace copper and tungsten as interconnecting wires in the coming CMOS technology nodes. The intrinsic properties of the screened candidates based on their cohesive energy and on their electronic properties have been used as a metrics to reflect their resistivity and their sensitivity to electromigration. Using these values, the 'performances' of the alloys have been benchmarked with respect to the Cu and W ones. It turns out that for some systems, alloying Cu with another element leads to a reduced tendency to electromigration. This is however done at the expense of a decrease of the conductivity of the alloy with respect to the bulk metal. (C) 2014 The Electrochemical Society. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
  Language Wos 000349547900018 Publication Date 2014-11-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2162-8769;2162-8777; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.787 Times cited 19 Open Access
  Notes Approved Most recent IF: 1.787; 2015 IF: 1.558
  Call Number c:irua:125296 Serial 1150
Permanent link to this record
 

 
Author Gatto Rotondo, G.; Darchuk, L.; Swaenen, M.; Van Grieken, R.
  Title Micro-Raman and SEM analysis of minerals from the Darhib mine, Egypt Type A1 Journal article
  Year 2012 Publication Journal of analytical sciences, methods and instrumentation Abbreviated Journal
  Volume 2 Issue 1 Pages 42-47
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The Darhib mine is one of the several talc deposits in the Hamata area of southeastern Egypt. Several specimens of minerals coming from this mine were subjected to complementary investigation by micro-Raman spectrometry and scanning electron microscopy. The difficulty in their identification is the appearance of most of them: they are all very small and only visible under the mineral binocular microscope(×10 – ×40). They appear as small crystals in fissures and holes and a visual determination on colour and crystal gives only a guess of what kind of mineral it could be. Therefore, only after analyzing them by micro-Raman and scanning electron microscopy it was possible to identify their structure and they can be divided in three main groups: one is quite generic and several minerals of different species were identified, such as quartz, talc, mottramite and chrysocolla, very common in the talc mine (these ones are Si-based minerals); the other one is constituted by four samples which are Zn and/or Cu rich, which means minerals of the rosasite or aurichalcite groups; the last group is constituted by two samples containing mainly Pb..
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2012-03-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2164-2745; 2164-2753 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:102567 Serial 8232
Permanent link to this record
 

 
Author Mahr, C.; Müller-Caspary, K.; Graf, M.; Lackmann, A.; Grieb, T.; Schowalter, M.; Krause, F.F.; Mehrtens, T.; Wittstock, A.; Weissmueller, J.; Rosenauer, A.
  Title Measurement of local crystal lattice strain variations in dealloyed nanoporous gold Type A1 Journal article
  Year 2018 Publication Materials research letters Abbreviated Journal Mater Res Lett
  Volume 6 Issue 1 Pages 84-92
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Reversible macroscopic length changes in nanoporous structures can be achieved by applying electric potentials or by exposing them to different gases or liquids. Thus, these materials are interesting candidates for applications as sensors or actuators. Macroscopic length changes originate from microscopic changes of crystal lattice parameters. In this report, we show spatially resolved measurements of crystal lattice strain in dealloyed nanoporous gold. The results confirm theory by indicating a compression of the lattice along the axis of cylindrically shaped ligaments and an expansion in radial direction. Furthermore, we show that curved npAu surfaces show inward relaxation of the surface layer. [GRAPHICS] .
  Address
  Corporate Author Thesis
  Publisher Taylor & Francis Place of Publication Abingdon Editor
  Language Wos 000428141500013 Publication Date 2017-11-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2166-3831 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.773 Times cited 4 Open Access Not_Open_Access
  Notes ; This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under contracts no. RO2057/12-1 (SP 6), WI4497/1-1 (SP 2) and WE1424/17-1 (SP 3) within the research unit FOR2213 (www.nagocat.de). K.M.-C acknowledges support by the DFG under contract no. MU3660/1-1 and T.G. under contract no. RO2057/ 11-1. ; Approved Most recent IF: 4.773
  Call Number UA @ lucian @ c:irua:150921 Serial 4973
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M.
  Title Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene Type A1 Journal article
  Year 2014 Publication APL materials Abbreviated Journal Apl Mater
  Volume 2 Issue 9 Pages 092801
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000342568000020 Publication Date 2014-08-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.335 Times cited 10 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. F.I. and R.T.S. acknowledge the support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 4.335; 2014 IF: NA
  Call Number UA @ lucian @ c:irua:119950 Serial 82
Permanent link to this record
 

 
Author Rizzo, F.; Augieri, A.; Angrisani Armenio, A.; Galluzzi, V.; Mancini, A.; Pinto, V.; Rufoloni, A.; Vannozzi, A.; Bianchetti, M.; Kursumovic, A.; MacManus-Driscoll, J.L.; Meledin, A.; Van Tendeloo, G.; Celentano, G.
  Title Enhanced 77K vortex-pinning in YBa2Cu3O7−x films with Ba2YTaO6 and mixed Ba2YTaO6 + Ba2YNbO6 nano-columnar inclusions with irreversibility field to 11T Type A1 Journal article
  Year 2016 Publication APL materials Abbreviated Journal Apl Mater
  Volume 4 Issue 4 Pages 061101
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Pulsed laser deposited thin YBa2Cu3O7−x (YBCO) films with pinning additions of 5at.% Ba2YTaO6 (BYTO) were compared to films with 2.5at.% Ba2YTaO6 + 2.5at.% Ba2YNbO6 (BYNTO) additions. Excellent magnetic flux-pinning at 77 K was obtained with remarkably high irreversibility fields greater than 10T (YBCO-BYTO) and 11T (YBCO-BYNTO), representing the highest ever achieved values in YBCO films.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000379042400002 Publication Date 2016-06-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.335 Times cited 19 Open Access
  Notes This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007-2013) under Grant Agreement no. 280432 Approved Most recent IF: 4.335
  Call Number c:irua:133785 Serial 4077
Permanent link to this record
 

 
Author Benetti, G.; Cavaliere, E.; Canteri, A.; Landini, G.; Rossolini, G.M.; Pallecchi, L.; Chiodi, M.; Van Bael, M.J.; Winckelmans, N.; Bals, S.; Gavioli, L.
  Title Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles Type A1 Journal article
  Year 2017 Publication APL materials Abbreviated Journal Apl Mater
  Volume 5 Issue 5 Pages 036105
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Ultrathin coatings based on bi-elemental nanoparticles (NPs) are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000398951000014 Publication Date 2017-03-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.335 Times cited 21 Open Access OpenAccess
  Notes We thank Urs Gfeller for the XRF measurements, Francesco Banfi for valuable discussions on the manuscript and Giulio Viano for his valuable support in the microbiological analysis. The authors acknowledge the financial support of Universita Cattolica del Sacro Cuore through D.2.2 and D.3.1 grants and from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). REFERENCES Approved Most recent IF: 4.335
  Call Number EMAT @ emat @ c:irua:141723UA @ admin @ c:irua:141723 Serial 4479
Permanent link to this record
 

 
Author Ramaneti, R.; Sankaran, K.J.; Korneychuk, S.; Yeh, C.J.; Degutis, G.; Leou, K.C.; Verbeeck, J.; Van Bael, M.K.; Lin, I.N.; Haenen, K.
  Title Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties Type A1 Journal article
  Year 2017 Publication APL materials Abbreviated Journal Apl Mater
  Volume 5 Issue 6 Pages 066102
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract A “patterned-seeding technique” in combination with a “nanodiamond masked reactive ion etching process” is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of theDGHnanorods, which contain sp(2)-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000404623000002 Publication Date 2017-06-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2166-532x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.335 Times cited 16 Open Access
  Notes The authors would like to thank the Methusalem “NANO” network for financial support and Mr. B. Ruttens and Professor Jan D'Haen for technical and experimental assistance. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). Approved Most recent IF: 4.335
  Call Number UA @ admin @ c:irua:152633 Serial 5369
Permanent link to this record
 

 
Author Do, M.T.; Gauquelin, N.; Nguyen, M.D.; Blom, F.; Verbeeck, J.; Koster, G.; Houwman, E.P.; Rijnders, G.
  Title Interface degradation and field screening mechanism behind bipolar-cycling fatigue in ferroelectric capacitors Type A1 Journal article
  Year 2021 Publication Apl Materials Abbreviated Journal Apl Mater
  Volume 9 Issue 2 Pages 021113
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Polarization fatigue, i.e., the loss of polarization of ferroelectric capacitors upon field cycling, has been widely discussed as an interface related effect. However, mechanism(s) behind the development of fatigue have not been fully identified. Here, we study the fatigue mechanisms in Pt/PbZr0.52Ti0.48O3/SrRuO3 (Pt/PZT/SRO) capacitors in which all layers are fabricated by pulsed laser deposition without breaking the vacuum. With scanning transmission electron microscopy, we observed that in the fatigued capacitor, the Pt/PZT interface becomes structurally degraded, forming a 5 nm-10 nm thick non-ferroelectric layer of crystalline ZrO2 and diffused Pt grains. We then found that the fatigued capacitors can regain the full initial polarization switching if the externally applied field is increased to at least 10 times the switching field of the pristine capacitor. These findings suggest that polarization fatigue is driven by a two-step mechanism. First, the transient depolarization field that repeatedly appears during the domain switching under field cycling causes decomposition of the metal/ferroelectric interface, resulting in a non-ferroelectric degraded layer. Second, this interfacial non-ferroelectric layer screens the external applied field causing an increase in the coercive field beyond the usually applied maximum field and consequently suppresses the polarization switching in the cycled capacitor. Our work clearly confirms the key role of the electrode/ferroelectric interface in the endurance of ferroelectric-based devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000630052100006 Publication Date 2021-02-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2166-532x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.335 Times cited 5 Open Access OpenAccess
  Notes This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek through Grant No. F62.3.15559. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. N.G. and J.V. acknowledge funding from the GOA project “Solarpaint” of the University of Antwerp. This work has also received funding from the European Union's Horizon 2020 research and innovation program under Grant No. 823717-ESTEEM3. We acknowledge D. Chezganov for his useful insights. Approved Most recent IF: 4.335
  Call Number UA @ admin @ c:irua:177663 Serial 6783
Permanent link to this record
 

 
Author Verdierre, G.; Gauquelin, N.; Jannis, D.; Birkhölzer, Y.A.; Mallik, S.; Verbeeck, J.; Bibes, M.; Koster, G.
  Title Epitaxial growth of the candidate ferroelectric Rashba material SrBiO3by pulsed laser deposition Type A1 Journal article
  Year 2023 Publication APL materials Abbreviated Journal
  Volume 11 Issue 3 Pages 031109
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Among oxides, bismuthates have been gaining much interest due to their unique features. In addition to their superconducting properties, they show potential for applications as topological insulators and as possible spin-to-charge converters. After being first investigated in their bulk form in the 1980s, bismuthates have been successfully grown as thin films. However, most efforts have focused on BaBiO<sub>3</sub>, with SrBiO<sub>3</sub>receiving only little attention. Here, we report the growth of epitaxial films of SrBiO<sub>3</sub>on both TiO<sub>2</sub>-terminated SrTiO<sub>3</sub>and NdO-terminated NdScO<sub>3</sub>substrates by pulsed laser deposition. SrBiO<sub>3</sub>has a pseudocubic lattice constant of ∼4.25 Å and grows relaxed on NdScO<sub>3</sub>. Counter-intuitively, it grows with a slight tensile strain on SrTiO<sub>3</sub>despite a large lattice mismatch, which should induce compressive strain. High-resolution transmission electron microscopy reveals that this occurs as a consequence of structural domain matching, with blocks of 10 SrBiO<sub>3</sub>unit planes matching blocks of 11 SrTiO<sub>3</sub>unit planes. This work provides a framework for the synthesis of high quality perovskite bismuthates films and for the understanding of their interface interactions with homostructural substrates.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000953363800004 Publication Date 2023-03-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2166-532X ISBN Additional Links UA library record; WoS full record
  Impact Factor 6.1 Times cited Open Access OpenAccess
  Notes This work received support from the ERC Advanced grant (Grant No. 833973) “FRESCO” and funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 823717—ESTEEM3, Van Gogh travel grant, Nuffic, The Netherlands (CF No. 42582SB).; esteem3reported; esteem3TA Approved Most recent IF: 6.1; 2023 IF: 4.335
  Call Number EMAT @ emat @c:irua:196135 Serial 7377
Permanent link to this record
 

 
Author Blandy, J.N.; Abakumov, A.M.; Christensen, K.E.; Hadermann, J.; Adamson, P.; Cassidy, S.J.; Ramos, S.; Free, D.G.; Cohen, H.; Woodruff, D.N.; Thompson, A.L.; Clarke, S.J.;
  Title Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide Type A1 Journal article
  Year 2015 Publication APL materials Abbreviated Journal Apl Mater
  Volume 3 Issue 3 Pages 041520
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides. (C) 2015 Author(s).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000353828400027 Publication Date 2015-04-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.335 Times cited 5 Open Access
  Notes Approved Most recent IF: 4.335; 2015 IF: NA
  Call Number c:irua:126021 Serial 3049
Permanent link to this record
 

 
Author Hoek, M.; Coneri, F.; Poccia, N.; Renshaw Wang, X.; Ke, X.; Van Tendeloo, G.; Hilgenkamp, H.
  Title Strain accommodation through facet matching in La1.85Sr0.15CuO4/Nd1.85Ce0.15CuO4 ramp-edge junctions Type A1 Journal article
  Year 2015 Publication APL materials Abbreviated Journal Apl Mater
  Volume 3 Issue 3 Pages 086101
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Scanning nano-focused X-ray diffraction and high-angle annular dark-field scanning transmission electron microscopy are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd1.85Ce0.15CuO4 and superconducting hole-doped La1.85Sr0.15CuO4 thin films, the latter being the top layer. On the ramp, a new growth mode of La1.85Sr0.15CuO4 with a 3.3° tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000360656800009 Publication Date 2015-08-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.335 Times cited 4 Open Access
  Notes 312483 Esteem2; 246791 Countatoms; esteem2_jra2 Approved Most recent IF: 4.335; 2015 IF: NA
  Call Number c:irua:127690 c:irua:127690 Serial 3163
Permanent link to this record
 

 
Author Leusink, D.P.; Coneri, F.; Hoek, M.; Turner, S.; Idrissi, H.; Van Tendeloo, G.; Hilgenkamp, H.
  Title Thin films of the spin ice compound Ho2Ti2O7 Type A1 Journal article
  Year 2014 Publication APL materials Abbreviated Journal Apl Mater
  Volume 2 Issue 3 Pages 032101-32107
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The pyrochlore compounds Ho2Ti2O7 and Dy2Ti2O7 show an exotic form of magnetism called the spin ice state, resulting from the interplay between geometrical frustration and ferromagnetic coupling. A fascinating feature of this state is the appearance of magnetic monopoles as emergent excitations above the degenerate ground state. Over the past years, strong effort has been devoted to the investigation of these monopoles and other properties of the spin ice state in bulk crystals. Here, we report the fabrication of Ho2Ti2O7 thin films using pulsed laser deposition on yttria-stabilized ZrO2 substrates. We investigated the structural properties of these films by X-ray diffraction, scanning transmission electron microscopy, and atomic force microscopy, and the magnetic properties by vibrating sample magnetometry at 2 K. The films not only show a high crystalline quality, but also exhibit the hallmarks of a spin ice: a pronounced magnetic anisotropy and an intermediate plateau in the magnetization along the [111] crystal direction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000334220300002 Publication Date 2014-03-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.335 Times cited 18 Open Access
  Notes The authors acknowledge support from the Dutch FOM and NWO foundations and from the European Union under the Framework 7 program under a contract from an Integrated Infrastructure Initiative (Reference 312483 ESTEEM2). G.V.T. acknowledges the ERC Grant N246791- COUNTATOMS. S.T. gratefully acknowledges financial support from the Fund for Scientific Research Flanders (FWO). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. The authors acknowledge fruitful interactions with A. Brinkman, M. G. Blamire, M. Egilmez, F. J. G. Roesthuis, J. N. Beukers, C. G. Molenaar, M. Veldhorst, and X. Renshaw Wang; esteem2_ta Approved Most recent IF: 4.335; 2014 IF: NA
  Call Number UA @ lucian @ c:irua:115555 Serial 3641
Permanent link to this record
 

 
Author Vervloessem, E.; Aghaei, M.; Jardali, F.; Hafezkhiabani, N.; Bogaerts, A.
  Title Plasma-Based N2Fixation into NOx: Insights from Modeling toward Optimum Yields and Energy Costs in a Gliding Arc Plasmatron Type A1 Journal article
  Year 2020 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng
  Volume 8 Issue 26 Pages 9711-9720
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma technology provides a sustainable, fossil-free method for N2 fixation, i.e., the conversion of inert atmospheric N2 into valuable substances, such as NOx or ammonia. In this work, we present a novel gliding arc plasmatron at atmospheric pressure for NOx production at different N2/O2 gas feed ratios, offering a promising NOx yield of 1.5% with an energy cost of 3.6 MJ/mol NOx produced. To explain the underlying mechanisms, we present a chemical kinetics model, validated by experiments, which provides insight into the NOx formation pathways and into the ambivalent role of the vibrational kinetics. This allows us to pinpoint the factors limiting the yield and energy cost, which can help to further improve the process.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000548456600013 Publication Date 2020-07-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.4 Times cited Open Access OpenAccess
  Notes Herculesstichting; Universiteit Antwerpen; Vlaamse regering; H2020 European Research Council, 810182 ; N2 Applied; Excellence of Science FWO – FNRS project, 30505023 GoF9618n ; Approved Most recent IF: 8.4; 2020 IF: 5.951
  Call Number PLASMANT @ plasmant @c:irua:170138 Serial 6392
Permanent link to this record
 

 
Author Eshtehardi, H.A.; van 't Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
  Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
  Volume 11 Issue 5 Pages 1720-1733
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma catalysis is emerging for plasma-assisted gas conversion processes. However, the underlying mechanisms of plasma catalysis are poorly understood. In this work, we present a 1D heterogeneous catalysis model with axial dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in the process stream in the axial direction), for plasma-catalytic NO production from N2/O2 mixtures. We investigate the concentration and reaction rates of each species formed as a function of time and position across the catalyst, in order to determine the underlying mechanisms. To obtain insights into how the performance of the process can be further improved, we also study how changes in the postplasma gas flow composition entering the catalyst bed and in the operation conditions of the catalytic stage affect the performance of NO production.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000926412800001 Publication Date 2023-02-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2168-0485 ISBN Additional Links UA library record; WoS full record
  Impact Factor 8.4 Times cited Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951
  Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7241
Permanent link to this record
 

 
Author Vervloessem, E.; Gromov, M.; De Geyter, N.; Bogaerts, A.; Gorbanev, Y.; Nikiforov, A.
  Title NH3and HNOxFormation and Loss in Nitrogen Fixation from Air with Water Vapor by Nonequilibrium Plasma Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
  Volume 11 Issue 10 Pages 4289-4298
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The current global energy crisis indicated that increasing our

insight into nonfossil fuel nitrogen fixation pathways for synthetic fertilizer

production is more crucial than ever. Nonequilibrium plasma is a good candidate

because it can use N2 or air as a N source and water directly as a H source, instead

of H2 or fossil fuel (CH4). In this work, we investigate NH3 gas phase formation

pathways from humid N2 and especially humid air up to 2.4 mol % H2O (100%

relative humidity at 20 °C) by optical emission spectroscopy and Fouriertransform

infrared spectroscopy. We demonstrate that the nitrogen fixation

capacity is increased when water vapor is added, as this enables HNO2 and NH3

production in both N2 and air. However, we identified a significant loss

mechanism for NH3 and HNO2 that occurs in systems where these species are

synthesized simultaneously; i.e., downstream from the plasma, HNO2 reacts with NH3 to form NH4NO2, which rapidly decomposes

into N2 and H2O. We also discuss approaches to prevent this loss mechanism, as it reduces the effective nitrogen fixation when not

properly addressed and therefore should be considered in future works aimed at optimizing plasma-based N2 fixation. In-line removal

of HNO2 or direct solvation in liquid are two proposed strategies to suppress this loss mechanism. Indeed, using liquid H2O is

beneficial for accumulation of the N2 fixation products. Finally, in humid air, we also produce NH4NO3, from the reaction of HNO3

with NH3, which is of direct interest for fertilizer application.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000953337700001 Publication Date 2023-03-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.4 Times cited Open Access OpenAccess
  Notes This research is supported by the Excellence of Science FWOFNRS project (NITROPLASM, FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant No. 810182 − SCOPE ERC Synergy project), and the Fund for Scientific Research (FWO) Flanders Bioeconomy project (grant No. G0G2322N), funded by the European Union-NextGenerationEU. Approved Most recent IF: 8.4; 2023 IF: 5.951
  Call Number PLASMANT @ plasmant @c:irua:195878 Serial 7254
Permanent link to this record
 

 
Author Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
  Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
  Volume 11 Issue 5 Pages 1720-1733
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000926412800001 Publication Date 2023-02-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2168-0485 ISBN Additional Links UA library record; WoS full record
  Impact Factor 8.4 Times cited Open Access OpenAccess
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182 − SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 8.4; 2023 IF: 5.951
  Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7257
Permanent link to this record
 

 
Author Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
  Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
  Volume 11 Issue 5 Pages 1720-1733
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000926412800001 Publication Date 2023-02-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2168-0485 ISBN Additional Links UA library record; WoS full record
  Impact Factor 8.4 Times cited Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951
  Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7258
Permanent link to this record
 

 
Author Sahun, M.; Privat-Maldonado, A.; Lin, A.; De Roeck, N.; Van de Heyden, L.; Hillen, M.; Michiels, J.; Steenackers, G.; Smits, E.; Ariën, K.K.; Jorens, P.G.; Delputte, P.; Bogaerts, A.
  Title Inactivation of SARS-CoV-2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
  Volume Issue Pages 1-10
  Keywords A1 Journal article; Engineering sciences. Technology; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory Experimental Medicine and Pediatrics (LEMP)
  Abstract As recently highlighted by the SARS-CoV-2 pandemic, viruses have become an increasing burden for health, global economy, and environment. The control of transmission by contact with contaminated materials represents a major challenge, particularly in hospital environments. However, the current disinfection methods in hospital settings suffer from numerous drawbacks. As a result, several medical supplies that cannot be properly disinfected are not reused, leading to severe shortages and increasing amounts of waste, thus prompting the search for alternative solutions. In this work, we report that non-thermal plasma (NTP) can effectively inactivate SARS-CoV-2 from non-porous and porous materials commonly found in healthcare facilities. We demonstrated that 5 min treatment with a dielectric barrier discharge NTP can inactivate 100% of SARS-CoV-2 (Wuhan and Omicron strains) from plastic material. Using porcine respiratory coronavirus (surrogate for SARS-CoV-2) and coxsackievirus B3 (highly resistant non-enveloped virus), we tested the NTP virucidal activity on hospital materials and obtained complete inactivation after 5 and 10 min, respectively. We hypothesize that the produced reactive species and local acidification contribute to the overall virucidal effect of NTP. Our results demonstrate the potential of dielectric barrier discharge NTPs for the rapid, efficient, and low-cost disinfection of healthcare materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000964269500001 Publication Date 2023-03-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.4 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 8.4; 2023 IF: 5.951
  Call Number UA @ admin @ c:irua:194897 Serial 7269
Permanent link to this record
 

 
Author Blondiaux, E.; Bomon, J.; Smolen, M.; Kaval, N.; Lemière, F.; Sergeyev, S.; Diels, L.; Sels, B.; Maes, B.U.W.
  Title Bio-based aromatic amines from lignin-derived monomers Type A1 Journal article
  Year 2019 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
  Volume 7 Issue 7 Pages 6906-6916
  Keywords A1 Journal article; Engineering sciences. Technology; Organic synthesis (ORSY); Sustainable Energy, Air and Water Technology (DuEL)
  Abstract A new approach to synthesize valuable 3,4-dialkoxyanilines and alkyl propionates from lignin-derived 4-propylguaiacol and -catechol with overall isolated yields up to 65% has been described. The strategy is based on the introduction of nitrogen via a Beckmann rearrangement. Amino introduction therefore coincides with a C-defunctionalization reaction; overall a replacement of the propyl chain by an amino group is obtained. The process only requires cheap bulk chemicals as reagents/reactants and does not involve column chromatography to purify the reaction products. Furthermore, all carbon atoms from the biorenewable lignin-derived monomers are transformed into valuable compounds. Greenness was assessed by performing a Green Metrics analysis on two dialkoxyanilines. A comparison was made with literature routes for these compounds starting from a petrochemical substrate.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000463462100050 Publication Date 2019-02-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:159378 Serial 7556
Permanent link to this record
 

 
Author Manaigo, F.; Bahnamiri, O.S.; Chatterjee, A.; Panepinto, A.; Krumpmann, A.; Michiels, M.; Bogaerts, A.; Snyders, R.
  Title Electrical stability and performance of a nitrogen-oxygen atmospheric pressure gliding arc plasma Type A1 Journal article
  Year 2024 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
  Volume 12 Issue 13 Pages 5211-5219
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Nonthermal plasmas are currently being studied as a green alternative to the Haber-Bosch process, which is, today, the dominant industrial process allowing for the fixation of nitrogen and, as such, a fundamental component for the production of nitrogen-based industrial fertilizers. In this context, the gliding arc plasma (GAP) is considered a promising choice among nonthermal plasma options. However, its stability is still a key parameter to ensure industrial transfer of the technology. Nowadays, the conventional approach to stabilize this plasma process is to use external resistors. Although this indeed allows for an enhancement of the plasma stability, very little is reported about how it impacts the process efficiency, both in terms of NOx yield and energy cost. In this work, this question is specifically addressed by studying a DC-powered GAP utilized for nitrogen fixation into NOx at atmospheric pressure stabilized by variable external resistors. Both the performance and the stability of the plasma are reported as a function of the utilization of the resistors. The results confirm that while the use of a resistor indeed allows for a strong stabilization of the plasma without impacting the NOx yield, especially at high plasma current, it dramatically impacts the energy cost of the process, which increases from 2.82 to 7.9 MJ/mol. As an alternative approach, we demonstrate that the replacement of the resistor by an inductor is promising since it allows for decent stabilization of the plasma, while it does not affect either the energy cost of the process or the NOx yield.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001186347900001 Publication Date 2024-03-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2168-0485 ISBN Additional Links UA library record; WoS full record
  Impact Factor 8.4 Times cited Open Access
  Notes Approved Most recent IF: 8.4; 2024 IF: 5.951
  Call Number UA @ admin @ c:irua:204774 Serial 9146
Permanent link to this record
 

 
Author Vidick, D.; Ke, X.; Devillers, M.; Poleunis, C.; Delcorte, A.; Moggi, P.; Van Tendeloo, G.; Hermans, S.
  Title Heterometal nanoparticles from Ru-based molecular clusters covalently anchored onto functionalized carbon nanotubes and nanofibers Type A1 Journal article
  Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech
  Volume 6 Issue 6 Pages 1287-1297
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Heterometal clusters containing Ru and Au, Co and/or Pt are anchored onto carbon nanotubes and nanofibers functionalized with chelating phosphine groups. The cluster anchoring yield is related to the amount of phosphine groups available on the nanocarbon surface. The ligands of the anchored molecular species are then removed by gentle thermal treatment in order to form nanoparticles. In the case of Au-containing clusters, removal of gold atoms from the clusters and agglomeration leads to a bimodal distribution of nanoparticles at the nanocarbon surface. In the case of Ru-Pt species, anchoring occurs without reorganization through a ligand exchange mechanism. After thermal treatment, ultrasmall (1-3 nm) bimetal Ru-Pt nanoparticles are formed on the surface of the nanocarbons. Characterization by high resolution transmission electron microscopy (HRTEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirms their bimetal nature on the nanoscale. The obtained bimetal nanoparticles supported on nanocarbon were tested as catalysts in ammonia synthesis and are shown to be active at low temperature and atmospheric pressure with very low Ru loading.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000355908400001 Publication Date 2015-06-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.127 Times cited 7 Open Access
  Notes 246791 Countatoms; 262348 Esmi Approved Most recent IF: 3.127; 2015 IF: 2.670
  Call Number c:irua:126431 Serial 1420
Permanent link to this record
 

 
Author Bittencourt, C.; Krüger, P.; Lagos, M.J.; Ke, X.; Van Tendeloo, G.; Ewels, C.; Umek, P.; Guttmann, P.
  Title Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations Type A1 Journal article
  Year 2012 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech
  Volume 3 Issue Pages 789-797
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Recent advances in near-edge X-ray-absorption fine-structure spectroscopy coupled with transmission X-ray microscopy (NEXAFS-TXM) allow large-area mapping investigations of individual nano-objects with spectral resolution up to E/Delta E = 104 and spatial resolution approaching 10 nm. While the state-of-the-art spatial resolution of X-ray microscopy is limited by nanostructuring process constrains of the objective zone plate, we show here that it is possible to overcome this through close coupling with high-level theoretical modelling. Taking the example of isolated bundles of hydrothermally prepared sodium titanate nanotubes ((Na,H)TiNTs) we are able to unravel the complex nanoscale structure from the NEXAFS-TXM data using multichannel multiple-scattering calculations, to the extent of being able to associate specific spectral features in the O K-edge and Ti L-edge with oxygen atoms in distinct sites within the lattice. These can even be distinguished from the contribution of different hydroxyl groups to the electronic structure of the (Na,H)TiNTs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000311482400001 Publication Date 2012-11-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.127 Times cited 13 Open Access
  Notes Approved Most recent IF: 3.127; 2012 IF: 2.374
  Call Number UA @ lucian @ c:irua:105140 Serial 3684
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: