|   | 
Details
   web
Records
Author Kolev, S.; Bogaerts, A.
Title Similarities and differences between gliding glow and gliding arc discharges Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 065023
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work we have analyzed the properties of a gliding dc discharge in argon at atmospheric pressure. Despite the usual designation of these discharges as ‘gliding arc discharges’, it was found previously that they operate in two different regimes—glow and arc. Here we analyze the differences in both regimes by means of two dimensional fluid modeling. In order to address different aspects of the discharge operation, we use two models—Cartesian and axisymmetric in a cylindrical coordinate system. The obtained results show that the two types of discharges produce a similar plasma column for a similar discharge current. However, the different mechanisms of plasma channel attachment to the cathode could produce certain differences in the plasma parameters (i.e. arc elongation), and this can affect gas treatments applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368117100028 Publication Date 2015-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 12 Open Access
Notes This work is financially supported by the Methusalem financing and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:129214 Serial 3952
Permanent link to this record
 

 
Author Jian-Ping, N.; Xiao-Dan, L.; Cheng-Li, Z.; You-Min, Q.; Ping-Ni, H.; Bogaerts, A.; Fu-Jun, G.
Title Molecular dynamics simulation of temperature effects on CF(3)(+) etching of Si surface Type A1 Journal article
Year 2010 Publication Wuli xuebao Abbreviated Journal Acta Phys Sin-Ch Ed
Volume 59 Issue 10 Pages 7225-7231
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics method was employed to investigate the effects of the reaction layer formed near the surface region on CF(3)(+) etching of Si at different temperatures. The simulation results show that the coverages of F and C are sensitive to the surface temperature. With increasing temperature, the physical etching is enhanced, while the chemical etching is weakened. It is found that with increasing surface temperature, the etching rate of Si increases. As to the etching products, the yields of SiF and SiF(2) increase with temperature, whereas the yield of SiF(3) is not sensitive to the surface temperature. And the increase of the etching yield is mainly due to the increased desorption of SiF and SiF(2). The comparison shows that the reactive layer plays an important part in the subsequeat impacting, which enhances the etching rate of Si and weakens the chemical etching intensity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1000-3290 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.624 Times cited Open Access
Notes Approved Most recent IF: 0.624; 2010 IF: 1.259
Call Number UA @ lucian @ c:irua:95564 Serial 2171
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Modeling of glow discharge sources with flat and pin cathodes and implications for mass spectrometric analysis Type A1 Journal article
Year 1997 Publication Journal of the American Society of Mass Spectrometry Abbreviated Journal J Am Soc Mass Spectr
Volume 8 Issue Pages 1021-1029
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1997XT64300009 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1044-0305;1879-1123; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.786 Times cited 15 Open Access
Notes Approved Most recent IF: 2.786; 1997 IF: 2.855
Call Number UA @ lucian @ c:irua:19606 Serial 2125
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Modeling of metastable argon atoms in a direct current glow discharge Type A1 Journal article
Year 1995 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 52 Issue Pages 3743-3751
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1995TE17300053 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.808 Times cited 98 Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #
Call Number UA @ lucian @ c:irua:12263 Serial 2129
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Effect of small amounts of hydrogen added to argon glow discharges: hybrid Monte-Carlo-fluid model Type A1 Journal article
Year 2002 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 65 Issue Pages 056402
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A hybrid Monte Carlofluid modeling network is developed for an argon-hydrogen mixture, to predict the effect of small amounts of hydrogen added to a dc argon glow discharge. The species considered in the model include the Ar gas atoms, electrons, Ar+ ions and fast Ar atoms, ArH+, H+, H+2 and H+3 ions, and H atoms and H2 molecules, as well as Ar metastable atoms, sputtered Cu atoms, and the corresponding Cu+ ions. Sixty-five reactions between these species are incorporated in the model. The effect of hydrogen on various calculation results is investigated, such as the species densities, the relative role of different production and loss processes for the various species, the cathode sputtering rate and contributions by different bombarding species, and the dissociation degree of H2 and the ionization degree of Ar and Cu. The calculation results are presented and discussed for 1% H2 addition, and comparison is also made with a pure argon discharge and with only 0.1% H2 addition.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000176552500086 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 33 Open Access
Notes Approved Most recent IF: 2.366; 2002 IF: 2.397
Call Number UA @ lucian @ c:irua:40183 Serial 835
Permanent link to this record
 

 
Author Okhrimovskyy, A.; Bogaerts, A.; Gijbels, R.
Title Electron anisotropic scattering in gases: a formula for Monte Carlo simulations Type A1 Journal article
Year 2002 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 65 Issue Pages 037402
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The purpose of this Brief Report is to point out the mistake in a formula for anisotropic electron scattering, previously published in Phys. Rev. A 41, 1112 (1990), which is widely used in Monte Carlo models of gas discharges. Anisotropic electron scattering is investigated based on the screened Coulomb potential between electrons and neutral atoms. The approach is also applied for electron scattering by nonpolar neutral molecules. Differential cross sections for electron scattering by Ar, N2, and CH4 are constructed on the basis of momentum and integrated cross sections. The formula derived in this paper is useful for Monte Carlo simulations of gas discharges.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000174549000088 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 57 Open Access
Notes Approved Most recent IF: 2.366; 2002 IF: 2.397
Call Number UA @ lucian @ c:irua:40179 Serial 909
Permanent link to this record
 

 
Author Yan, M.; Bogaerts, A.; Gijbels, R.
Title Kinetic modeling of relaxation phenomena after photodetachment in a rf electronegative SiH4 discharge Type A1 Journal article
Year 2001 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 63 Issue 2Part 2 Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The global relaxation process after pulsed laser induced photodetachment in a rf electronegative SIH4 discharge is studied by a self-consistent kinetic one-dimensional particle-in-cell-Monte Carlo model. Our results reveal a comprehensive physical picture of the relaxation process, including the main plasma variables, after a perturbation up to the full recovery of the steady state. A strong influence of the photodetachment on the discharge is found, which results from an increase of the electron density, leading to a weaker bulk field, and hence to a drop in the high energy tail of the electron energy distribution function (EEDF), a reduction of the reaction rates of electron impact attachment and ionization, and a subsequent decrease of the positive and negative ion densities. All the plasma quantities related to electrons recover synchronously. The recovery time of the ion densities is about 1-2 orders of magnitude longer than that of the electrons due to different recovery mechanisms. The modeled behavior of all the charged particles agrees very well with experimental results from the literature. In addition, our work clarifies some unclear processes assumed in the literature, such as the relaxation of the EEDF, the evolution of the electric field, and the recovery of negative ions.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000167022500057 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 4 Open Access
Notes Approved Most recent IF: 2.366; 2001 IF: 2.235
Call Number UA @ lucian @ c:irua:34148 Serial 1757
Permanent link to this record
 

 
Author Yan, M.; Bogaerts, A.; Gijbels, R.; Goedheer, W.J.
Title Local and fast relaxation phenomena after laser-induced photodetachment in a strongly electronegative rf discharge Type A1 Journal article
Year 2002 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 65 Issue Pages 016408
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000173407500073 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 2 Open Access
Notes Approved Most recent IF: 2.366; 2002 IF: 2.397
Call Number UA @ lucian @ c:irua:37255 Serial 1823
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Comprehensive three-dimensional modeling network for a dc glow discharge plasma Type A1 Journal article
Year 1998 Publication Plasma physics reports Abbreviated Journal Plasma Phys Rep+
Volume 24 Issue Pages 573-583
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000075129800005 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1063-780x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.984 Times cited 8 Open Access
Notes Approved Most recent IF: 0.984; 1998 IF: 0.444
Call Number UA @ lucian @ c:irua:24123 Serial 452
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Zhao, S.-X.; Bogaerts, A.; Wang, Y.-N.
Title Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas Type A1 Journal article
Year 2010 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
Volume 17 Issue 11 Pages 113512-113512,11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is developed to investigate an argon capacitively coupled plasma, focusing on the electromagnetic effects on the discharge characteristics at various discharge conditions. The results indicate that there exist distinct differences in plasma characteristics calculated with the so-called electrostatic model (i.e., without taking into account the electromagnetic effects) and the electromagnetic model (which includes the electromagnetic effects), especially at very high frequencies. Indeed, when the excitation source is in the high frequency regime and the electromagnetic effects are taken into account, the plasma density increases significantly and meanwhile the ionization rate evolves to a very different distribution when the electromagnetic effects are dominant. Furthermore, the dependence of the plasma characteristics on the voltage and pressure is also investigated, at constant frequency. It is observed that when the voltage is low, the difference between these two models becomes more obvious than at higher voltages. As the pressure increases, the plasma density profiles obtained from the electromagnetic model smoothly shift from edge-peaked over uniform to a broad maximum in the center. In addition, the edge effect becomes less pronounced with increasing frequency and pressure, and the skin effect rather than the standing-wave effect becomes dominant when the voltage is high.
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000285486500105 Publication Date 2010-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited 30 Open Access
Notes Approved Most recent IF: 2.115; 2010 IF: 2.320
Call Number UA @ lucian @ c:irua:84763 Serial 429
Permanent link to this record
 

 
Author Si, X.-J.; Zhao, S.-X.; Xu, X.; Bogaerts, A.; Wang, Y.-N.
Title Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma Type A1 Journal article
Year 2011 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
Volume 18 Issue 3 Pages 033504-033504,9
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A fluid model is self-consistently established to investigate the harmonic effects in an inductively coupled plasma, where the electromagnetic field is solved by the finite difference time domain technique. The spatiotemporal distribution of harmonic current density, harmonic potential, and other plasma quantities, such as radio frequency power deposition, plasma density, and electron temperature, have been investigated. Distinct differences in current density have been observed when calculated with and without Lorentz force, which indicates that the nonlinear Lorentz force plays an important role in the harmonic effects, especially at low frequencies. Moreover, the even harmonics are larger than the odd harmonics both in the current density and the potential. Finally, the dependence of various plasma quantities with and without the Lorentz force on various driving frequencies is also examined. It is shown that the deposited power density decreases and the depth of penetration increases slightly because of the Lorentz force. The electron density increases distinctly while the electron temperature remains almost the same when the Lorentz force is taken into account.
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000289151900073 Publication Date 2011-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited 7 Open Access
Notes Approved Most recent IF: 2.115; 2011 IF: 2.147
Call Number UA @ lucian @ c:irua:87876 Serial 1233
Permanent link to this record
 

 
Author Cai, H.-bo; Yu, W.; Zhu, S.-ping; Zheng, C.-yang; Cao, L.-hua; Li, B.; Chen, Z.Y.; Bogaerts, A.
Title Short-pulse laser absorption in very steep plasma density gradients Type A1 Journal article
Year 2006 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
Volume 13 Issue Pages 094504,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000240877800057 Publication Date 2006-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited 17 Open Access
Notes Approved Most recent IF: 2.115; 2006 IF: 2.258
Call Number UA @ lucian @ c:irua:59375 Serial 2995
Permanent link to this record
 

 
Author Liu, Y.H.; Chen, Z.Y.; Huang, F.; Yu, M.Y.; Wang, L.; Bogaerts, A.
Title Simulation of disk- and band-like voids in dusty plasma systems Type A1 Journal article
Year 2006 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
Volume 13 Issue Pages 052110,1-6
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000237943000011 Publication Date 2006-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited 20 Open Access
Notes Approved Most recent IF: 2.115; 2006 IF: 2.258
Call Number UA @ lucian @ c:irua:57858 Serial 3011
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.
Title Modeling of the synthesis and subsequent growth of nanoparticles in dusty plasmas Type A1 Journal article
Year 2007 Publication High temperature material processes Abbreviated Journal High Temp Mater P-Us
Volume 11 Issue Pages 21-36
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000246372200003 Publication Date 2008-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1093-3611; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:63996 Serial 2136
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M.
Title Modeling PECVD growth of nanostructured carbon materials Type A1 Journal article
Year 2009 Publication High temperature material processes Abbreviated Journal High Temp Mater P-Us
Volume 13 Issue 3/4 Pages 399-412
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present here some of our modeling efforts for PECVD growth of nanostructured carbon materials with focus on amorphous hydrogenated carbon. Experimental data from an expanding thermal plasma setup were used as input for the simulations. Attention was focused both on the film growth mechanism, as well as on the hydrocarbon reaction mechanisms during growth of the films. It is found that the reaction mechanisms and sticking coefficients are dependent on the specific surface sites, and the structural properties of the growth radicals. The film growth results are in correspondence with the experiment. Furthermore, it is found that thin a-C:H films can be densified using an additional H-flux towards the substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000274202300012 Publication Date 2010-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1093-3611; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:80991 Serial 2138
Permanent link to this record
 

 
Author Bogaerts, A.; de Bleecker, K.; Georgieva, V.; Herrebout, D.; Kolev, I.; Madani, M.; Neyts, E.
Title Numerical modeling for a better understanding of gas discharge plasmas Type A1 Journal article
Year 2005 Publication High temperature material processes Abbreviated Journal High Temp Mater P-Us
Volume 9 Issue 3 Pages 321-344
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000231634100001 Publication Date 2005-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1093-3611; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:55832 Serial 2398
Permanent link to this record
 

 
Author Bogaerts, A.; Kozak, T.; van Laer, K.; Snoeckx, R.
Title Plasma-based conversion of CO2: current status and future challenges Type A1 Journal article
Year 2015 Publication Faraday discussions Abbreviated Journal Faraday Discuss
Volume 183 Issue 183 Pages 217-232
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper discusses our recent results on plasma-based CO2 conversion, obtained by a combination of experiments and modeling, for a dielectric barrier discharge (DBD), a microwave plasma and a packed bed DBD reactor. The results illustrate that plasma technology is quite promising for CO2 conversion, but more research is needed to better understand the underlying mechanisms and to further improve the capabilities.
Address Research Group PLASMANT, University of Antwerp, Department of Chemistry, Universiteitsplein 1, Antwerp, Belgium. annemie.bogaerts@uantwerpen.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000365914900013 Publication Date 2015-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1359-6640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.588 Times cited 89 Open Access
Notes We thank R. Aerts and W. van Gaens for setting up the experimental systems and for the interesting results obtained during their PhD study in our group. We also acknowledge nancial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO), the Fund for Scientic Research Flanders (FWO) and the EU-FP7-ITN network “RAPID”. Approved Most recent IF: 3.588; 2015 IF: 4.606
Call Number c:irua:130318 Serial 3983
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Reniers, F.; Bogaerts, A.
Title DBD in burst mode: solution for more efficient CO2conversion? Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 055005
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the

conversion from 16–26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the process time for the duty cycles <70%, while a higher duty cycle or the usual pure AC mode leads to a clear voltage decay by more than 500 V, over approximately 90 s, before reaching a steady state regime. The higher plasma voltage in the burst mode yields a higher electric field. This causes the increasing the electron energy, and therefore their

involvement in the CO2 dissociation process, which is an additional explanation for the higher CO2 conversion and energy efficiency in the burst mode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403945500005 Publication Date 2016-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 17 Open Access
Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A. Ozkan would also like to thank financial support given by ‘Fonds David et Alice Van Buuren’. Approved Most recent IF: 3.302
Call Number c:irua:134841 Serial 4107
Permanent link to this record
 

 
Author Bogaerts, A.; Wang, W.; Berthelot, A.; Guerra, V.
Title Modeling plasma-based CO2conversion: crucial role of the dissociation cross section Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 055016
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-based CO2 conversion is gaining increasing interest worldwide. A large research effort is devoted to improving the energy efficiency. For this purpose, it is very important to understand the underlying mechanisms of the CO2 conversion. The latter can be obtained by computer modeling, describing in detail the behavior of the various plasma species and all relevant chemical processes. However, the accuracy of the modeling results critically depends on the accuracy of the assumed input data, like cross sections. This is especially true for the cross section of electron impact dissociation, as the latter process is believed

to proceed through electron impact excitation, but it is not clear from the literature which excitation channels effectively lead to dissociation. Therefore, the present paper discusses the effect of different electron impact dissociation cross sections reported in the literature on the calculated CO2 conversion, for a dielectric barrier discharge (DBD) and a microwave (MW) plasma. Comparison is made to experimental data for the DBD case, to elucidate which cross section might be the most realistic. This comparison reveals that the cross sections proposed

by Itikawa and by Polak and Slovetsky both seem to underestimate the CO2 conversion. The cross sections recommended by Phelps with thresholds of 7 eV and 10.5 eV yield a CO2 conversion only slightly lower than the experimental data, but the sum of both cross sections overestimates the values, indicating that these cross sections represent dissociation, but most probably also include other (pure excitation) channels. Our calculations indicate that the choice of the electron impact dissociation cross section is crucial for the DBD, where this process is the dominant mechanism for CO2 conversion. In the MW plasma, it is only significant at pressures up to 100 mbar, while it is of minor importance for higher pressures, when dissociation proceeds mainly through collisions of CO2 with heavy particles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384030600001 Publication Date 2016-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 57 Open Access
Notes The authors would like to thank R Snoeckx and S Heijkers for the interesting discussions. This research was supported by the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 606889, the European Marie Skłodowska-Curie Individual Fellowship project ‘GlidArc’ within Horizon2020, the FWO project (grant G.0383.16N), and the Network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (PSI-IAP7), supported by the Belgian Science Policy Office (BELSPO). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. VG was partially supported by the Portuguese FCT— Fundação para a Ci Approved Most recent IF: 3.302
Call Number c:irua:135070 Serial 4111
Permanent link to this record
 

 
Author Wang, W.; Bogaerts, A.
Title Effective ionisation coefficients and critical breakdown electric field of CO2at elevated temperature: effect of excited states and ion kinetics Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 055025
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Electrical breakdown by the application of an electric field occurs more easily in hot gases than in cold gases because of the extra electron-species interactions that occur as a result of dissociation, ionization and excitation at higher temperature. This paper discusses some overlooked physics and clarifies inaccuracies in the evaluation of the effective ionization coefficients and the critical reduced breakdown electric field of CO2 at elevated temperature, considering the influence of excited states and ion kinetics. The critical reduced breakdown electric field is obtained by balancing electron generation and loss mechanisms using the electron energy distribution function (EEDF) derived from the Boltzmann transport equation under the two-term approximation. The equilibrium compositions of the hot gas mixtures are determined based on Gibbs free energy minimization considering the ground states as well as vibrationally and electronically excited states as independent species, which follow a Boltzmann distribution with a fixed excitation temperature. The interaction cross sections between electrons and the excited species, not reported previously, are properly taken into account. Furthermore, the ion kinetics, including electron–ion recombination, associative electron detachment, charge transfer and ion conversion into stable negative ion clusters, are also considered. Our results indicate that the excited species lead to a greater population of high-energy electrons at higher gas temperature and this affects the Townsend rate coefficients (i.e. of electron impact ionization and attachment), but the critical reduced breakdown electric field strength of CO2 is only affected when also properly accounting for the ion kinetics. Indeed, the latter greatly influences the effective ionization coefficients and hence the critical reduced breakdown electric field at temperatures above 1500 K. The rapid increase of the dissociative electron attachment cross-section of molecular oxygen with rising vibrational quantum number leads to a larger electron loss rate and this enhances the critical reduced breakdown electric field strength in the temperature range where the concentration of molecular oxygen is relatively high. The results obtained in this work show reasonable agreement with experimental results from literature, and are important for the evaluation of the dielectric strength of CO2 in a highly reactive environment at elevated temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385494000006 Publication Date 2016-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 3 Open Access
Notes Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No.657304) and the FWO project (grant G.0383.16N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:135515 Serial 4281
Permanent link to this record
 

 
Author Wang, W.; Berthelot, A.; Kolev, S.; Tu, X.; Bogaerts, A.
Title CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 065012
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO 2 conversion by a gliding arc plasma is gaining increasing interest, but the underlying mechanisms for an energy-efficient process are still far from understood. Indeed, the chemical complexity of the non-equilibrium plasma poses a challenge for plasma modeling due to the huge computational load. In this paper, a one-dimensional (1D) gliding arc model is developed in a cylindrical frame, with a detailed non-equilibrium CO 2 plasma chemistry set, including the CO 2 vibrational kinetics up to the dissociation limit. The model solves a set of time- dependent continuity equations based on the chemical reactions, as well as the electron energy balance equation, and it assumes quasi-neutrality in the plasma. The loss of plasma species and heat due to convection by the transverse gas flow is accounted for by using a characteristic frequency of convective cooling, which depends on the gliding arc radius, the relative velocity of the gas flow with respect to the arc and on the arc elongation rate. The calculated values for plasma density and plasma temperature within this work are comparable with experimental data on gliding arc plasma reactors in the literature. Our calculation results indicate that excitation to the vibrational levels promotes efficient dissociation in the gliding arc, and this is consistent with experimental investigations of the gliding arc based CO 2 conversion in the literature. Additionally, the dissociation of CO 2 through collisions with O atoms has the largest contribution to CO 2 splitting under the conditions studied. In addition to the above results, we also demonstrate that lumping the CO 2 vibrational states can bring a significant reduction of the computational load. The latter opens up the way for 2D or 3D models with an accurate description of the CO 2 vibrational kinetics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386605100002 Publication Date 2016-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 3 Open Access
Notes This research was supported by the European Marie Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No. 657304) and by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:135990 Serial 4286
Permanent link to this record
 

 
Author Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A.
Title Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 015003
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present a 3D and 2D Cartesian quasi-neutral plasma model for a low current argon gliding arc discharge, including strong interactions between the gas flow and arc plasma column.

The 3D model is applied only for a short time of 0.2 ms due to its huge computational cost. It mainly serves to verify the reliability of the 2D model. As the results in 2D compare well with those in 3D, they can be used for a better understanding of the gliding arc basic characteristics. More specifically, we investigate the back-breakdown phenomenon induced by an artificially controlled plasma channel, and we discuss its effect on the gliding arc characteristics. The

back-breakdown phenomenon, or backward-jump motion of the arc, as observed in the experiments, results in a drop of the gas temperature, as well as in a delay of the arc velocity with respect to the gas flow velocity, allowing more gas to pass through the arc, and thus increasing the efficiency of the gliding arc for gas treatment applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000419253000001 Publication Date 2016-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 9 Open Access OpenAccess
Notes This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). S R Sun thanks the financial support from the China Scholarship Council. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:138993 Serial 4337
Permanent link to this record
 

 
Author Tennyson, J.; Rahimi, S.; Hill, C.; Tse, L.; Vibhakar, A.; Akello-Egwel, D.; Brown, D.B.; Dzarasova, A.; Hamilton, J.R.; Jaksch, D.; Mohr, S.; Wren-Little, K.; Bruckmeier, J.; Agarwal, A.; Bartschat, K.; Bogaerts, A.; Booth, J.-P.; Goeckner, M.J.; Hassouni, K.; Itikawa, Y.; Braams, B.J.; Krishnakumar, E.; Laricchiuta, A.; Mason, N.J.; Pandey, S.; Petrovic, Z.L.; Pu, Y.-K.; Ranjan, A.; Rauf, S.; Schulze, J.; Turner, M.M.; Ventzek, P.; Whitehead, J.C.; Yoon, J.-S.
Title QDB: a new database of plasma chemistries and reactions Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 055014
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract One of the most challenging and recurring problems when modeling plasmas is the lack of data on the key atomic and molecular reactions that drive plasma processes. Even when there are data for some reactions, complete and validated datasets of chemistries are rarely available. This hinders research on plasma processes and curbs development of industrial applications. The QDB project aims to address this problem by providing a platform for provision, exchange, and validation of chemistry datasets. A new data model developed for QDB is presented. QDB collates published data on both electron scattering and heavy-particle reactions. These data are formed into reaction sets, which are then validated against experimental data where possible. This process produces both complete chemistry sets and identifies key reactions that are currently unreported in the literature. Gaps in the datasets can be filled using established theoretical methods. Initial validated chemistry sets for SF6/CF4/O2 and SF6/CF4/N2/H2 are presented as examples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398394500001 Publication Date 2017-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 18 Open Access OpenAccess
Notes Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:142206 Serial 4549
Permanent link to this record
 

 
Author Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A.
Title Investigations of discharge and post-discharge in a gliding arc: a 3D computational study Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 055017
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study we quantitatively investigate for the first time the plasma characteristics of an argon gliding arc with a 3D model. The model is validated by comparison with available experimental data from literature and a reasonable agreement is obtained for the calculated gas temperature and electron density. A complete arc cycle is modeled from initial ignition to arc decay. We investigate how the plasma characteristics, i.e., the electron temperature, gas temperature,

reduced electric field, and the densities of electrons, Ar+ and Ar2+ ions and Ar(4s) excited states, vary over one complete arc cycle, including their behavior in the discharge and post-discharge. These plasma characteristics exhibit a different evolution over one arc cycle, indicating that either the active discharge stage or the post-discharge stage can be beneficial for certain applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399278100002 Publication Date 2017-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 11 Open Access OpenAccess
Notes This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). SR Sun thanks the financial support from the China Scholarship Council (CSC). Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:142204 Serial 4550
Permanent link to this record
 

 
Author Zhang, Y.; Wang, H.-yu; Zhang, Y.-ru; Bogaerts, A.
Title Formation of microdischarges inside a mesoporous catalyst in dielectric barrier discharge plasmas Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 054002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The formation process of a microdischarge (MD) in both μm- and nm-sized catalyst pores is simulated by a two-dimensional particle-in-cell/Monte Carlo collision model. A parallel-plate dielectric barrier discharge configuration in filamentary mode is considered in ambient air. The discharge is powered by a high voltage pulse. Our calculations reveal that a streamer can penetrate into the surface features of a porous catalyst and MDs can be formed inside both μm- and nm-sized pores, yielding ionization inside the pore. For the μm-sized pores, the ionization mainly occurs inside the pore, while for the nm-sized pores the ionization is strongest near and inside the pore. Thus, enhanced discharges near and inside the mesoporous catalyst are observed. Indeed, the maximum values of the electric field, ionization rate and electron density occur near and inside the pore. The maximum electric field and electron density inside the pore first increase when the pore size rises from 4 nm to 10 nm, and then they decrease for the 100 nm pore, due to

a more pronounced surface discharge for the smaller pores. However, the ionization rate is highest for the 100 nm pore due to the largest effective ionization region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399277700001 Publication Date 2017-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 15 Open Access OpenAccess
Notes This work was supported by the NSFC (11405067, 11275007, 11375163). Y Zhang gratefully acknowledges the Belgian Federal Science Policy Office for financial support. The authors are very grateful to Wei Jiang for the useful discussions on the photo-ionization model and the particle-incell/ Monte-Carlo model. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:142806 Serial 4566
Permanent link to this record
 

 
Author Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kolev, S.; Snoeckx, R.; Sun, S.; Trenchev, G.; Van Laer, K.; Wang, W.
Title CO2conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 063001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In recent years there has been growing interest in the use of plasma technology for CO2 conversion. To improve this application, a good insight into the underlying mechanisms is of great importance. This can be obtained from modeling the detailed plasma chemistry in order to understand the chemical reaction pathways leading to CO2 conversion (either in pure form or mixed with another gas). Moreover, in practice, several plasma reactor types are being investigated for CO2 conversion, so in addition it is essential to be able to model these reactor geometries so that their design can be improved, and the most energy efficient CO2 conversion can be achieved. Modeling the detailed plasma chemistry of CO2 conversion in complex reactors is, however, very time-consuming. This problem can be overcome by using a combination of two different types of model: 0D chemical reaction kinetics models are very suitable for describing the detailed plasma chemistry, while the characteristic features of different reactor geometries can be studied by 2D or 3D fluid models. In the first instance the latter can be developed in argon or helium with a simple chemistry to limit the calculation time; however, the ultimate aim is to implement the more complex CO2 chemistry in these models. In the present paper, examples will be given of both the 0D plasma chemistry models and the 2D and 3D fluid models for the most common plasma reactors used for CO2 conversion in order to emphasize the complementarity of both approaches. Furthermore, based on the modeling insights, the paper discusses the possibilities and limitations of plasma-based CO2 conversion in different types of plasma reactors, as well as what is needed to make further progress in this field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000412173700001 Publication Date 2017-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 26 Open Access OpenAccess
Notes We would like to thank T Silva, N Britoun, Th Godfroid and R Snyders (Université de Mons and Materia Nova Research Center), A Ozkan, Th Dufour and F Reniers (Université Libre de Bruxelles) andK Van Wesenbeeck and S Lenaerts (University of Antwerp) for providingexperimental data to validate our models. Furthermore, we acknowledge the financial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO), the Francqui Research Foundation, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 606889, the European Marie Skłodowska- Curie Individual Fellowship project ‘GlidArc’ within Horizon2020, the Methusalem financing of the University of Antwerp, the Fund for Scientific Research, Flanders (FWO; grant nos. G.0383.16N and 11U5316N) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:144429 Serial 4614
Permanent link to this record
 

 
Author Van Laer, K.; Bogaerts, A.
Title How bead size and dielectric constant affect the plasma behaviour in a packed bed plasma reactor: a modelling study Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 085007
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Packed bed plasma reactors (PBPRs) are gaining increasing interest for use in environmental applications, such as greenhouse gas conversion into value-added chemicals or renewable fuels and volatile pollutant removal (e.g. NOx, VOC, K), as they enhance the conversion and energy efficiency of the process compared to a non-packed reactor. However, the plasma behaviour in a PBPR is not well understood. In this paper we demonstrate, by means of a fluid model, that the discharge behaviour changes considerably when changing the size of the packing beads and their dielectric constant, while keeping the interelectrode spacing constant. At low dielectric constant, the plasma is spread out over the full discharge gap, showing significant density in the voids as well as in the connecting void channels. The electric current profile shows a strong peak during each half cycle. When the dielectric constant increases, the plasma becomes localised in the voids, with a current profile consisting of many smaller peaks during each half cycle. For large bead sizes, the shift from full gap discharge to localised discharges takes place at a higher dielectric constant than for smaller beads. Furthermore, smaller beads or beads with a lower dielectric constant require a higher breakdown voltage to cause plasma formation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000406503600003 Publication Date 2017-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 22 Open Access OpenAccess
Notes K Van Laer is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support. This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:144796 Serial 4635
Permanent link to this record
 

 
Author Ramakers, M.; Medrano, J.A.; Trenchev, G.; Gallucci, F.; Bogaerts, A.
Title Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO2conversion Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 12 Pages 125002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A gliding arc plasmatron (GAP) is very promising for CO2 conversion into value-added chemicals, but to further improve this important application, a better understanding of the arc behavior is indispensable. Therefore, we study here for the first time the dynamic arc behavior of the GAP by means of a high-speed camera, for different reactor configurations and in a wide range of operating conditions. This allows us to provide a complete image of the behavior of the gliding arc. More specifically, the arc body shape, diameter, movement and rotation speed are analyzed and discussed. Clearly, the arc movement and shape relies on a number of factors, such as gas turbulence, outlet diameter, electrode surface, gas contraction and buoyance force. Furthermore, we also compare the experimentally measured arc movement to a state-of-the-art 3D-plasma model, which predicts the plasma movement and rotation speed with very good accuracy, to gain further insight in the underlying mechanisms. Finally, we correlate the arc dynamics with the CO2 conversion and energy efficiency, at exactly the same conditions, to explain the effect of these parameters on the CO2 conversion process. This work is important for understanding and optimizing the GAP for CO2 conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414675000001 Publication Date 2017-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 7 Open Access OpenAccess
Notes This work was supported by the Belgian Federal Office for Science Policy (BELSPO) and the Fund for Scientific Research Flanders (FWO; grant numbers G.0383.16N and 11U5316N). Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:147023 Serial 4761
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A.
Title Modeling of CO2plasma: effect of uncertainties in the plasma chemistry Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 11 Pages 115002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Low-temperature plasma chemical kinetic models are particularly important to the plasma community. These models typically require dozens of inputs, especially rate coefficients. The latter are not always precisely known and it is not surprising that the error on the rate coefficient data can propagate to the model output. In this paper, we present a model that uses N = 400 different combinations of rate coefficients based on the uncertainty attributed to each rate coefficient, giving a good estimation of the uncertainty on the model output due to the rate coefficients. We demonstrate that the uncertainty varies a lot with the conditions and the type of output. Relatively low uncertainties (about 15%) are found for electron density and temperature, while the uncertainty can reach more than an order of magnitude for the population of the vibrational levels in some cases and it can rise up to 100% for the CO2 conversion. The reactions that are mostly responsible for the largest uncertainties are identified. We show that the conditions of pressure, gas temperature and power density have a great effect on the uncertainty and on which reactions lead to this uncertainty. In all the cases tested here, while the absolute values may suffer from large uncertainties, the trends observed in previous modeling work are still valid. Finally, in accordance with the work of Turner, a number of ‘good practices’ is recommended.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413216500002 Publication Date 2017-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 16 Open Access OpenAccess
Notes We acknowledge financial support from the European Unions Seventh Framework Program for research, technological development and demonstration under grant agreement n◦ 606889. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:146879c:irua:146642 Serial 4758
Permanent link to this record
 

 
Author Alves, L.L.; Bogaerts, A.; Guerra, V.; Turner, M.M.
Title Foundations of modelling of nonequilibrium low-temperature plasmas Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 2 Pages 023002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This work explains the need for plasma models, introduces arguments for choosing the type of model that better fits the purpose of each study, and presents the basics of the most common nonequilibrium low-temperature plasma models and the information available from each one, along with an extensive list of references for complementary in-depth reading. The paper presents the following models, organised according to the level of multi-dimensional description of the plasma: kinetic models, based on either a statistical particle-in-cell/Monte-Carlo approach or the solution to the Boltzmann equation (in the latter case, special focus is given to the description of the electron kinetics); multi-fluid models, based on the solution to the hydrodynamic equations; global (spatially-average) models, based on the solution to the particle and energy rate-balance equations for the main plasma species, usually including a very complete reaction chemistry; mesoscopic models for plasma–surface interaction, adopting either a deterministic approach or a stochastic dynamical Monte-Carlo approach. For each plasma model, the paper puts forward the physics context, introduces the fundamental equations, presents advantages and limitations, also from a numerical perspective, and illustrates its application with some examples. Whenever pertinent, the interconnection between models is also discussed, in view of multi-scale hybrid approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000425688600001 Publication Date 2018-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 17 Open Access OpenAccess
Notes The authors would like to thank A Tejero-Del-Caz and A Berthelot for their technical contributions in writing the manuscript. This work was partially funded by Portuguese FCT —Fundação para a Ciência e a Tecnologia, under projects UID/ FIS/50010/2013, PTDC/FISPLA/1243/2014 (KIT-PLAS- MEBA) and PTDC/FIS-PLA/1420/2014 (PREMiERE). Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:149391 Serial 4810
Permanent link to this record