toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wang, J.; Van Pottelberge, R.; Jacobs, A.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Confinement and edge effects on atomic collapse in graphene nanoribbons Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 3 Pages 035426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomic collapse in graphene nanoribbons behaves in a fundamentally different way as compared to monolayer graphene due to the presence of multiple energy bands and the effect of edges. For armchair nanoribbons we find that bound states gradually transform into atomic collapse states with increasing impurity charge. This is very different in zigzag nanoribbons where multiple quasi-one-dimensional bound states are found that originates from the zero-energy zigzag edge states. They are a consequence of the flat band and the electron distribution of these bound states exhibits two peaks. The lowest-energy edge state transforms from a bound state into an atomic collapse resonance and shows a distinct relocalization from the edge to the impurity position with increasing impurity charge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610779200008 Publication Date 2021-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176585 Serial 6719  
Permanent link to this record
 

 
Author Wang, J.; Van Pottelberge, R.; Zhao, W.-S.; Peeters, F.M. doi  openurl
  Title Coulomb impurity on a Dice lattice : atomic collapse and bound states Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 3 Pages 035427  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The modification of the quantum states in a Dice lattice due to a Coulomb impurity are investigated. The energy-band structure of a pristine Dice lattice consists of a Dirac cone and a flat band at the Dirac point. We use the tight-binding formalism and find that the flat band states transform into a set of discrete bound states whose electron density is localized on a ring around the impurity mainly on two of the three sublattices. Its energy is proportional to the strength of the Coulomb impurity. Beyond a critical strength of the Coulomb potential atomic collapse states appear that have some similarity with those found in graphene with the difference that the flat band states contribute with an additional ringlike electron density that is spatially decoupled from the atomic collapse part. At large value of the strength of the Coulomb impurity the flat band bound states anticross with the atomic collapse states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000749375200002 Publication Date 2022-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 3 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:186387 Serial 6977  
Permanent link to this record
 

 
Author Wang, J.; Zhao, W.-S.; Hu, Y.; Filho, R.N.C.; Peeters, F.M. url  doi
openurl 
  Title Charged vacancy in graphene : interplay between Landau levels and atomic collapse resonances Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 10 Pages 104103-104106  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interplay between a magnetic field and the Coulomb potential from a charged vacancy on the electron states in graphene is investigated within the tight-binding model. The Coulomb potential removes locally Landau level degeneracy, while the vacancy introduces a satellite level next to the normal Landau level. These satellite levels are found throughout the positive-energy region, but in the negative-energy region, they turn into atomic collapse resonances. Crossings between Landau levels with different angular quantum number m are found. Unlike the point impurity system in which an anticrossing occurs between Landau levels of the same m, in this work anticrossing is found between the normal Landau level and the vacancy-induced level. The atomic collapse resonance hybridizes with the Landau levels. The charge at which the lowest Landau level m = -1, N = 1 crosses E = 0 increases with enhancing magnetic field. A Landau level scaling anomaly occurs when the charge is larger than the critical charge beta 0.6 and this critical charge is independent of the magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001199561900008 Publication Date 2024-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:205508 Serial 9137  
Permanent link to this record
 

 
Author Conings, B.; Babayigit, A.; Klug, M.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J.T.-W.; Verbeeck, J.; Boyen, H.-G.; Snaith, H. pdf  doi
openurl 
  Title Getting rid of anti-solvents: gas quenching for high performance perovskite solar cells Type P1 Proceeding
  Year 2018 Publication 2018 Ieee 7th World Conference On Photovoltaic Energy Conversion (wcpec)(a Joint Conference Of 45th Ieee Pvsc, 28th Pvsec & 34th Eu Pvsec) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract As the field of perovskite optoelectronics developed, a plethora of strategies has arisen to control their electronic and morphological characteristics for the purpose of producing high efficiency devices. Unfortunately, despite this wealth of deposition approaches, the community experiences a great deal of irreproducibility between different laboratories, batches and preparation methods. Aiming to address this issue, we developed a simple deposition method based on gas quenching that yields smooth films for a wide range of perovskite compositions, in single, double, triple and quadruple cation varieties, and produces planar heterojunction devices with competitive efficiencies, so far up to 20%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469200401163 Publication Date 2018-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 978-1-5386-8529-7 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:160468 Serial 5365  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: