|   | 
Details
   web
Records
Author Monico, L.; van der Snickt, G.; Janssens, K.; de Nolf, W.; Miliani, C.; Dik, J.; Radepont, M.; Hendriks, E.; Geldof, M.; Cotte, M.
Title Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods : 2 : original paint layer samples Type A1 Journal article
Year 2011 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 83 Issue 4 Pages 1224-1231
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The darkening of the original yellow areas painted with the chrome yellow pigment (PbCrO4, PbCrO4·xPbSO4, or PbCrO4·xPbO) is a phenomenon widely observed on several paintings by Vincent van Gogh, such as the famous different versions of Sunflowers. During our previous investigations on artificially aged model samples of lead chromate, we established for the first time that darkening of chrome yellow is caused by reduction of PbCrO4 to Cr2O3·2H2O (viridian green), likely accompanied by the presence of another Cr(III) compound, such as either Cr2(SO4)3·H2O or (CH3CO2)7Cr3(OH)2 [chromium(III) acetate hydroxide]. In the second part of this work, in order to demonstrate that this reduction phenomenon effectively takes place in real paintings, we study original paint samples from two paintings of V. van Gogh. As with the model samples, in view of the thin superficial alteration layers that are present, high lateral resolution spectroscopic methods that make use of synchrotron radiation (SR), such as microscopic X-ray absorption near edge (μ-XANES) and X-ray fluorescence spectrometry (μ-XRF) were employed. Additionally, μ-Raman and mid-FTIR analyses were carried out to completely characterize the samples. On both paint microsamples, the local presence of reduced Cr was demonstrated by means of μ-XANES point measurements. The presence of Cr(III) was revealed in specific areas, in some cases correlated to the presence of Ba(sulfate) and/or to that of aluminum silicate compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000287176900012 Publication Date 2011-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 84 Open Access
Notes ; This research was funded by grants from ESRF (experiment EC-504) and by HASYLAB (experiments 11-20080130 EC and 11-20070157 EC) and was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16). The text also presents results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) project nos. G.0103.04, G.0689.06, and G.0704.08. The staff of the Van Gogh Museum, Amsterdam, is acknowledged for their agreeable cooperation and for the authorization to publish the images of the paintings in this article. L.M. was financially supported by the Erasmus Placement in the framework of Lifelong Learning Programme (A.Y. 2009-2010). The EU Community's FP7 Research Infrastructures program under the CHARISMA Project (Grant Agreement 228330) is also acknowledged. ; Approved Most recent IF: 6.32; 2011 IF: 5.856
Call Number UA @ admin @ c:irua:88795 Serial 5571
Permanent link to this record
 

 
Author Dik, J.; Janssens, K.; van der Snickt, G.; van der Loeff, L.; Rickers, K.; Cotte, M.
Title Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping Type A1 Journal article
Year 2008 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 80 Issue 16 Pages 6436-6442
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Vincent van Gogh (1853−1890), one of the founding fathers of modern painting, is best known for his vivid colors, his vibrant painting style, and his short but highly productive career. His productivity is even higher than generally realized, as many of his known paintings cover a previous composition. This is thought to be the case in one-third of his early period paintings. Van Gogh would often reuse the canvas of an abandoned painting and paint a new or modified composition on top. These hidden paintings offer a unique and intimate insight into the genesis of his works. Yet, current museum-based imaging tools are unable to properly visualize many of these hidden images. We present the first-time use of synchrotron radiation based X-ray fluorescence mapping, applied to visualize a womans head hidden under the work Patch of Grass by Van Gogh. We recorded decimeter-scale, X-ray fluorescence intensity maps, reflecting the distribution of specific elements in the paint layers. In doing so we succeeded in visualizing the hidden face with unprecedented detail. In particular, the distribution of Hg and Sb in the red and light tones, respectively, enabled an approximate color reconstruction of the flesh tones. This reconstruction proved to be the missing link for the comparison of the hidden face with Van Goghs known paintings. Our approach literally opens up new vistas in the nondestructive study of hidden paint layers, which applies to the oeuvre of Van Gogh in particular and to old master paintings in general.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000258448100039 Publication Date 2008-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 178 Open Access
Notes Approved Most recent IF: 6.32; 2008 IF: 5.712
Call Number UA @ admin @ c:irua:74466 Serial 5906
Permanent link to this record
 

 
Author Monico, L.; Cotte, M.; Vanmeert, F.; Amidani, L.; Janssens, K.; Nuyts, G.; Garrevoet, J.; Falkenberg, G.; Glatzel, P.; Romani, A.; Miliani, C.
Title Damages induced by synchrotron radiation-based X-ray microanalysis in chrome yellow paints and related Cr-compounds : assessment, quantification, and mitigation strategies Type A1 Journal article
Year 2020 Publication Analytical Chemistry Abbreviated Journal Anal Chem
Volume 92 Issue 20 Pages 14164-14173
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Synchrotron radiation (SR)-based X-ray methods are powerful analytical tools for several purposes. They are widely used to probe the degradation mechanisms of inorganic artists' pigments in paintings, including chrome yellows (PbCr1-xSxO4; 0 <= x <= 0.8), a class of compounds often found in Van Gogh masterpieces. However, the high intensity and brightness of SR beams raise important issues regarding the potential damage inflicted on the analyzed samples. A thorough knowledge of the SR X-ray sensitivity of each class of pigment in the painting matrix is therefore required to find analytical strategies that seek to minimize the damage for preserving the integrity of the analyzed samples and to avoid data misinterpretation. Here, we employ a combination of Cr K-edge X-ray absorption near-edge structure spectroscopy, Cr-K-beta X-ray emission spectroscopy, and X-ray diffraction to monitor and quantify the effects of SR X-rays on the stability of chrome yellows and related Cr compounds and to define mitigation strategies. We found that the SR X-ray beam exposure induces changes in the oxidation state and local coordination environment of Cr ions and leads to a loss of the compound's crystalline structure. The extent of X-ray damage depends on some intrinsic properties of the samples (chemical composition of the pigment and the presence/absence and nature of the binder). It can be minimized by optimizing the overall fluence/dose released to the samples and by working in vacuum and under cryogenic conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000584418100072 Publication Date 2020-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access
Notes Approved Most recent IF: 7.4; 2020 IF: 6.32
Call Number UA @ admin @ c:irua:174363 Serial 7754
Permanent link to this record
 

 
Author Janssens, K.; Dik, J.; Cotte, M.; Susini, J.
Title Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts Type A1 Journal article
Year 2010 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res
Volume 43 Issue 6 Pages 814-825
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Often, just micrometers below a paintings surface lies a wealth of information, both with Old Masters such as Peter Paul Rubens and Rembrandt van Rijn and with more recent artists of great renown such as Vincent Van Gogh and James Ensor. Subsurface layers may include underdrawing, underpainting, and alterations, and in a growing number of cases conservators have discovered abandoned compositions on paintings, illustrating artists practice of reusing a canvas or panel. The standard methods for studying the inner structure of cultural heritage (CH) artifacts are infrared reflectography and X-ray radiography, techniques that are optionally complemented with the microscopic analysis of cross-sectioned samples. These methods have limitations, but recently, a number of fundamentally new approaches for fully imaging the buildup of hidden paint layers and other complex three-dimensional (3D) substructures have been put into practice. In this Account, we discuss these developments and their recent practical application with CH artifacts. We begin with a tabular summary of 14 IR- and X-ray-based imaging methods and then continue with a discussion of each technique, illustrating CH applications with specific case studies. X-ray-based tomographic and laminographic techniques can be used to generate 3D renditions of artifacts of varying dimensions. These methods are proving invaluable for exploring inner structures, identifying the conservation state, and postulating the original manufacturing technology of metallic and other sculptures. In the analysis of paint layers, terahertz time-domain spectroscopy (THz-TDS) can highlight interfaces between layers in a stratigraphic buildup, whereas macrosopic scanning X-ray fluorescence (MA-XRF) has been employed to measure the distribution of pigments within these layers. This combination of innovative methods provides topographic and color information about the micrometer depth scale, allowing us to look into paintings in an entirely new manner. Over the past five years, several new variants of traditional IR- and X-ray-based imaging methods have been implemented by conservators and museums, and the first reports have begun to emerge in the primary research literature. Applying these state-of-the-art techniques in a complementary fashion affords a more comprehensive view of paintings and other artworks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278842500013 Publication Date 2010-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 20.268 Times cited 78 Open Access
Notes ; This research was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16). The text also presents results of FWO (Brussels, Belgium) projects nr. G.0704.08 and G.0179.09 and from the UA-BOF GOA programme. ; Approved Most recent IF: 20.268; 2010 IF: 21.852
Call Number UA @ admin @ c:irua:83983 Serial 5772
Permanent link to this record
 

 
Author Cotte, M.; Susini, J.; Dik, J.; Janssens, K.
Title Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward Type A1 Journal article
Year 2010 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res
Volume 43 Issue 6 Pages 705-714
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A variety of analytical techniques augmented by the use of synchrotron radiation (SR), such as X-ray fluorescence (SR-XRF) and X-ray diffraction (SR-XRD), are now readily available, and they differ little, conceptually, from their common laboratory counterparts. Because of numerous advantages afforded by SR-based techniques over benchtop versions, however, SR methods have become popular with archaeologists, art historians, curators, and other researchers in the field of cultural heritage (CH). Although the CH community now commonly uses both SR-XRF and SR-XRD, the use of synchrotron-based X-ray absorption spectroscopy (SR-XAS) techniques remains marginal, mostly because CH specialists rarely interact with SR physicists. In this Account, we examine the basic principles and capabilities of XAS techniques in art preservation. XAS techniques offer a combination of features particularly well-suited for the chemical analysis of works of art. The methods are noninvasive, have low detection limits, afford high lateral resolution, and provide exceptional chemical sensitivity. These characteristics are highly desirable for the chemical characterization of precious, heterogeneous, and complex materials. In particular, the chemical mapping capability, with high spatial resolution that provides information about local composition and chemical states, even for trace elements, is a unique asset. The chemistry involved in both the objects history (that is, during fabrication) and future (that is, during preservation and restoration treatments) can be addressed by XAS. On the one hand, many studies seek to explain optical effects occurring in historical glasses or ceramics by probing the molecular environment of relevant chromophores. Hence, XAS can provide insight into craft skills that were mastered years, decades, or centuries ago but were lost over the course of time. On the other hand, XAS can also be used to characterize unwanted reactions, which are then considered alteration phenomena and can dramatically alter the objects original visual properties. In such cases, the bulk elemental composition is usually unchanged. Hence, monitoring oxidation state (or, more generally, other chemical modifications) can be of great importance. Recent applications of XAS in art conservation are reviewed and new trends are discussed, highlighting the value (and future possibilities) of XAS, which remains, given its potential, underutilized in the CH community.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278842500003 Publication Date 2010-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 20.268 Times cited 74 Open Access
Notes ; ; Approved Most recent IF: 20.268; 2010 IF: 21.852
Call Number UA @ admin @ c:irua:83982 Serial 5861
Permanent link to this record
 

 
Author Vanmeert, F.; De Meyer, S.; Gestels, A.; Clerici, E.A.; Deleu, N.; Legrand, S.; Van Espen, P.; Van der Snickt, G.; Alfeld, M.; Dik, J.; Monico, L.; De Nolf, W.; Cotte, M.; Gonzalez, V.; Saverwyns, S.; Depuydt-Elbaum, L.; Janssens, K.
Title Non-invasive and non-destructive examination of artists’ pigments, paints and paintings by means of X-ray imaging methods Type H1 Book chapter
Year 2022 Publication Abbreviated Journal
Volume Issue Pages 317-357
Keywords H1 Book chapter; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Recent studies in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples and/or entire paintings from fifteenth to twentieth century artists are discussed. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging as well as with the combined use with X-ray diffraction (XRD). Microscopic XRF (μ-XRF) is a variant of the XRF method able to visualize the elemental distribution of key elements, mostly metals, on the scale from 1 μm to 100 μm present inside multi-layered micro samples taken from paintings. In the context of the characterization of artists’ pigments subjected to natural degradation, in many cases the use of methods limited to elemental analysis or imaging does not suffice to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS (microscopic X-ray absorption spectroscopy) and μ-XRD have proven themselves to be very suitable for such studies. Since microscopic investigation of a relatively limited number of minute paint samples may not yield representative information about the complete artefact they were taken from, several methods for macroscopic, non-invasive imaging have recently been developed. Combined macroscopic XRF/XRD scanning is able to provide a fairly complete overview of the inorganic pigments employed to create a work of art, to answer questions about ongoing degradation phenomena and about its authenticity. As such these newly developed non-invasive and highly specific imaging methods are of interest for many cultural heritage stakeholders.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2022-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN 978-3-030-86864-2 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:190777 Serial 7183
Permanent link to this record
 

 
Author Monico, L.; Hendriks, E.; Geldof, M.; Miliani, C.; Janssens, K.; Brunetti, B.G.; Cotte, M.; Vanmeert, F.; Chieli, A.; Van der Snickt, G.; Romani, A.; Melo, M.J.
Title Chemical alteration and colour changes in the Amsterdam sunflowers Type H1 Book chapter
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 125-158 T2 - Van Gogh’s Sunflowers illuminated – a
Keywords H1 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract This chapter provides a description of colour changes in the Amsterdam Sunflowers due to chemical alteration of pigments, with a focus on geranium lakes and chrome yellows. The brilliant and forceful colours of these and other late nineteenth-century synthetic materials offered artists such as Vincent van Gogh new means of artistic expression that exploited a range of contrasting hues and tints. However, geranium lakes have a strong tendency to fade and chrome yellows to darken under the influence of light. Van Gogh, like other artists of his day, was aware of this drawback, yet he continued to favour the use of both pigments up until his death in July 1890 due to the unparalleled effects they gave. In April 1888, Vincent wrote to his brother Theo: Van Gogh's use of unstable colours opens a series of questions regarding the extent to which colour change affects the way his paintings look today, as discussed here in relation to the Amsterdam Sunflowers. Furthermore, given the frequency with which geranium lakes and chrome yellows occur in Van Gogh's paintings of the period 1888–90 and the predominance of chrome yellows in Sunflowers, it becomes important to understand the factors that can drive these processes of deterioration in order to develop appropriate strategies for conserving the artist's works.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN 978-94-6372-532-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190779 Serial 7640
Permanent link to this record
 

 
Author Janssens, K.; Alfeld, M.; Van der Snickt, G.; De Nolf, W.; Vanmeert, F.; Monico, L.; Legrand, S.; Dik, J.; Cotte, M.; Falkenberg, G.; van der Loeff, L.; Leeuwestein, M.; Hendriks, E.
Title Examination of Vincent van Gogh's paintings and pigments by means of state-of-the-art analytical methods Type H2 Book chapter
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 373-403 T2 - Science and art : the painted surface
Keywords H2 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Recent studies in which X-ray beams of macroscopic to (sub) microscopic dimensions were used for non-destructive analysis and characterization of pigments, paint micro samples and/or entire paintings by Vincent van Gogh are concisely reviewed. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic and macroscopic XRF are variants of the method that are well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi layers, either on the length scale from 1–100 μm inside micro samples taken from paintings or on the 1–100 cm length scale when the (subsurface) distribution of specific pigments in entire paintings is concerned. In the context of the characterization of van Gogh's pigments subject to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red (μ-FTIR) spectroscopy since this method delivers complementary information at more or less the same length scale as the X-ray microprobe techniques. Also in the context of macroscopic imaging of works of art, the complementary use of X-ray based and infra-red based imaging appears very promising; some recent developments are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN 978-1-84973-818-7 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190782 Serial 7943
Permanent link to this record