|   | 
Details
   web
Records
Author Saraiva, M.; Chen, H.; Leroy, W.P.; Mahieu, S.; Jehanathan, N.; Lebedev, O.; Georgieva, V.; Persoons, R.; Depla, D.
Title Influence of Al content on the properties of MgO grown by reactive magnetron sputtering Type A1 Journal article
Year 2009 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 6 Issue S:1 Pages S751-S754
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In the present work, reactive magnetron sputtering in DC mode was used to grow complex oxide thin films, starting from two separate pure metal targets. A series of coatings was produced with a stoichiometry of the film ranging from MgO, over MgxAlyOz to Al2O3. The surface energy, crystallinity, hardness, refractive index, and surface roughness were investigated. A relationship between all properties studied and the Mg content of the samples was found. A critical compositional region for the Mg-Al-O system where all properties exhibit a change was noticed.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000272302900144 Publication Date 2009-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 13 Open Access
Notes Iwt Approved Most recent IF: 2.846; 2009 IF: 4.037
Call Number UA @ lucian @ c:irua:79363 Serial 1613
Permanent link to this record
 

 
Author Zheng, G.; de Marchi, S.; Lopez-Puente, V.; Sentosun, K.; Polavarapu, L.; Perez-Juste, I.; Hill, E.H.; Bals, S.; Liz-Marzan, L.M.; Pastoriza-Santos, I.; Perez-Juste, J.
Title Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility Type A1 Journal article
Year 2016 Publication Small Abbreviated Journal Small
Volume 12 Issue 12 Pages 3935-3943
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hybrid nanostructures composed of metal nanoparticles and metal-organic frameworks (MOFs) have recently received increasing attention toward various applications due to the combination of optical and catalytic properties of nanometals with the large internal surface area, tunable crystal porosity and unique chemical properties of MOFs. Encapsulation of metal nanoparticles of well-defined shapes into porous MOFs in a core-shell type configuration can thus lead to enhanced stability and selectivity in applications such as sensing or catalysis. In this study, the encapsulation of single noble metal nanoparticles with arbitrary shapes within zeolitic imidazolate-based metal organic frameworks (ZIF-8) is demonstrated. The synthetic strategy is based on the enhanced interaction between ZIF-8 nanocrystals and metal nanoparticle surfaces covered by quaternary ammonium surfactants. High resolution electron microscopy and tomography confirm a complete core-shell morphology. Such a well-defined morphology allowed us to study the transport of guest molecules through the ZIF-8 porous shell by means of surface-enhanced Raman scattering by the metal cores. The results demonstrate that even molecules larger than the ZIF-8 aperture and pore size may be able to diffuse through the framework and reach the metal core.
Address Departamento de Quiimica Fisica, Universidade de Vigo, 36310, Vigo, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000383375500006 Publication Date 2016-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 140 Open Access OpenAccess
Notes This work was supported by the Spanish Ministerio de Economía y Competitividad (MAT2013-45168-R) and the Xunta de Galicia/FEDER (Grant No. GPC2013-006; INBIOMED-FEDER “Unha maneira de facer Europa”). L.M.L.-M. acknowledges funding from the European Union’s Seventh Framework Programme (FP7/2007-2013 under grant agreement No. 312184, SACS). S.B. acknowledges financial support from European Research Council (ERC) (ERC Starting Grant No. 335078-COLOURATOM). The authors thank Prof. Paolo Fornasiero for the nitrogen adsorption measurements. E.H.H. acknowledges the Spanish MINECO for a Juan de la Cierva fellowship. S.D.M. acknowledges the support from CsF/CNPq-Brazil fellowship.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.643
Call Number c:irua:133953 Serial 4083
Permanent link to this record
 

 
Author Blommaerts, N.; Vanrompay, H.; Nuti, S.; Lenaerts, S.; Bals, S.; Verbruggen, S.W.
Title Unraveling Structural Information of Turkevich Synthesized Plasmonic Gold-Silver Bimetallic Nanoparticles Type A1 Journal article
Year 2019 Publication Small Abbreviated Journal Small
Volume 15 Issue 15 Pages 1902791
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract For the synthesis of gold-silver bimetallic nanoparticles, the Turkevich method has been the state-of-the-art method for several decades. It has been presumed that this procedure results in a homogeneous alloy, although this has been debatable for many years. In this work, it is shown that neither a full alloy, nor a perfect core-shell particle is formed but rather a core-shell-like particle with altering metal composition along the radial direction. In-depth wet-chemical experiments are performed in combination with advanced transmission electron microscopy, including EDX tomography, and Finite Element Method modeling to support the observations. From the electron tomography results, the core-shell structure could be clearly visualized and the spatial distribution of gold and silver atoms could be quantified. Theoretical simulations are performed to demonstrate that even though UV-Vis spectra show only one plasmon band, this still originates from core-shell type structures. The simulations also indicate that the core-shell morphology does not so much affect the location of the plasmon band, but mainly results in significant band broadening. Wet-chemistry experiments provide the evidence that the synthesis pathway starts with gold enriched alloy cores, and later on in the synthesis mainly silver is incorporated to end up with a silver enriched alloy shell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000482637100001 Publication Date 2019-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 26 Open Access OpenAccess
Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 1S32617N G.0369.15N G.0381.16N ; Approved Most recent IF: 8.643
Call Number EMAT @ emat @c:irua:161636 Serial 5290
Permanent link to this record
 

 
Author Nord, M.; Semisalova, A.; Kákay, A.; Hlawacek, G.; MacLaren, I.; Liersch, V.; Volkov, O.M.; Makarov, D.; Paterson, G.W.; Potzger, K.; Lindner, J.; Fassbender, J.; McGrouther, D.; Bali, R.
Title Strain Anisotropy and Magnetic Domains in Embedded Nanomagnets Type A1 Journal article
Year 2019 Publication Small Abbreviated Journal Small
Volume Issue Pages 1904738
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoscale modifications of strain and magnetic anisotropy can open pathways to engineering magnetic domains for device applications. A periodic magnetic domain structure can be stabilized in sub‐200 nm wide linear as well as curved magnets, embedded within a flat non‐ferromagnetic thin film. The nanomagnets are produced within a non‐ferromagnetic B2‐ordered Fe60Al40 thin film, where local irradiation by a focused ion beam causes the formation of disordered and strongly ferromagnetic regions of A2 Fe60Al40. An anisotropic lattice relaxation is observed, such that the in‐plane lattice parameter is larger when measured parallel to the magnet short‐axis as compared to its length. This in‐plane structural anisotropy manifests a magnetic anisotropy contribution, generating an easy‐axis parallel to the short axis. The competing effect of the strain and shape anisotropies stabilizes a periodic domain pattern in linear as well as spiral nanomagnets, providing a versatile and geometrically controllable path to engineering the strain and thereby the magnetic anisotropy at the nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000495563400001 Publication Date 2019-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 2 Open Access
Notes Deutsche Forschungsgemeinschaft, BA5656/1‐1 ; Engineering and Physical Sciences Research Council, EP/M009963/1 ; Approved Most recent IF: 8.643
Call Number EMAT @ emat @c:irua:164059 Serial 5376
Permanent link to this record
 

 
Author Mychinko, M.; Skorikov, A.; Albrecht, W.; Sánchez‐Iglesias, A.; Zhuo, X.; Kumar, V.; Liz‐Marzán, L.M.; Bals, S.
Title The Influence of Size, Shape, and Twin Boundaries on Heat‐Induced Alloying in Individual Au@Ag Core–Shell Nanoparticles Type A1 Journal article
Year 2021 Publication Small Abbreviated Journal Small
Volume Issue Pages 2102348
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Environmental conditions during real-world application of bimetallic core–shell nanoparticles (NPs) often include the use of elevated temperatures, which are known to cause elemental redistribution, in turn significantly altering the properties of these nanomaterials. Therefore, a thorough understanding of such processes is of great importance. The recently developed combination of fast electron tomography with in situ heating holders is a powerful approach to investigate heat-induced processes at the single NP level, with high spatial resolution in 3D. In combination with 3D finite-difference diffusion simulations, this method can be used to disclose the influence of various NP parameters on the diffusion dynamics in Au@Ag core–shell systems. A detailed study of the influence of heating on atomic diffusion and alloying for Au@Ag NPs with varying core morphology and crystallographic details is carried out. Whereas the core shape and aspect ratio of the NPs play a minor role, twin boundaries are found to have a strong influence on the elemental diffusion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000673326600001 Publication Date 2021-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 8 Open Access OpenAccess
Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO) and European Commission (grant 731019, EUSMI and grant 26019, ESTEEM). This work was performed under the Maria de Maeztu Units of Excellence Programme-Grant No. MDM-2017-0720, Ministry of Science and Innovation.; sygmaSB Approved Most recent IF: 8.643
Call Number EMAT @ emat @c:irua:179856 Serial 6804
Permanent link to this record
 

 
Author Hudry, D.; De Backer, A.; Popescu, R.; Busko, D.; Howard, I.A.; Bals, S.; Zhang, Y.; Pedrazo‐Tardajos, A.; Van Aert, S.; Gerthsen, D.; Altantzis, T.; Richards, B.S.
Title Interface Pattern Engineering in Core‐Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties Type A1 Journal article
Year 2021 Publication Small Abbreviated Journal Small
Volume Issue Pages 2104441
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale. In the most favorable cases, atomic-scale resolved maps of individual particles are obtained. It is also demonstrated that, for the same type of core-shell architecture, the interface pattern can be engineered with thicknesses of just 1 nm up to several tens of nanometers. Total alloying between the core and shell domains is also possible when using ultra-small particles as seeds. Finally, with different types of interface patterns (same architecture and chemical composition of the core and shell domains) it is possible to modify the output color (yellow, red, and green-yellow) or change (improvement or degradation) the absolute upconversion quantum yield. The results presented in this article introduce an important paradigm shift and pave the way toward the emergence of a new generation of core-shell Ln-based HNCs with better control over their atomic-scale organization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000710758000001 Publication Date 2021-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 17 Open Access OpenAccess
Notes The authors would like to acknowledge the financial support provided by the Helmholtz Recruitment Initiative Fellowship (B.S.R.) and the Helmholtz Association's Research Field Energy (Materials and Technologies for the Energy Transition program, Topic 1 Photovoltaics and Wind Energy). The authors would like to thank the Karlsruhe Nano Micro Facility (KNMF) for STEM access. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (Grant agreement no. 770887 PICOMETRICS to S.V.A. and Grant agreement no. 815128 REALNANO to S.B.). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Projects no. G.0502.18N, G.0267.18N, and a postdoctoral grant to A.D.B. T.A. acknowledges funding from the University of Antwerp Research fund (BOF). This project had received funding (EUSMI proposal #E181100205) from the European Union's Horizon 2020 Research and Innovation Programme under Grant agreement no 731019 (EUSMI). D.H. would like to thank “CGFigures” for helpful tutorials on 3D graphics with Blender.; sygmaSB Approved Most recent IF: 8.643
Call Number EMAT @ emat @c:irua:183285 Serial 6817
Permanent link to this record
 

 
Author Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P.
Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells Type A1 Journal article
Year 2023 Publication Small Abbreviated Journal
Volume Issue Pages 2206712
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different types of strategies and fuels, but the achievement of finite 3D structures with a controlled morphology through this assembly mode is still rare. Here we used a spherical peptide-gold superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs, obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate (SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution, leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000914725800001 Publication Date 2023-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.3 Times cited 1 Open Access OpenAccess
Notes European Research Council, ERC‐2017‐PoC MINIRES 789815 ERC‐2012‐StG_20111012 FOLDHALO 307108 815128 ; Approved Most recent IF: 13.3; 2023 IF: 8.643
Call Number EMAT @ emat @c:irua:194299 Serial 7247
Permanent link to this record
 

 
Author Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P.
Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells (Small 12/2023) Type A1 Journal Article
Year 2023 Publication Small Abbreviated Journal Small
Volume 19 Issue 12 Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different

types of strategies and fuels, but the achievement of finite 3D structures with a controlled

morphology through this assembly mode is still rare. Here we used a spherical peptide-gold

superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs,

obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate

(SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution,

leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary

interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810 ISBN Additional Links UA library record
Impact Factor 13.3 Times cited Open Access Not_Open_Access
Notes P.M. is grateful to the European Research Council (ERC) for the Starting Grant ERC-2012- StG_20111012 FOLDHALO (Grant Agreement no. 307108) and the Proof-of-Concept Grant ERC-2017-PoC MINIRES (Grant Agreement no.789815). A. M. and P. M. are thankful to the project Hydrogex funded by Cariplo Foundation (grant no. 2018-1720). D.A.E. and S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO and Grant Agreement No. 731019 (EUSMI). Approved Most recent IF: 13.3; 2023 IF: 8.643
Call Number EMAT @ emat @c:irua:200859 Serial 8960
Permanent link to this record
 

 
Author Ke, X.; Turner, S.; Quintana, M.; Hadad, C.; Montellano-López, A.; Carraro, M.; Sartorel, A.; Bonchio, M.; Prato, M.; Bittencourt, C.; Van Tendeloo, G.;
Title Dynamic motion of Ru-polyoxometalate ions (POMs) on functionalized few-layer graphene Type A1 Journal article
Year 2013 Publication Small Abbreviated Journal Small
Volume 9 Issue 23 Pages 3922-3927
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The interaction and stability of Ru4POM on few layer graphene via functional groups is investigated by time-dependent imaging using aberration-corrected transmission electron microscopy. The Ru4POM demonstrates dynamic motion on the graphene surface with its frequency and amplitude of rotation related to the nature of the functional group used. The stability of the Ru4POMgraphene hybrid corroborates its long-term robustness when applied to multielectronic catalytic processes.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000331282400003 Publication Date 2013-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 16 Open Access
Notes IAP-7; Countatoms; Approved Most recent IF: 8.643; 2013 IF: 7.514
Call Number UA @ lucian @ c:irua:115768 Serial 763
Permanent link to this record
 

 
Author Rehor, I.; Slegerova, J.; Kucka, J.; Proks, V.; Petrakova, V.; Adam, M.P.; Treussart, F.; Turner, S.; Bals, S.; Sacha, P.; Ledvina, M.; Wen, A.M.; Steinmetz, N.F.; Cigler, P.;
Title Fluorescent nanodiamonds embedded in biocompatible translucent shells Type A1 Journal article
Year 2014 Publication Small Abbreviated Journal Small
Volume 10 Issue 6 Pages 1106-1115
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 1020-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000333538000012 Publication Date 2014-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 79 Open Access Not_Open_Access
Notes 262348 ESMI; Hercules; FWO Approved Most recent IF: 8.643; 2014 IF: 8.368
Call Number UA @ lucian @ c:irua:115566 Serial 1234
Permanent link to this record
 

 
Author Gengler, R.Y.N.; Toma, L.M.; Pardo, E.; Lloret, F.; Ke, X.; Van Tendeloo, G.; Gournis, D.; Rudolf, P.
Title Prussian blue analogues of reduced dimensionality Type A1 Journal article
Year 2012 Publication Small Abbreviated Journal Small
Volume 8 Issue 16 Pages 2532-2540
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While molecule-based materials can combine physical and chemical properties associated with molecular-scale building blocks, their successful integration into real devices depends primarily on higher-order properties such as crystal size, shape, morphology, and organization. Herein a study of a new reduced-dimensionality system based on Prussian Blue analogues (PBAs) is presented. The system is built up by means of a modified Langmuir-Blodgett technique, where the PBA is synthesized from precursors in a self-limited reaction on a clay mineral surface. The focus of this work is understanding the magnetic properties of the PBAs in different periodic, low-dimensional arrangements, and the influence of the “on surface” synthesis on the final properties and dimensionality of the system.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000307390300012 Publication Date 2012-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 17 Open Access
Notes Approved Most recent IF: 8.643; 2012 IF: 7.823
Call Number UA @ lucian @ c:irua:101104 Serial 2736
Permanent link to this record
 

 
Author Wang, Y.; Belén Serrano, A.; Sentosun, K.; Bals, S.; Liz-Marzán, L.M.
Title Stabilization and encapsulation of gold nanostars mediated by dithiols Type A1 Journal article
Year 2015 Publication Small Abbreviated Journal Small
Volume 11 Issue 11 Pages 4314-4320
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Surface chemistry plays a pivotal role in regulating the morphology of nanoparticles, maintaining colloidal stability, and mediating the interaction with target analytes toward practical applications such as surface-enhanced Raman scattering (SERS)-based sensing and imaging. The use of a binary ligand mixture composed of 1,4-benzenedithiol (BDT) and hexadecyltrimethylammonium chloride (CTAC) to provide gold nanostars with long-term stability is reported. This is despite BDT being a bifunctional ligand, which usually leads to bridging and loss of colloidal stability. It is found however that neither BDT nor CTAC alone are able to provide sufficient colloidal and chemical stability. BDT-coated Au nanostars are additionally used as seeds to direct the encapsulation with a gold outer shell, leading to the formation of unusual nanostructures including semishell-coated gold nanostars, which are characterized by high-resolution electron microscopy and electron tomography. Finally, BDT is exploited as a probe to reveal the enhanced local electric fields in the different nanostructures, showing that the semishell configuration provides significantly high SERS signals as compared to other coreshell configurations obtained during seeded growth, including full shells.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000360852900009 Publication Date 2015-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 36 Open Access OpenAccess
Notes 267867 Plasmaquo; 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.643; 2015 IF: 8.368
Call Number c:irua:127571 Serial 3136
Permanent link to this record
 

 
Author Kundu, S.; Kundu, P.; Van Tendeloo, G.; Ravishankar, N.
Title Au2Sx/CdS nanorods by cation exchange : mechanistic insights into the competition between cation-exchange and metal ion reduction Type A1 Journal article
Year 2014 Publication Small Abbreviated Journal Small
Volume 10 Issue 19 Pages 3895-3900
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Thumbnail image of graphical abstract It is well known that metals with higher electron affinity like Au tend to undergo reduction rather than cation-exchange. It is experimentally shown that under certain conditions cation-exchange is dominant over reduction. Thermodynamic calculation further consolidates the understanding and paves the way for better predictability of cation-exchange/reduction reactions for other systems.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000344451900011 Publication Date 2014-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 8 Open Access
Notes countatoms Approved Most recent IF: 8.643; 2014 IF: 8.368
Call Number UA @ lucian @ c:irua:118010 Serial 3514
Permanent link to this record
 

 
Author Goris, B.; van Huis, M.A.; Bals, S.; Zandbergen, H.W.; Manna, L.; Van Tendeloo, G.
Title Thermally induced structural and morphological changes of CdSe/CdS octapods Type A1 Journal article
Year 2012 Publication Small Abbreviated Journal Small
Volume 8 Issue 6 Pages 937-942
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Branched nanostructures are of great interest because of their promising optical and electronic properties. For successful and reliable integration in applications such as photovoltaic devices, the thermal stability of the nanostructures is of major importance. Here the different domains (CdSe cores, CdS pods) of the heterogeneous octapods are shown to have different thermal stabilities, and heating is shown to induce specific shape changes. The octapods are heated from room temperature to 700 °C, and investigated using (analytical and tomographic) transmission electron microscopy (TEM). At low annealing temperatures, pure Cd segregates in droplets at the outside of the octapods, indicating non-stochiometric composition of the octapods. Furthermore, the tips of the pods lose their faceting and become rounded. Further heating to temperatures just below the sublimation temperature induces growth of the zinc blende core at the expense of the wurtzite pods. At higher temperatures, (500700 °C), sublimation of the octapods is observed in real time in the TEM. Three-dimensional tomographic reconstructions reveal that the four pods pointing into the vacuum have a lower thermal stability than the four pods that are in contact with the support.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000301718800021 Publication Date 2012-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 20 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 8.643; 2012 IF: 7.823
Call Number UA @ lucian @ c:irua:95040 Serial 3633
Permanent link to this record
 

 
Author Grodzińska, D.; Evers, W.H.; Dorland, R.; van Rijssel, J.; van Huis, M.A.; Meijerink, A.; de Mello Donegá, C.; Vanmaekelbergh, D.
Title Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots Type A1 Journal article
Year 2011 Publication Small Abbreviated Journal Small
Volume 7 Issue 24 Pages 3493-3501
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The optical properties of PbSe/CdSe core/shell quantum dots with core sizes smaller than 4 nm in the 5300 K range are reported. The photoluminescence spectra show two peaks, which become increasingly separated in energy as the core diameter is reduced below 4 nm. It is shown that these peaks are due to intrinsic exciton transitions in each quantum dot, rather than emission from different quantum dot sub-ensembles. Most likely, the energy separation between the peaks is due to inter-valley coupling between the L-points of PbSe. The temperature dependence of the relative intensities of the peaks implies that the two emitting states are not in thermal equilibrium and that dark exciton states must play an important role.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000298298300012 Publication Date 2011-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 23 Open Access
Notes Approved Most recent IF: 8.643; 2011 IF: 8.349
Call Number UA @ lucian @ c:irua:94371 Serial 3781
Permanent link to this record
 

 
Author Li, Y.; Tan, H.; Yang, X.-Y.; Goris, B.; Verbeeck, J.; Bals, S.; Colson, P.; Cloots, R.; Van Tendeloo, G.; Su, B.-L.
Title Well shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties Type A1 Journal article
Year 2011 Publication Small Abbreviated Journal Small
Volume 7 Issue 4 Pages 475-483
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Very uniform and well shaped Mn3O4 nano-octahedra are synthesized using a simple hydrothermal method under the help of polyethylene glycol (PEG200) as a reductant and shape-directing agent. The nano-octahedra formation mechanism is monitored. The shape and crystal orientation of the nanoparticles is reconstructed by scanning electron microscopy and electron tomography, which reveals that the nano-octahedra only selectively expose {101} facets at the external surfaces. The magnetic testing demonstrates that the Mn3O4 nano-octahedra exhibit anomalous magnetic properties: the Mn3O4 nano-octahedra around 150 nm show a similar Curie temperature and blocking temperature to Mn3O4 nanoparticles with 10 nm size because of the vertical axis of [001] plane and the exposed {101} facets. With these Mn3O4 nano-octahedra as a catalyst, the photodecomposition of rhodamine B is evaluated and it is found that the photodecomposition activity of Mn3O4 nano-octahedra is much superior to that of commercial Mn3O4 powders. The anomalous magnetic properties and high superior photodecomposition activity of well shaped Mn3O4 nano-octahedra should be related to the special shape of the nanoparticles and the abundantly exposed {101} facets at the external surfaces. Therefore, the shape preference can largely broaden the application of the Mn3O4 nano-octahedra.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000288080400008 Publication Date 2011-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 131 Open Access
Notes This work was realized in the frame of an Interuniversity Attraction Poles Program (Inanomat-P6/17)-Belgian State-Belgian Science Policy and the project “Redugaz”, financially supported by the European community and the Wallon government in the frame of Interreg IV (France-Wallonie). B. L. S. acknowledges the Chinese Central Government for an “Expert of the State” position in the program of “Thousand talents” and the Chinese Ministry of Education for a Changjiang Scholar position at the Wuhan University of Technology. H. T. acknowledges the financial support from FWO-Vlaanderen (Project nr. G.0147.06). J.V. thanks the financial support from the European Union under Framework 6 program for Integrated Infrastructure Initiative, Reference 026019 ESTEEM. Approved Most recent IF: 8.643; 2011 IF: 8.349
Call Number UA @ lucian @ c:irua:87908 Serial 3914
Permanent link to this record
 

 
Author Vlasov, I.I.; Shenderova, O.; Turner, S.; Lebedev, O.I.; Basov, A.A.; Sildos, I.; Rähn, M.; Shiryaev, A.A.; Van Tendeloo, G.
Title Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond Type A1 Journal article
Year 2010 Publication Small Abbreviated Journal Small
Volume 6 Issue 5 Pages 687-694
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract An efficient method to investigate the microstructure and spatial distribution of nitrogen and nitrogen-vacancy (N-V) defects in detonation nanodiamond (DND) with primary particle sizes ranging from approximately 3 to 50 nm is presented. Detailed analysis reveals atomic nitrogen concentrations as high as 3 at% in 50% of diamond primary particles with sizes smaller than 6 nm. A non-uniform distribution of nitrogen within larger primary DND particles is also presented, indicating a preference for location within the defective central part or at twin boundaries. A photoluminescence (PL) spectrum with well-pronounced zero-phonon lines related to the N-V centers is demonstrated for the first time for electron-irradiated and annealed DND particles at continuous laser excitation. Combined Raman and PL analysis of DND crystallites dispersed on a Si substrate leads to the conclusion that the observed N-V luminescence originates from primary particles with sizes exceeding 30 nm. These findings demonstrate that by manipulation of the size/nitrogen content in DND there are prospects for mass production of nanodiamond photoemitters based on bright and stable luminescence from nitrogen-related defects.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000275972400013 Publication Date 2010-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1613-6810;1613-6829; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 84 Open Access
Notes Esteem 026019 Approved Most recent IF: 8.643; 2010 IF: 7.336
Call Number UA @ lucian @ c:irua:82364 Serial 2341
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Bals, S.; Koganezawa, T.; Yoshimoto, N.; Hannani, D.; Gaceur, M.; Videlot-Ackermann, C.; Margeat, O.; Ackermann, J.
Title Square-centimeter-sized high-efficiency polymer solar cells : how the processing atmosphere and film quality influence performance at large scale Type A1 Journal article
Year 2016 Publication Laser physics review Abbreviated Journal Adv Energy Mater
Volume 6 Issue 6 Pages 1600290
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Organic solar cells based on two benzodithiophene-based polymers (PTB7 and PTB7-Th) processed at square centimeter-size under inert atmosphere and ambient air, respectively, are investigated. It is demonstrated that the performance of solar cells processed under inert atmosphere is not limited by the upscaling of photoactive layer and the interfacial layers. Thorough morphological and electrical characterizations of optimized layers and corresponding devices reveal that performance losses due to area enlargement are only caused by the sheet resistance of the transparent electrode reducing the effi ciency from 9.3% of 7.8% for PTB7-Th in the condition that both photoactive layer and the interfacial layers are of high layer quality. Air processing of photoactive layer and the interfacial layers into centimeter-sized solar cells lead to additional, but only slight, losses (< 10%) in all photovoltaic parameters, which can be addressed to changes in the electronic properties of both active layer and ZnO layers rather than changes in layer morphology. The demonstrated compatibility of polymer solar cells using solution-processed photoactive layer and interfacial layers with large area indicates that the introduction of a standard active area of 1 cm(2) for measuring effi ciency of organic record solar cells is feasible. However electric standards for indium tin oxides (ITO) or alternative transparent electrodes need to be developed so that performance of new photovoltaic materials can be compared at square centimeter-size.
Address
Corporate Author Thesis
Publisher Place of Publication Place of publication unknown Editor
Language Wos 000379314700010 Publication Date 2016-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1614-6832 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.721 Times cited 6 Open Access Not_Open_Access
Notes ; The authors acknowledge financial support by the French Fond Unique Intermisteriel (FUI) under the project “SFUMATO” (Grant number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7-contract no. 287594). Generalitat Valenciana (ISIC/2012/008 Institute of Nanotechnologies for Clean Energies) is also acknowledged for providing financial support. The synchrotron radiation experiments were performed at BL46XU and BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2014B1916 and 2015A1984). The authors further acknowledge financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). ; Approved Most recent IF: 16.721
Call Number UA @ lucian @ c:irua:134951 Serial 4249
Permanent link to this record
 

 
Author Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; Angelis, F.D.; Boyen, H.G.;
Title Intrinsic thermal instability of methylammonium lead trihalide perovskite Type A1 Journal article
Year 2015 Publication Laser physics review Abbreviated Journal Adv Energy Mater
Volume 5 Issue 5 Pages 1500477
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Organolead halide perovskites currently are the new front-runners as light absorbers in hybrid solar cells, as they combine efficiencies passing already 20% with deposition temperatures below 100 °C and cheap solution-based fabrication routes. Long-term stability remains a major obstacle for application on an industrial scale. Here, it is demonstrated that significant decomposition effects already occur during annealing of a methylammonium lead triiode perovskite at 85 °C even in inert atmosphere thus violating international standards. The observed behavior supports the view of currently used perovskite materials as soft matter systems with low formation energies, thus representing a major bottleneck for their application, especially in countries with high average temperatures. This result can trigger a broader search for new perovskite families with improved thermal stability.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000359374900005 Publication Date 2015-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.721 Times cited 1691 Open Access
Notes FWO G004413N; GOA Solarpaint Approved Most recent IF: 16.721; 2015 IF: 16.146
Call Number c:irua:127298UA @ admin @ c:irua:127298 Serial 1719
Permanent link to this record
 

 
Author Guerrero, A.; Heidari, H.; Ripolles, T.S.; Kovalenko, A.; Pfannmöller, M.; Bals, S.; Kauffmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G.
Title Shelf life degradation of bulk heterojunction solar cells : intrinsic evolution of charge transfer complex Type A1 Journal article
Year 2015 Publication Laser physics review Abbreviated Journal Adv Energy Mater
Volume 5 Issue 5 Pages 1401997
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Achievement of long-term stability of organic photovoltaics is currently one of the major topics for this technology to reach maturity. Most of the techniques used to reveal degradation pathways are destructive and/or do not allow for real-time measurements in operating devices. Here, three different, nondestructive techniques able to provide real-time information, namely, film absorbance, capacitance-voltage (C-V), and impedance spectroscopy (IS), are combined over a period of 1 year using non-accelerated intrinsic degradation conditions. It is discerned between chemical modifications in the active layer, physical processes taking place in the bulk of the blend from those at the active layer/contact interfaces. In particular, it is observed that during the ageing experiment, the main source for device performance degradation is the formation of donor-acceptor charge-transfer complex (P3HT(center dot+)-PCBM center dot-) that acts as an exciton quencher. Generation of these radical species diminishes photocurrent and reduces open-circuit voltage by the creation of electronic defect states. Conclusions extracted from absorption, C-V, and IS measurements will be further supported by a range of other techniques such as atomic force microscopy, X-ray diffraction, and dark-field imaging of scanning transmission electron microscopy on ultrathin cross-sections.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000352708600013 Publication Date 2014-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.721 Times cited 30 Open Access OpenAccess
Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 16.721; 2015 IF: 16.146
Call Number c:irua:126000 Serial 2994
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Saba, M.I.; Gaceur, M.; Heidari, H.; Videlot-Ackermann, C.; Margeat, O.; Guerrero, A.; Bisquert, J.; Garcia-Belmonte, G.; Mattoni, A.; Bals, S.; Ackermann, J.
Title Toward high-temperature stability of PTB7-based bulk heterojunction solar cells : impact of fullerene size and solvent additive Type A1 Journal article
Year 2017 Publication Laser physics review Abbreviated Journal Adv Energy Mater
Volume 7 Issue 7 Pages 1601486
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The use of fullerene as acceptor limits the thermal stability of organic solar cells at high temperatures as their diffusion inside the donor leads to phase separation via Ostwald ripening. Here it is reported that fullerene diffusion is fully suppressed at temperatures up to 140 degrees C in bulk heterojunctions based on the benzodithiophene-based polymer (the poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b: 4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl]], (PTB7) in combination with the fullerene derivative [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM). The blend stability is found independently of the presence of diiodooctane (DIO) used to optimize nanostructuration and in contrast to PTB7 blends using the smaller fullerene derivative PC70BM. The unprecedented thermal stability of PTB7: PC70BM layers is addressed to local minima in the mixing enthalpy of the blend forming stable phases that inhibit fullerene diffusion. Importantly, although the nanoscale morphology of DIO processed blends is thermally stable, corresponding devices show strong performance losses under thermal stress. Only by the use of a high temperature annealing step removing residual DIO from the device, remarkably stable high efficiency solar cells with performance losses less than 10% after a continuous annealing at 140 degrees C over 3 days are obtained. These results pave the way toward high temperature stable polymer solar cells using fullerene acceptors.
Address
Corporate Author Thesis
Publisher Place of Publication Place of publication unknown Editor
Language Wos 000396328500009 Publication Date 2016-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.721 Times cited 27 Open Access Not_Open_Access
Notes ; The authors acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (grant number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, grant number: 287594). Generalitat Valenciana (ISIC/2012/008 Institute of Nanotechnologies for Clean Energies) is also acknowledged for providing financial support. The authors further acknowledge financial support via ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 16.721
Call Number UA @ lucian @ c:irua:141991UA @ admin @ c:irua:141991 Serial 4697
Permanent link to this record
 

 
Author Lutz, L.; Corte, D.A.D.; Chen, Y.; Batuk, D.; Johnson, L.R.; Abakumov, A.; Yate, L.; Azaceta, E.; Bruce, P.G.; Tarascon, J.-M.; Grimaud, A.
Title The role of the electrode surface in Na-Air batteries : insights in electrochemical product formation and chemical growth of NaO2 Type A1 Journal article
Year 2018 Publication Advanced energy materials Abbreviated Journal Adv Energy Mater
Volume 8 Issue 4 Pages 1701581
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The Na-air battery, because of its high energy density and low charging overpotential, is a promising candidate for low-cost energy storage, hence leading to intensive research. However, to achieve such a battery, the role of the positive electrode material in the discharge process must be understood. This issue is herein addressed by exploring the electrochemical reduction of oxygen, as well as the chemical formation and precipitation of NaO2 using different electrodes. Whereas a minor influence of the electrode surface is demonstrated on the electrochemical formation of NaO2, a strong dependence of the subsequent chemical precipitation of NaO2 is identified. In the origin, this effect stems from the surface energy and O-2/O-2(-) affinity of the electrode. The strong interaction of Au with O-2/O-2(-) increases the nucleation rate and leads to an altered growth process when compared to C surfaces. Consequently, thin (3 mu m) flakes of NaO2 are found on Au, whereas on C large cubes (10 mu m) of NaO2 are formed. This has significant impact on the cell performance and leads to four times higher capacity when C electrodes with low surface energy and O-2/O-2(-) affinity are used. It is hoped that these findings will enable the design of new positive electrode materials with optimized surfaces.
Address
Corporate Author Thesis
Publisher WILEY-VCH Verlag GmbH & Co. Place of Publication Weinheim Editor
Language Wos 000424152200009 Publication Date 2017-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.721 Times cited 13 Open Access Not_Open_Access
Notes ; L.L. thanks ALISTORE-ERI for his PhD grant. P.G.B. is indebted to the EPSRC for financial support, including the Supergen Energy Storage grant. ; Approved Most recent IF: 16.721
Call Number UA @ lucian @ c:irua:149269 Serial 4951
Permanent link to this record
 

 
Author Dimitrievska, M.; Shea, P.; Kweon, K.E.; Bercx, M.; Varley, J.B.; Tang, W.S.; Skripov, A.V.; Stavila, V.; Udovic, T.J.; Wood, B.C.
Title Carbon Incorporation and Anion Dynamics as Synergistic Drivers for Ultrafast Diffusion in Superionic LiCB11H12 and NaCB11H12 Type A1 Journal article
Year 2018 Publication Advanced energy materials Abbreviated Journal Adv Energy Mater
Volume 8 Issue 15 Pages 1703422
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The disordered phases of LiCB11H12 and NaCB11H12 possess superb superionic conductivities that make them suitable as solid electrolytes. In these materials, cation diffusion correlates with high orientational mobilities of the CB11H12- anions; however, the precise relationship has yet to be demonstrated. In this work, ab initio molecular dynamics and quasielastic neutron scattering are combined to probe anion reorientations and their mechanistic connection to cation mobility over a range of timescales and temperatures. It is found that anions do not rotate freely, but rather transition rapidly between orientations defined by the cation sublattice symmetry. The symmetry-breaking carbon atom in CB11H12- also plays a critical role by perturbing the energy landscape along the instantaneous orientation of the anion dipole, which couples fluctuations in the cation probability density directly to the anion motion. Anion reorientation rates exceed 3 x 10(10) s(-1), suggesting the underlying energy landscape fluctuates dynamically on diffusion-relevant timescales. Furthermore, carbon is found to modify the orientational preferences of the anions and aid rotational mobility, creating additional symmetry incompatibilities that inhibit ordering. The results suggest that synergy between the anion reorientational dynamics and the carbon-modified cation-anion interaction accounts for the higher ionic conductivity in CB11H12- salts compared with B12H122-.
Address
Corporate Author Thesis
Publisher WILEY-VCH Verlag GmbH & Co. Place of Publication Weinheim Editor
Language Wos 000434031400026 Publication Date 2018-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.721 Times cited 20 Open Access OpenAccess
Notes ; This work was performed in part under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344 and funded by Laboratory Directed Research and Development Grant 15-ERD-022. Computing support came from the LLNL Institutional Computing Grand Challenge program. This work was also performed in part within the assignment of the Russian Federal Agency of Scientific Organizations (program “Spin” No. 01201463330). The authors gratefully acknowledge support from the Russian Foundation for Basic Research under Grant No. 15-03-01114 and the Ural Branch of the Russian Academy of Sciences under Grant No. 15-9-2-9. A.V.S. gratefully acknowledges travel support from CRDF Global in conjunction with this work under Grant No. FSCX-15-61826-0. M.D. gratefully acknowledges research support from the Hydrogen Materials-Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract No. DE-AC36-08GO28308. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-1508249. The views, opinions, findings, and conclusions stated herein are those of the authors and do not necessarily reflect those of CRDF Global, or the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. ; Approved Most recent IF: 16.721
Call Number UA @ lucian @ c:irua:152045 Serial 5015
Permanent link to this record
 

 
Author Arisnabarreta, N.; Hao, Y.; Jin, E.; Salame, A.; Muellen, K.; Robert, M.; Lazzaroni, R.; Van Aert, S.; Mali, K.S.; De Feyter, S.
Title Single-layered imine-linked porphyrin-based two-dimensional covalent organic frameworks targeting CO₂ reduction Type A1 Journal article
Year 2024 Publication Advanced energy materials Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The reduction of carbon dioxide (CO2) using porphyrin-containing 2D covalent organic frameworks (2D-COFs) catalysts is widely explored nowadays. While these framework materials are normally fabricated as powders followed by their uncontrolled surface heterogenization or directly grown as thin films (thickness >200 nm), very little is known about the performance of substrate-supported single-layered (approximate to 0.5 nm thickness) 2D-COFs films (s2D-COFs) due to its highly challenging synthesis and characterization protocols. In this work, a fast and straightforward fabrication method of porphyrin-containing s2D-COFs is demonstrated, which allows their extensive high-resolution visualization via scanning tunneling microscopy (STM) in liquid conditions with the support of STM simulations. The as-prepared single-layered film is then employed as a cathode for the electrochemical reduction of CO2. Fe porphyrin-containing s2D-COF@graphite used as a single-layered heterogeneous catalyst provided moderate-to-high carbon monoxide selectivity (82%) and partial CO current density (5.1 mA cm(-2)). This work establishes the value of using single-layered films as heterogene ous catalysts and demonstrates the possibility of achieving high performance in CO2 reduction even with extremely low catalyst loadings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001177577200001 Publication Date 2024-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:204856 Serial 9172
Permanent link to this record
 

 
Author Poelma, R.H.; Fan, X.; Hu, Z.-Y.; Van Tendeloo, G.; van Zeijl, H.W.; Zhang, G.Q.
Title Effects of Nanostructure and Coating on the Mechanics of Carbon Nanotube Arrays Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue 26 Pages 1233-1242
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoscale materials are one of the few engineering materials that can be grown from the bottom up in a controlled manner. Here, the effects of nanostructure and nanoscale conformal coating on the mechanical behavior of vertically aligned carbon nanotube (CNT) arrays through experiments and simulation are systematically investigated. A modeling approach is developed and used to quantify the compressive strength and modulus of the CNT array under large deformation. The model accounts for the porous

nanostructure, which contains multiple CNTs with random waviness, van der Waals interactions, fracture strain, contacts, and frictional forces. CNT array micropillars are grown and their porous nanostructure is controlled by the infi ltration and deposition of thin conformal coatings using chemical vapor deposition. Flat-punch nanoindentation experiments reveal signifi cant changes in material properties as a function of coating thickness. The simulations explain the experimental results and show the novel failure transition regime that changes from collective CNT buckling toward structural collapse due to fracture. The compressive strength and the elastic

modulus increase exponentially as a function of the coating thickness and demonstrate a unique dependency on the CNT waviness. More interestingly, a design rule is identifi ed that predicts the optimum coating thickness for porous materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371078100010 Publication Date 2016-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 17 Open Access
Notes The research leading to the TEM/HAADF-STEM results received funding from the EC Framework 7 Program ESTEEM2 (Reference 312483). We wish to acknowledge the support of the Else Kooi Laboratory for their assistance during the clean room processing.; esteem2_ta Approved Most recent IF: 12.124
Call Number c:irua:130060 c:irua:130060 Serial 3996
Permanent link to this record
 

 
Author Solmaz, A.; Huijben, M.; Koster, G.; Egoavil, R.; Gauquelin, N.; Van Tendeloo, G.; Verbeeck, J.; Noheda, B.; Rijnders, G.
Title Domain Selectivity in BiFeO3Thin Films by Modified Substrate Termination Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue 26 Pages 2882-2889
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ferroelectric domain formation is an essential feature in ferroelectric thin films. These domains and domain walls can be manipulated depending on the growth conditions. In rhombohedral BiFeO3 thin films, the ordering of the domains and the presence of specific types of domain walls play a crucial role in attaining unique ferroelectric and magnetic properties. In this study, controlled ordering of domains in BiFeO3 film is presented, as well as a controlled selectivity between two types of domain walls is presented, i.e., 71° and 109°, by modifying the substrate termination. The experiments on two different substrates, namely SrTiO3 and TbScO3, strongly indicate that the domain selectivity is determined by the growth kinetics of the initial BiFeO3 layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000377587800011 Publication Date 2016-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 34 Open Access
Notes The authors are grateful to Saeedeh Farokhipoor and Tamalika Banerjee for very useful discussions. This work was supported by the Netherlands Organization for Scientific Research NWO-FOM (under FOM-Nano project 10UNST04–2). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. GOA project “Solarpaint” of the University of Antwerp. The electron microscopy part of the work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791– COUNTATOMS. Funding from the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010–246102 FOX is acknowledged. The Fund for Scientific Research Flanders is acknowledged for FWO Project No. G.0044.13N. Approved Most recent IF: 12.124
Call Number c:irua:132641UA @ admin @ c:irua:132641 Serial 4053
Permanent link to this record
 

 
Author Liao, Z; , Green, R.J; Gauquelin, N; Macke, S.; Li, L.; Gonnissen, J; Sutarto, R.; Houwman, E.P.; Zhong, Z.; Van Aert, S.; Verbeeck, J.; Sawatzky, G.A.; Huijben, M.; Koster, G.; Rijnders, G.
Title Long-Range Domain Structure and Symmetry Engineering by Interfacial Oxygen Octahedral Coupling at Heterostructure Interface Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue 26 Pages 6627-6634
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In epitaxial thin film systems, the crystal structure and its symmetry deviate from the bulk counterpart due to various mechanisms such as epitaxial strain and interfacial structural coupling, which is accompanyed by a change in their properties. In perovskite materials, the crystal symmetry can be described by rotations of sixfold coordinated transition metal oxygen octahedra, which are found to be altered at interfaces. Here, it is unraveled how the local oxygen octahedral coupling at perovskite heterostructural interfaces strongly influences the domain structure and symmetry of the epitaxial films resulting in design rules to induce various structures in thin films using carefully selected combinations of substrate/buffer/film. Very interestingly it is discovered that these combinations lead to structure changes throughout the full thickness of the film. The results provide a deep insight into understanding the origin of induced structures in a perovskite heterostructure and an intelligent route to achieve unique functional properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384809800010 Publication Date 2016-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 23 Open Access
Notes We thank B. Keimer for valuable discussions. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0044.13N, G.0374.13N, G.0368.15N, G.0369.15N). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G., J.G., S.V.A., J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan.; esteem2jra2; esteem2jra3; ECASJO_; Approved Most recent IF: 12.124
Call Number EMAT @ emat @ c:irua:144663UA @ admin @ c:irua:144663 Serial 4106
Permanent link to this record
 

 
Author Gonnissen, J.; Batuk, D.; Nataf, G.F.; Jones, L.; Abakumov, A.M.; Van Aert, S.; Schryvers, D.; Salje, E.K.H.
Title Direct Observation of Ferroelectric Domain Walls in LiNbO3: Wall-Meanders, Kinks, and Local Electric Charges Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue 26 Pages 7599-7604
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Direct observations of the ferroelectric domain boundaries in LiNbO3 are performed using high-resolution high-angle annular dark field scanning transmission electron microscopy imaging, revealing a very narrow width of the domain wall between the 180° domains. The domain walls demonstrate local side-way meandering, which results in inclinations even when the overall wall orientation follows the ferroelectric polarization. These local meanders contain kinks with “head-to-head” and “tail-to-tail” dipolar configurations and are therefore locally charged. The charged meanders are confined to a few cation layers along the polarization direction and are separated by longer stretches of straight domain walls.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388166700006 Publication Date 2016-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 23 Open Access
Notes J.G. acknowledges the support from the Research Foundation Flanders (FWO, Belgium) through various project fundings (G.0368.15N, G.0369.15N, and G.0374.13N), as well as the financial support from the European Union Seventh Framework Program (FP7/2007–2013) under Grant agreement no. 312483 (ESTEEM2). The authors thank J. Hadermann for useful suggestions on the interpretation of the HAADFSTEM images. E.K.H.S. thanks the EPSRC (EP/K009702/1) and the Leverhulme Trust (EM-2016-004) for support. G.F.N. thanks the National Research Fund, Luxembourg (FNR/P12/4853155/Kreisel) for support.; esteem2_jra2 Approved Most recent IF: 12.124
Call Number c:irua:135336 c:irua:135336 Serial 4129
Permanent link to this record
 

 
Author Van Aelst, J.; Verboekend, D.; Philippaerts, A.; Nuttens, N.; Kurttepeli, M.; Gobechiya, E.; Haouas, M.; Sree, S.P.; Denayer, J.F.M.; Martens, J.A.; Kirschhock, C.E.A.; Taulelle, F.; Bals, S.; Baron, G.V.; Jacobs, P.A.; Sels, B.F.
Title Catalyst design by NH4OH treatment of USY zeolite Type A1 Journal article
Year 2015 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 25 Issue 25 Pages 7130-7144
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hierarchical zeolites are a class of superior catalysts which couples the intrinsic zeolitic properties to enhanced accessibility and intracrystalline mass transport to and from the active sites. The design of hierarchical USY (Ultra-Stable Y) catalysts is achieved using a sustainable postsynthetic room temperature treatment with mildly alkaline NH4OH ( 0.02(M)) solutions. Starting from a commercial dealuminated USY zeolite (Si/Al = 47), a hierarchical material is obtained by selective and tuneable creation of interconnected and accessible small mesopores (2- 6 nm). In addition, the treatment immediately yields the NH4+ form without the need for additional ion exchange. After NH4OH modification, the crystal morphology is retained, whereas the microporosity and relative crystallinity are decreased. The gradual formation of dense amorphous phases throughout the crystal without significant framework atom leaching rationalizes the very high material yields (>90%). The superior catalytic performance of the developed hierarchical zeolites is demonstrated in the acid-catalyzed isomerization of alpha-pinene and the metal-catalyzed conjugation of safflower oil. Significant improvements in activity and selectivity are attained, as well as a lowered susceptibility to deactivation. The catalytic performance is intimately related to the introduced mesopores, hence enhanced mass transport capacity, and the retained intrinsic zeolitic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000366503700003 Publication Date 2015-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 64 Open Access OpenAccess
Notes ; The authors thank Dr. M. Thommes and Dr. K. Cychosz for numerous and helpful discussions on the correct evaluation of the Ar isotherms. I. Cuppens is acknowledged for ICP-AES analyses. Research was funded through a PhD grant to J.V.A. of the Agency for Innovation by Science and Technology in Flanders (IWT). D.V. and A.P. acknowledge F.W.O.-Vlaanderen (Research Foundation Flanders) for a postdoctoral fellowship. N.N. thanks the KU Leuven for financial support (FLOF). E.G., C.K., and J.M. acknowledge the long-term structural funding by the Flemish Government (Methusalem). S.B. acknowledges the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 335078-COLOURATOMS. The authors are grateful for financial support by the Belgian government through Interuniversity Attraction Poles (IAP-PAI). They also thank Oleon NV for supplying safflower oil. ; ecas_Sara Approved Most recent IF: 12.124; 2015 IF: 11.805
Call Number UA @ lucian @ c:irua:130214 Serial 4147
Permanent link to this record
 

 
Author Liao, Z.L.; Green, R.J.; Gauquelin, N.; Gonnissen, J.; Van Aert, S.; Verbeeck, J.; et al.
Title Engineering properties by long range symmetry propagation initiated at perovskite heterostructure interface Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume Issue Pages 1-25
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In epitaxial thin film systems, the crystal structure and its symmetry deviate from the bulk counterpart due to various mechanisms such as epitaxial strain and interfacial structural coupling, which induce an accompanying change in their properties. In perovskite materials, the crystal symmetry can be described by rotations of 6-fold coordinated transition metal oxygen octahedra, which are found to be altered at interfaces. Here, we unravel how the local oxygen octahedral coupling (OOC) at perovskite heterostructural interfaces initiates a different symmetry in epitaxial films and provide design rules to induce various symmetries in thin films by careful selecting appropriate combinations of substrate/buffer/film. Very interestingly we discovered that these combinations lead to symmetry changes throughout the full thickness of the film. Our results provide a deep insight into understanding the origin of induced crystal symmetry in a perovskite heterostructure and an intelligent route to achieve unique functional properties.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1616-301x ISBN Additional Links UA library record
Impact Factor 12.124 Times cited Open Access
Notes Approved Most recent IF: 12.124
Call Number UA @ lucian @ c:irua:134842 Serial 4176
Permanent link to this record