toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Godoi, R.H.M.; Hirata, P.Y.; Bitterncourt, A.V.L.; Godoi, A.F.L.; Potgieter-Vermaak, S.; Gatto Rotondo, G.; Van Grieken, R.; et al. pdf  doi
openurl 
  Title Geochemical assessment of a subtropical reservoir : a case study in Curitiba, Southern Brazil Type A1 Journal article
  Year 2012 Publication Clean : soil, air, water Abbreviated Journal  
  Volume 40 Issue 4 Pages 364-372  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Suspended particles and dissolved substances in water provide reactive surfaces, influence metabolic activity and contribute to the net sediment deposition. It therefore plays an important part in the ecology and quality of the water mass. The water quality in reservoirs is crucial and it is naturally maintained by flushing and sedimentation, which continuously remove phosphorus from the water. In some reservoirs, however, these removal processes are countered by recycling of ions which could play a key role to start and/or maintain the eutrophic state. The combination of macro-, trace- and microanalysis techniques can be useful to trace pollution sources through a chemical fingerprint, whether be during an acute environmental disaster or a long-term release of pollutants. The water quality and total metal content of reservoir sediments were assessed in a reservoir, situated in the capital of the Paraná State, in the South-Eastern part of Brazil. The goal of this paper was to determine the metal presence in the sediment and metal and ionic speciation in the Green River reservoir water. Water and bed sediment samples, collected from various sites during 2008 and 2009, were investigated using XRF, ICP-OES, ICP-MS, XRD and zeta potential measurements. Based on the results, the heavy metal concentration and chemical composition of the suspended matter in the water samples, as well as the sediment's chemical composition will be discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000302607800005 Publication Date 2012-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1863-0650 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:96973 Serial 7993  
Permanent link to this record
 

 
Author Kovács, A.; Billen, P.; Cornet, I.; Wijnants, M.; Neyts, E.C. pdf  url
doi  openurl
  Title Modeling the physicochemical properties of natural deep eutectic solvents : a review Type A1 Journal article
  Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 13 Issue 15 Pages 3789-3804  
  Keywords A1 Journal article; Engineering sciences. Technology; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Natural deep eutectic solvents (NADES) are mixtures of naturally derived compounds with a significantly decreased melting point due to the specific interactions among the constituents. NADES have benign properties (low volatility, flammability, toxicity, cost) and tailorable physicochemical properties (by altering the type and molar ratio of constituents), hence they are often considered as a green alternative to common organic solvents. Modeling the relation between their composition and properties is crucial though, both for understanding and predicting their behavior. Several efforts were done to this end, yet this review aims at structuring the present knowledge as an outline for future research. First, we reviewed the key properties of NADES and relate them to their structure based on the available experimental data. Second, we reviewed available modeling methods applicable to NADES. At the molecular level, density functional theory and molecular dynamics allow interpreting density differences and vibrational spectra, and computation of interaction energies. Additionally, properties at the level of the bulk media can be explained and predicted by semi-empirical methods based on ab initio methods (COSMO-RS) and equation of state models (PC-SAFT). Finally, methods based on large datasets are discussed; models based on group contribution methods and machine learning. A combination of bulk media and dataset modeling allows qualitative prediction and interpretation of phase equilibria properties on the one hand, and quantitative prediction of melting point, density, viscosity, surface tension and refractive indices on the other hand. In our view, multiscale modeling, combining the molecular and macroscale methods, will strongly enhance the predictability of NADES properties and their interaction with solutes, yielding truly tailorable solvents to accommodate (bio)chemical reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000541499100001 Publication Date 2020-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access  
  Notes Approved Most recent IF: 8.4; 2020 IF: 7.226  
  Call Number UA @ admin @ c:irua:168851 Serial 6770  
Permanent link to this record
 

 
Author Ciocarlan, R.-G.; Blommaerts, N.; Lenaerts, S.; Cool, P.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Recent trends in plasmon‐assisted photocatalytic CO₂ reduction Type A1 Journal article
  Year 2023 Publication Chemsuschem Abbreviated Journal  
  Volume 16 Issue 5 Pages e202201647-25  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)  
  Abstract Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4, CO, CH3OH/CH3CH2OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926901300001 Publication Date 2023-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4; 2023 IF: 7.226  
  Call Number UA @ admin @ c:irua:193633 Serial 7335  
Permanent link to this record
 

 
Author Kontozova-Deutsch, V.; Cardell, carolina; Urosevic, M.; Ruiz-Agudo, E.; Deutsch, F.; Van Grieken, R. doi  openurl
  Title Characterization of indoor and outdoor atmospheric pollutants impacting architectural monuments : the case of San Jerónimo Monastery (Granada, Spain) Type A1 Journal article
  Year 2011 Publication Environmental earth sciences Abbreviated Journal  
  Volume 63 Issue 7/8 Pages 1433-1445  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Indoor and outdoor concentrations of atmospheric gaseous pollutants as well as composition, size, and morphology of particulate matter have been investigated at the monastery of San Jerónimo in Granada (Southern Spain). Complementary micro- and nano-analytical techniques were applied; elemental and mineralogical composition and morphological characteristics of particulate matter were investigated combining electron probe microanalysis at the single particle level, and bulk aerosol samples were analyzed using energy-dispersive X-ray fluorescence, X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray analyzer and transmission electron microscopy (TEM). Microclimatic conditions at the monastery were monitored, and gas concentrations were assessed by means of diffusion tubes subsequently analyzed with ion chromatography. Results revealed high abundances of soil dust particles (aluminosilicates, calcite, dolomite, quartz), salt aerosols (chlorides, sulfates and ammonium-rich salts), and NO2 and SO2 both outdoors and indoors. Amorphous black carbon particles had surprisingly high abundances for Granada, a non-industrialized city. The composition of indoor particles corresponds to severe weathering affecting the construction materials and artworks inside the church; moreover their composition promotes a feedback process that intensifies the deterioration. Chemical reactions between chloride-rich salts and pigments from paintings were confirmed by TEM analyses. Indoors, blackening of surface decorative materials is fostered by particle re-suspension due to cleaning habits in the monastery (i.e. dusting). This is the first air quality study performed in a monument in the city of Granada with the aim of developing a strategy for preventive conservation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292744300003 Publication Date 2010-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1866-6280 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:90766 Serial 7630  
Permanent link to this record
 

 
Author Alföldy, B.; Lööv, J.B.; Lagler, F.; Bencs, L.; Horemans, B.; Van Grieken, R.; et al. url  doi
openurl 
  Title Measurements of air pollution emission factors for marine transportation in SECA Type A1 Journal article
  Year 2013 Publication Atmospheric measurement techniques Abbreviated Journal  
  Volume 6 Issue 7 Pages 1777-1791  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The chemical composition of the plumes of seagoing ships was measured during a two week long measurement campaign in the port of Rotterdam, Hoek van Holland The Netherlands, in September 2009. Altogether, 497 ships were monitored and a statistical evaluation of emission factors (g kg−1 fuel) was provided. The concerned main atmospheric components were SO2, NO2, NOx and the aerosol particle number. In addition, the elemental and water-soluble ionic composition of the emitted particulate matter was determined. Emission factors were expressed as a function of ship type, power and crankshaft rotational speed. The average SO2 emission factor was found to be roughly half of what is allowed in sulphur emission control areas (16 vs. 30 g kg−1 fuel), and exceedances of this limit were rarely registered. A significant linear relationship was observed between the SO2 and particle number emission factors. The intercept of the regression line, 4.8 × 1015 (kg fuel)−1, gives the average number of particles formed during the burning of 1 kg zero sulphur content fuel, while the slope, 2 × 1018, provides the average number of particles formed with 1 kg sulphur burnt with the fuel. Water-soluble ionic composition analysis of the aerosol samples from the plumes showed that ~144 g of particulate sulphate was emitted from 1 kg sulphur burnt with the fuel. The mass median diameter of sulphate particles estimated from the measurements was ~42 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000322546800014 Publication Date 2013-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1867-1381; 1867-8548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:109265 Serial 8211  
Permanent link to this record
 

 
Author Tessema, G.A.; van der Borg, J.; Minale, A.S.; Van Rompaey, A.; Adgo, E.; Nyssen, J.; Asrese, K.; Van Passel, S.; Poesen, J. pdf  url
doi  openurl
  Title Inventory and assessment of geosites for geotourism development in the eastern and southeastern Lake Tana Region, Ethiopia Type A1 Journal article
  Year 2021 Publication Geoheritage Abbreviated Journal Geoheritage  
  Volume 13 Issue 2 Pages 43  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Geotourism is a niche form of sustainable tourism that focuses on the geological and geomorphological features of an area, and the associated culture and biodiversity. Geosites are important resources for geotourism development. The eastern and southeastern Lake Tana region in Ethiopia has several geosites with a potential for geotourism development. Despite the diversity of potential geosites and the strategic location of the area in the Northern Tourist Circuit of Ethiopia, only a few attractions such as Lake Tana and the Blue Nile Falls are currently being visited. The objective of this paper is twofold: to inventory geosites in the eastern and southeastern Lake Tana region and assess their potential for geotourism development; and to propose a geosite inventory and assessment methodology for geotourism purposes with adaptations from previous studies. Several studies were reviewed and finally nine of them used as the main references to prepare the criteria, indicators, and sub-indicators for this study. The indicators used for assessing the potential of geosites relate to scientific, educational, scenic, recreational, protection, functional, and ecological values. This research presents the first inventory of geosites in the Lake Tana basin. A first list of 120 geosites has been inventoried. Further screening and clustering resulted in 61 geosites, of which 17 are viewpoints. Among the major geosites are waterfalls, a lake with islands and island monasteries, a flood plain, caves and cave churches, lava tubes, a mountain (shield volcano), volcanic plugs, volcanic cones, rock-hewn churches, and viewpoints. Quantitative assessment of the geotouristic potential of these geosites revealed that clustered (complex area) geosites received higher scientific, scenic, and recreational value scores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000646574000002 Publication Date 2021-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1867-2477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.472 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.472  
  Call Number UA @ admin @ c:irua:178962 Serial 6933  
Permanent link to this record
 

 
Author Spanoghe, J.; Ost, K.J.; Van Beeck, W.; Vermeir, P.; Lebeer, S.; Vlaeminck, S.E. url  doi
openurl 
  Title Purple bacteria screening for photoautohydrogenotrophic food production : are new H₂-fed isolates faster and nutritionally better than photoheterotrophically obtained reference species? Type A1 Journal article
  Year 2022 Publication New biotechnology Abbreviated Journal New Biotechnol  
  Volume 72 Issue Pages 38-47  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photoautohydrogenotrophic enrichments of wastewater treatment microbiomes were performed to obtain hypothetically high-potential specialist species for biotechnological applications. From these enrichment cultures, ten photoautohydrogenotrophic species were isolated: six Rhodopseudomonas species, three Rubrivivax members and Rhodobacter blasticus. The performance of these isolates was compared to three commonly studied, and originally photoheterotrophically enriched species (Rhodopseudomonas palustris, Rhodobacter capsulatus and Rhodobacter sphaeroides), designated as reference species. Repeated subcultivations were applied to improve the initial poor performance of the isolates (acclimation effect), which resulted in increases in both maximum growth rate and protein productivity. However, the maximum growth rate of the reference species remained 3–7 times higher compared to the isolates (0.42–0.84 d−1 at 28 °C), while protein productivities remained 1.5–1.7 times higher. This indicated that H2-based enrichment did not result in photoautohydrogenotrophic specialists, suggesting that the reference species are more suitable for intensified biomass and protein production. On the other hand, the isolates were able to provide equally high protein quality profiles as the references species, providing full dietary essential amino acid matches for human food. Lastly, the effect of metabolic carbon/electron switching (back and forth between auto- to heterotrophic conditions) initially boosted µmax when returning to photoautohydrogenotrophic conditions. However, the switch negatively impacted lag phase, protein productivities and pigment contents. In the case of protein productivity, the acquired acclimation was partially lost with decreases of up to 44 % and 40 % respectively for isolates and reference species. Finally, the three reference species, and specifically Rh. capsulatus, remained the most suitable candidate(s) for further biotechnological development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861078800005 Publication Date 2022-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1871-6784; 1876-4347 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.4  
  Call Number UA @ admin @ c:irua:190188 Serial 7199  
Permanent link to this record
 

 
Author Rossi, F.; Olguin, E.J.; Diels, L.; De Philippis, R. pdf  doi
openurl 
  Title Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification Type A1 Journal article
  Year 2015 Publication New biotechnology Abbreviated Journal  
  Volume 32 Issue 1 Pages 109-120  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The growing concern for the increase of the global warming effects due to anthropogenic activities raises the challenge of finding novel technological approaches to stabilize CO2 emissions in the atmosphere and counteract impinging interconnected issues such as desertification and loss of biodiversity. Biological-CO2 mitigation, triggered through biological fixation, is considered a promising and eco-sustainable method, mostly owing to its downstream benefits that can be exploited. Microorganisms such as cyanobacteria, green algae and some autotrophic bacteria could potentially fix CO2 more efficiently than higher plants, due to their faster growth. Some examples of the potential of biological-CO2 mitigation are reported and discussed in this paper. In arid and semiarid environments, soil carbon sequestration (CO2 fixation) by cyanobacteria and biological soil crusts is considered an eco-friendly and natural process to increase soil C content and a viable pathway to soil restoration after one disturbance event. Another way for biological-CO2 mitigation intensively studied in the last few years is related to the possibility to perform carbon dioxide sequestration using microalgae, obtaining at the same time bioproducts of industrial interest. Another possibility under study is the exploitation of specific chemotrophic bacteria, such as Ralstonia eutropha (or picketii) and related organisms, for CO2 fixation coupled with the production chemicals such as polyhydroxyalkanoates (PHAs). In spite of the potential of these processes, multiple factors still have to be optimized for maximum rate of CO2 fixation by these microorganisms. The optimization of culture conditions, including the optimal concentration of CO2 in the provided gas, the use of metabolic engineering and of dual purpose systems for the treatment of wastewater and production of biofuels and high value products within a biorefinery concept, the design of photobioreactors in the case of phototrophs are some of the issues that, among others, have to be addressed and tested for cost-effective CO2 sequestration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347507800015 Publication Date 2013-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1871-6784; 1876-4347 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:123762 Serial 8242  
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Wilcop, M.; Anderson, R.; Wendt, D.; Barden, R.; Kavich, G.M. pdf  doi
openurl 
  Title Investigation of volatile organic compounds in museum storage areas Type A1 Journal article
  Year 2021 Publication Air Quality Atmosphere And Health Abbreviated Journal Air Qual Atmos Hlth  
  Volume 14 Issue 11 Pages 1797-1809  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract This study investigates the complex mixture of volatile organic compounds (VOCs) released by and accumulated within a collection of historic medicinal, pharmaceutical, and cosmetic artifacts housed at the National Museum of American History (Smithsonian Institution). In recent years, staff have become concerned, both for the safety of the objects and for personnel working in the collection, about strong unremediated odors accumulating within several storage cabinets. Museum staff also wondered if non-odorous off-gassing might need remediation. Solid-phase microextraction combined with gas chromatography–mass spectrometry analysis (SPME–GC–MS) was used to identify VOCs present in the storage room housing the collection. Over 160 compounds were detected and identified overall. Among these, 49 appeared to be directly related to ingredients used in the manufacture of many collection items. The results of the study suggest that SPME–GC–MS can be a strong tool for the rapid screening of multicomponent museum collections exhibiting off-gassing problems, before the pursuit of other more tedious analytical approaches. Additionally, the study reveals valuable insight into the characteristic volatile emission of historic medicinal, pharmaceutical, and cosmetic artifacts, increasing understanding of, and decision-making for, similar collections of objects. Eventually, it is hoped that this information can be used to inform mitigation strategies for the capture and reduction of VOCs in collections storage areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000659058300001 Publication Date 2021-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1873-9318 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.184 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.184  
  Call Number UA @ admin @ c:irua:181923 Serial 8129  
Permanent link to this record
 

 
Author Godoi, R.H.M.; Godoi, A.F.L.; de Quadros, L.C.; Polezer, G.; Silva, T.O.B.; Yamamoto, C.I.; Van Grieken, R.; Potgieter-Vermaak, S. pdf  doi
openurl 
  Title Risk assessment and spatial chemical variability of PM collected at selected bus stations Type A1 Journal article
  Year 2013 Publication Air quality, atmosphere & health Abbreviated Journal  
  Volume Issue Pages 1-11  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The chemical characterization of particulate matter inside and outside of confined bus shelters has been discerned for the first time. Transit patrons are at risk due to the close vicinity of densely trafficked areas resulting in elevated pollution footprints. Incomplete combustion processes, as well as exhaust and wear and tear emissions from public and personal transportation vehicles, are key contributors to degraded urban air quality and are often implicated as causal to various diseases in humans. Urban planning, therefore, includes efficient public transport systems to mitigate the effect. The bus rapid transit system was inaugurated in Curitiba to ensure dedicated traffic lanes, major bus interchanges and semi-confined bus stops called tube stations. To assess the chemical risk that the passengers are exposed to, an investigation of the aerosol inside and outside five of these tube stations was launched. Electron probe X-ray micro-analysis and X-ray fluorescence were used to determine the elemental composition of individual and of bulk particle samples. An aethalometer quantified the black carbon. Elemental concentrations inside the shelters were in general higher than outside, especially for traffic-related elements. The lead concentration exceeded the NAAS standard at times, although the average was below the guideline. The biogenic, organic and soot clusters showed the highest abundance for the city centre sites. The overall carcinogenic risk could be classed as moderate, and the risk was significant at two sites during one of the sampling campaigns. The non-carcinogenic risk is well below the significant value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328332500006 Publication Date 2013-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1873-9318 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:111086 Serial 8484  
Permanent link to this record
 

 
Author Ysebaert, T.; Samson, R.; Denys, S. pdf  doi
openurl 
  Title Revisiting dry deposition modelling of particulate matter on vegetation at the microscale Type A1 Journal article
  Year 2023 Publication Air quality, atmosphere & health Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Dry deposition is an important process determining pollutant concentrations, especially when studying the influence of urban green infrastructure on particulate matter (PM) levels in cities. Computational fluid dynamics (CFD) models of PM capture by vegetation are useful tools to increase their applicability. The meso-scale models of Zhang et al. (Atmos Environ 35:549-560, 2001) and Petroff and Zhang (Geosci Model Dev 3(2):753-769, 2010) have often been adopted in CFD models, however a comparison of these models with measurements including all PM particle sizes detrimental to health has been rarely reported and certainly not for green wall species. This study presents dry deposition experiments on real grown Hedera helix in a wind tunnel setup with wind speeds from 1 to 4 m s(-1) and PM consisting of a mixture of soot (0.02 – 0.2 mu mu m) and dust particles (0.3 – 10 mu mu m). Significant factors determining the collection efficiency (%) were particle diameter and wind speed, but relative air humidity and the type of PM (soot or dust) did not have a significant influence. Zhang's model outperformed Petroff's model for particles < 0.3 mu mu m, however the inclusion of turbulent impaction in Petroff's model resulted in better agreement with the measurements for particles > 2 – 3 mu mu m. The optimised model had an overall root-mean-square-error of similar to 4% for collection efficiency (CE) and 0.4 cm s-1 for deposition velocity (nu d), which was shown to be highly competitive against previously described models. It can thus be used to model PM deposition on other plant species, provided the correct parameterisation of the drag by this species. A detailed description of the spatial distribution of the vegetation could solve the underestimation for particle sizes of 0.3 – 2 mu mu m.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001125841300001 Publication Date 2023-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1873-9318; 1873-9326 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.1 Times cited Open Access  
  Notes Approved Most recent IF: 5.1; 2023 IF: 3.184  
  Call Number UA @ admin @ c:irua:201986 Serial 9086  
Permanent link to this record
 

 
Author De Tommasi, E.; Gielis, J.; Rogato, A. pdf  url
doi  openurl
  Title Diatom frustule morphogenesis and function : a multidisciplinary survey Type A1 Journal article
  Year 2017 Publication Marine Genomics Abbreviated Journal  
  Volume 35 Issue Pages 1-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Diatoms represent the major component of phytoplankton and are responsible for about 2025% of global primary production. Hundreds of millions of years of evolution led to tens of thousands of species differing in dimensions and morphologies. In particular, diatom porous silica cell walls, the frustules, are characterized by an extraordinary, species-specific diversity. It is of great interest, among the marine biologists and geneticists community, to shed light on the origin and evolutionary advantage of this variability of dimensions, geometries and pore distributions. In the present article the main reported data related to frustule morphogenesis and functionalities with contributions from fundamental biology, genetics, mathematics, geometry and physics are reviewed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000412957700001 Publication Date 2017-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1874-7787 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:144546 Serial 7807  
Permanent link to this record
 

 
Author Kovács, A.; Janssens, N.; Mielants, M.; Cornet, I.; Neyts, E.C.; Billen, P. pdf  doi
openurl 
  Title Biocatalyzed vinyl laurate transesterification in natural deep eutectic solvents Type A1 Journal article
  Year 2023 Publication Waste and biomass valorization Abbreviated Journal  
  Volume Issue Pages 1-12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Purpose Natural deep eutectic solvents (NADES) represent a green alternative to conventional organic solvents as reaction medium, offering more benign properties. To efficiently design NADES for biocatalysis, a better understanding of their effect on these reactions is needed. We hypothesize that this effect can be described by separately considering (1) the solvent interactions with the substrates, (2) the solvent viscosities and (3) the enzyme stability in NADES. Methods We investigated the effect of substrate solvation and viscosity on the reaction rate; and the stability of the enzyme in NADES. To this end, we monitored the conversion over time of the transesterification of vinyl laurate with 1- butanol by the lipase enzyme Candida antarctica B in NADES of different compounds and molar ratios. Results The initial reaction rate is higher in most NADES ( varying between 1.14 and 15.07 mu mol min(-1) mg(-1)) than in the reference n-hexane (4.0 mu mol min(-1) mg(-1))), but no clear relationship between viscosity and initial reaction rate was found. The increased reaction rate is most likely related to the solvation of the substrate due to a change in the activation energy of the reaction or a change in the conformation of the substrate. The enzyme retained part of its activity after the first 2 h of reaction (on average 20 % of the substrate reacted in the 2-24 h period). Enzyme incubation in ethylene glycol-based NADES resulted in a reduced reaction rate ( 15.07 vs. 3.34 mu mol min(-1) mg(-1)), but this may also be due to slow dissolution of the substrate. Conclusions The effect of viscosity seems to be marginal next to the effect of solvation and possible enzyme-NADES interaction. The enzyme retains some of its activity during the 24-hour measurements, but the enzyme incubation experiments did not yield accurate, comparable values. [GRAPHICS] .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001117290800003 Publication Date 2023-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1877-2641; 1877-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited Open Access  
  Notes Approved Most recent IF: 3.2; 2023 IF: 1.337  
  Call Number UA @ admin @ c:irua:202709 Serial 9005  
Permanent link to this record
 

 
Author Tang, T.; Strokal, M.; van Vliet, M.T.H.; Seuntjens, P.; Burek, P.; Kroeze, C.; Langan, S.; Wada, Y. url  doi
openurl 
  Title Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide Type A1 Journal article
  Year 2019 Publication Current Opinion in Environmental Sustainability Abbreviated Journal  
  Volume 36 Issue Pages 39-48  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Global water quality (WQ) modeling is an emerging field. In this article, we identify the missing linkages between global and basin/local-scale WQ models, and discuss the possibilities to fill these gaps. We argue that WQ models need stronger linkages across spatial scales. This would help to identify effective scale-specific WQ management options and contribute to future development of global WQ models. Two directions are proposed to improve the linkages: nested multiscale WQ modeling towards enhanced water management, and development of next-generation global WQ models based-on basin/local-scale mechanistic understanding. We highlight the need for better collaboration among WQ modelers and policy-makers in order to deliver responsive water policies and management strategies across scales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460234600006 Publication Date 2018-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1877-3435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:158643 Serial 7568  
Permanent link to this record
 

 
Author Tang, C.S.; Zeng, S.; Wu, J.; Chen, S.; Naradipa, M.A.; Song, D.; Milošević, M.V.; Yang, P.; Diao, C.; Zhou, J.; Pennycook, S.J.; Breese, M.B.H.; Cai, C.; Venkatesan, T.; Ariando, A.; Yang, M.; Wee, A.T.S.; Yin, X. url  doi
openurl 
  Title Detection of two-dimensional small polarons at oxide interfaces by optical spectroscopy Type A1 Journal article
  Year 2023 Publication Applied physics reviews Abbreviated Journal  
  Volume 10 Issue 3 Pages 031406-31409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) perovskite oxide interfaces are ideal systems to uncover diverse emergent properties, such as the arising polaronic properties from short-range charge-lattice interactions. Thus, a technique to detect this quasiparticle phenomenon at the buried interface is highly coveted. Here, we report the observation of 2D small-polarons at the LaAlO3/SrTiO3 conducting interface using high-resolution spectroscopic ellipsometry. First-principles investigations show that interfacial electron-lattice coupling mediated by the longitudinal phonon mode facilitates the formation of these polarons. This study resolves the long-standing question by attributing the formation of interfacial 2D small polarons to the significant mismatch between experimentally measured interfacial carrier density and theoretical values. Our study sheds light on the complexity of broken periodic lattice-induced quasi-particle effects and its relationship with exotic phenomena at complex oxide interfaces. Meanwhile, this work establishes spectroscopic ellipsometry as a useful technique to detect and locate optical evidence of polaronic states and other emerging quantum properties at the buried interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001038283300001 Publication Date 2023-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15; 2023 IF: 13.667  
  Call Number UA @ admin @ c:irua:198433 Serial 8847  
Permanent link to this record
 

 
Author Wambacq, E.; Alloul, A.; Grunert, O.; Carrette, J.; Vermeir, P.; Spanoghe, J.; Sakarika, M.; Vlaeminck, S.E.; Haesaert, G. url  doi
openurl 
  Title Aerobes and phototrophs as microbial organic fertilizers : exploring mineralization, fertilization and plant protection features Type A1 Journal article
  Year 2022 Publication PLoS ONE Abbreviated Journal Plos One  
  Volume 17 Issue 2 Pages e0262497-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Organic fertilizers and especially microbial biomass, also known as microbial fertilizer, can enable a paradigm shift to the conventional fertilizer-to-food chain, particularly when produced on secondary resources. Microbial fertilizers are already common practice (e.g. Bloom® and Synagro); yet microbial fertilizer blends to align the nutrient release profile to the plant’s needs are, thus far, unexplored. Moreover, most research only focuses on direct fertilization effects without considering added value properties, such as disease prevention. This study has explored three promising types of microbial fertilizers, namely dried biomass from a consortium of aerobic heterotrophic bacteria, a microalga (Arthrospira platensis) and a purple non-sulfur bacterium (Rhodobacter sphaeroides). Mineralization and nitrification experiments showed that the nitrogen mineralization profile can be tuned to the plant’s needs by blending microbial fertilizers, without having toxic ammonium peaks. In a pot trial with perennial ryegrass (Lolium perenne L.), the performance of microbial fertilizers was similar to the reference organic fertilizer, with cumulative dry matter yields of 5.6–6.7 g per pot. This was confirmed in a pot trial with tomato (Solanum lycopersicum L.), showing an average total plant length of 90–99 cm after a growing period of 62 days for the reference organic fertilizer and the microbial fertilizers. Moreover, tomato plants artificially infected with powdery mildew (Oidium neolycopersici), a devastating disease for the horticultural industry, showed reduced disease symptoms when A. platensis was present in the growing medium. These findings strengthen the application potential of this novel class of organic fertilizers in the bioeconomy, with a promising match between nutrient mineralization and plant requirements as well as added value in crop protection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000775890100025 Publication Date 2022-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:185568 Serial 7122  
Permanent link to this record
 

 
Author Gielis, J.; Caratelli, D.; Fougerolle, Y.; Ricci, P.E.; Tavkelidze, I.; Gerats, T. url  doi
openurl 
  Title Universal natural shapes : from unifying shape description to simple methods for shape analysis and boundary value problems Type A1 Journal article
  Year 2012 Publication PLoS ONE Abbreviated Journal  
  Volume 7 Issue 9 Pages e29324-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt algorithm allows for efficient and robust reconstruction of Gielis curves, including self-intersecting and asymmetric curves, without increasing the overall complexity of the algorithm. Then, we show how complex curves of k-type can be constructed and how solutions to the Dirichlet problem for the Laplace equation on these complex domains can be derived using a semi-Fourier method. In all three methods, descriptive and computational power and efficiency is obtained in a surprisingly simple way.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309517500001 Publication Date 2012-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:102202 Serial 8711  
Permanent link to this record
 

 
Author Bjørnåvold, A.; David, M.; Mermet-Bijon, V.; Beaumais, O.; Crastes dit Sourd, R.; Van Passel, S.; Martinet, V. url  doi
openurl 
  Title To tax or to ban? A discrete choice experiment to elicit public preferences for phasing out glyphosate use in agriculture Type A1 Journal article
  Year 2023 Publication PLoS ONE Abbreviated Journal  
  Volume 18 Issue 3 Pages 1-12  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract In 2023, the European Union will vote on the reauthorization of glyphosate use, renewed in 2017 despite concern on impacts on the environment and public health. A ban is supported by several Member States but rejected by most farmers. What are citizens’ preferences to phase out glyphosate? To assess whether taxation could be an alternative to a ban, we conducted a discrete choice experiment in five European countries. Our results reveal that the general public is strongly willing to pay for a reduction in glyphosate use. However, while 75.5% of respondents stated to support a ban in the pre-experimental survey, experimental results reveal that in 73.35% of cases, earmarked taxation schemes are preferred when they lead to a strong reduction in glyphosate use for an increase in food price lower than that induced by a ban. When glyphosate reduction is balanced against its costs, a tax may be preferred.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985134400084 Publication Date 2023-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2023 IF: 2.806  
  Call Number UA @ admin @ c:irua:196999 Serial 9236  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. url  doi
openurl 
  Title Coupled plasmon modes in 2D gold nanoparticle clusters and their effect on local temperature control Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 50 Pages 30594-30603  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Assemblies of closely separated gold nanoparticles exhibit a strong collective plasmonic response due to coupling of the plasmon modes of the individual nanostructures. In the context of self-assembly of nanoparticles, close-packed two-dimensional (2D) clusters of spherical nanoparticles present an important composite system that promises numerous applications. The present study probes the collective plasmonic characteristics and resulting photothermal behavior of close-packed 2D Au nanoparticle clusters to delineate the effects of the cluster size, interparticle distance, and particle size. Smaller nanoparticles (20 and 40 nm in diameter) that exhibit low individual scattering and high absorption were considered for their relevance to photothermal applications. In contrast to typical literature studies, the present study compares the optical response of clusters of different sizes ranging from a single nanoparticle up to large assemblies of 61 nanoparticles. Increasing the cluster size induces significant changes to the spectral position and optophysical characteristics. Based on the model outcome, an optimal cluster size for maximum absorption per nanoparticle is also determined for enhanced photothermal effects. The effect of the particle size and interparticle distance is investigated to elucidate the nature of interaction in terms of near-field and far-field coupling. The photothermal effect resulting from absorption is compared for different cluster sizes and interparticle distances considering a homogeneous water medium. A strong dependence of the steady-state temperature of the nanoparticles on the cluster size, particle position in the cluster, incident light polarization, and interparticle distance provides new physical insight into the local temperature control of plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503919500061 Publication Date 2019-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:164530 Serial 5938  
Permanent link to this record
 

 
Author Zhou, X.-G.; Yang, C.-Q.; Sang, X.; Li, W.; Wang, L.; Yin, Z.-W.; Han, J.-R.; Li, Y.; Ke, X.; Hu, Z.-Y.; Cheng, Y.-B.; Van Tendeloo, G. pdf  doi
openurl 
  Title Probing the electron beam-induced structural evolution of halide perovskite thin films by scanning transmission electron microscopy Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 19 Pages 10786-10794  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A deep understanding of the fine structure at the atomic scale of halide perovskite materials has been limited by their sensitivity to the electron beam that is widely used for structural characterization. The sensitivity of a gamma-CsPbIBr2 perovskite thin film under electron beam irradiation is revealed by scanning transmission electron microscopy (STEM) through a universal large-range electron dose measurement, which is based on discrete single-electron events in the STEM mode. Our research indicates that the gamma-CsPbIBr2 thin film undergoes structural changes with increasing electron overall dose (e(-).A(-2)) rather than dose rate (e(-).A(-2).s(-1)), which suggests that overall dose is the key operative parameter. The electron beam-induced structural evolution of gamma-CsPbIBr2 is monitored by fine control of the electron beam dose, together with the analysis of high-resolution (S)TEM, diffraction, and energy-dispersive X-ray spectroscopy. Our results show that the gamma-CsPbIBr2 phase first forms an intermediate phase [e.g., CsPb(1-x)(IBr)((3-y))] with a superstructure of ordered vacancies in the pristine unit cell, while a fraction of Pb2+ is reduced to Pb-0. As the electron dose increases, Pb nanoparticles precipitate, while the remaining framework forms the Cs2IBr phase, accompanied by some amorphization. This work provides guidelines to minimize electron beam irradiation artifacts for atomic-resolution imaging on CsPbIBr2 thin films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000655640900061 Publication Date 2021-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:179187 Serial 6880  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Mortazavi, B.; Ziabari, A.A.; Khatibani, A.B.; Nguyen, C., V; Ghergherehchi, M.; Gogova, D. pdf  doi
openurl 
  Title Point defects in a two-dimensional ZnSnN₂ nanosheet : a first-principles study on the electronic and magnetic properties Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 23 Pages 13067-13075  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The reduction of dimensionality is a very effective way to achieve appealing properties in two-dimensional materials (2DMs). First-principles calculations can greatly facilitate the prediction of 2DM properties and find possible approaches to enhance their performance. We employed first-principles calculations to gain insight into the impact of different types of point defects (vacancies and substitutional dopants) on the electronic and magnetic properties of a ZnSnN2 (ZSN) monolayer. We show that Zn, Sn, and N + Zn vacancy-defected structures are p-type conducting, while the defected ZSN with a N vacancy is n-type conducting. For substitutional dopants, we found that all doped structures are thermally and energetically stable. The most stable structure is found to be B-doping at the Zn site. The highest work function value (5.0 eV) has been obtained for Be substitution at the Sn site. Li-doping (at the Zn site) and Be-doping (at the Sn site) are p-type conducting, while B-doping (at the Zn site) is n-type conducting. We found that the considered ZSN monolayer-based structures with point defects are magnetic, except those with the N vacancy defects and Be-doped structures. The ab initio molecular dynamics simulations confirm that all substitutionally doped and defected structures are thermally stable. Thus, our results highlight the possibility of tuning the magnetism in ZnSnN2 monolayers through defect engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000664312500063 Publication Date 2021-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:179741 Serial 7012  
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C. pdf  url
doi  openurl
  Title Identification of a unique pyridinic FeN4Cx electrocatalyst for N₂ reduction : tailoring the coordination and carbon topologies Type A1 Journal article
  Year 2022 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 126 Issue 34 Pages 14460-14469  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Although the heterogeneity of pyrolyzed Fe???N???C materials is known and has been reported previously, the atomic structure of the active sites and their detailed reaction mechanisms are still unknown. Here, we identified two pyridinic Fe???N4-like centers with different local C coordinates, i.e., FeN4C8 and FeN4C10, and studied their electrocatalytic activity for the nitrogen reduction reaction (NRR) based on density functional theory (DFT) calculations. We also discovered the influence of the adsorption of NH2 as a functional ligand on catalyst performance on the NRR. We confirmed that the NRR selectivity of the studied catalysts is essentially governed either by the local C coordination or by the dynamic structure associated with the FeII/FeIII. Our investigations indicate that the proposed traditional pyridinic FeN4C10 has higher catalytic activity and selectivity for the NRR than the robust FeN4C8 catalyst, while it may have outstanding activity for promoting other (electro)catalytic reactions. <comment>Superscript/Subscript Available</comment  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000859545200001 Publication Date 2022-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:191469 Serial 7268  
Permanent link to this record
 

 
Author Demiroglu, I.; Karaaslan, Y.; Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C. pdf  url
doi  openurl
  Title Computation of the thermal expansion coefficient of graphene with Gaussian approximation potentials Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 26 Pages 14409-14415  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Direct experimental measurement of thermal expansion coefficient without substrate effects is a challenging task for two-dimensional (2D) materials, and its accurate estimation with large-scale ab initio molecular dynamics is computationally very expensive. Machine learning-based interatomic potentials trained with ab initio data have been successfully used in molecular dynamics simulations to decrease the computational cost without compromising the accuracy. In this study, we investigated using Gaussian approximation potentials to reproduce the density functional theory-level accuracy for graphene within both lattice dynamical and molecular dynamical methods, and to extend their applicability to larger length and time scales. Two such potentials are considered, GAP17 and GAP20. GAP17, which was trained with pristine graphene structures, is found to give closer results to density functional theory calculations at different scales. Further vibrational and structural analyses verify that the same conclusions can be deduced with density functional theory level in terms of the reasoning of the thermal expansion behavior, and the negative thermal expansion behavior is associated with long-range out-of-plane phonon vibrations. Thus, it is argued that the enabled larger system sizes by machine learning potentials may even enhance the accuracy compared to small-size-limited ab initio molecular dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000672734100027 Publication Date 2021-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:179850 Serial 7719  
Permanent link to this record
 

 
Author Van de Sompel, P.; Khalilov, U.; Neyts, E.C. pdf  url
doi  openurl
  Title Contrasting H-etching to OH-etching in plasma-assisted nucleation of carbon nanotubes Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 14 Pages 7849-7855  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To gain full control over the growth of carbon nanotubes (CNTs) using plasma-enhanced chemical vapor deposition (PECVD), a thorough understanding of the underlying plasma-catalyst mechanisms is required. Oxygen-containing species are often used as or added to the growth precursor gas, but these species also yield various radicals and ions, which may simultaneously etch the CNT during the growth. At present, the effect of these reactive species on the growth onset has not yet been thoroughly investigated. We here report on the etching mechanism of incipient CNT structures from OH and O radicals as derived from combined (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations. Our results indicate that the oxygen-containing radicals initiate a dissociation process. In particular, we show how the oxygen species weaken the interaction between the CNT and the nanocluster. As a result of this weakened interaction, the CNT closes off and dissociates from the cluster in the form of a fullerene. Beyond the specific systems studied in this work, these results are generically important in the context of PECVD-based growth of CNTs using oxygen-containing precursors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000641307100032 Publication Date 2021-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:178393 Serial 7729  
Permanent link to this record
 

 
Author Nematollahi, P.; Ma, H.; Schneider, W.F.; Neyts, E.C. pdf  url
doi  openurl
  Title DFT and microkinetic comparison of ru-doped porphyrin-like graphene and nanotubes toward catalytic formic acid decomposition and formation Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 34 Pages 18673-18683  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Immobilization of single metal atoms on a solid host opens numerous possibilities for catalyst designs. If that host is a two-dimensional sheet, sheet curvature becomes a design parameter potentially complementary to host and metal composition. Here, we use a combination of density functional theory calculations and microkinetic modeling to compare the mechanisms and kinetics of formic acid decomposition and formation, chosen for their relevance as a potential hydrogen storage medium, over single Ru atoms anchored to pyridinic nitrogen in a planar graphene flake (RuN4-G) and curved carbon nanotube (RuN4-CNT). Activation barriers are lowered and the predicted turnover frequencies are increased over RuN4-CNT relative to RuN4-CNT. The results highlight the potential of curvature control as a means to achieve high performance and robust catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000693413400013 Publication Date 2021-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:181538 Serial 7805  
Permanent link to this record
 

 
Author Gjerding, M.N.; Cavalcante, L.S.R.; Chaves, A.; Thygesen, K.S. pdf  url
doi  openurl
  Title Efficient Ab initio modeling of dielectric screening in 2D van der Waals materials : including phonons, substrates, and doping Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 21 Pages 11609-11616  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The quantum electrostatic heterostructure (QEH) model allows for efficient computation of the dielectric screening properties of layered van der Waals (vdW)-bonded heterostructures in terms of the dielectric functions of the individual two-dimensional (2D) layers. Here, we extend the QEH model by including (1) contributions to the dielectric function from infrared active phonons in the 2D layers, (2) screening from homogeneous bulk substrates, and (3) intraband screening from free carriers in doped 2D semiconductor layers. We demonstrate the potential of the extended QEH model by calculating the dispersion of coupled phonons in multilayer stacks of hexagonal boron-nitride (hBN), the strong hybridization of plasmons and optical phonons in graphene/hBN heterostructures, the effect of substrate screening on the exciton series of monolayer MoS2, and the properties of hyperbolic plasmons in a doped phosphorene sheet. The new QEH code is distributed as a Python package with a simple command line interface and a comprehensive library of dielectric building blocks for the most common 2D materials, providing an efficient open platform for dielectric modeling of realistic vdW heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000614615900022 Publication Date 2020-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:176187 Serial 7852  
Permanent link to this record
 

 
Author Korkmaz, Y.A.; Bulutay, C.; Sevik, C. pdf  url
doi  openurl
  Title k · p parametrization and linear and circular dichroism in strained monolayer (Janus) transition metal dichalcogenides from first-principles Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 13 Pages 7439-7450  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Semiconductor monolayer transition metal dichalcogenides (TMDs) have brought a new paradigm by introducing optically addressable valley degree of freedom. Concomitantly, their high flexibility constitutes a unique platform that links optics to mechanics via valleytronics. With the intention to expedite the research in this direction, we investigated ten TMDs, namely MoS2, MoSe2, MoTe2, WS2, WSe2, WTe2, MoSSe, MoSeTe, WSSe, and WSeTe, which particularly includes their so-called janus types (JTMDs). First, we obtained their electronic band structures using regular and hybrid density functional theory (DFT) calculations in the presence of the spin-orbit coupling and biaxial or uniaxial strain. Our DFT results indicated that against the expectations based on their reported piezoelectric behavior, JTMDs typically interpolated between the standard band properties of the constituent TMDs without producing a novel feature. Next, by fitting to our DFT data we generated both spinless and spinful k center dot p parameter sets which are quite accurate over the K valley where the optical activity occurs. As an important application of this parametrization, we considered the circular and linear dichroism under strain. Among the studied (J)TMDs, WTe2 stood out with its largest linear dichroism under uniaxial strain because of its narrower band gap and large K valley uniaxial deformation potential. This led us to suggest WTe2 monolayer membranes for optical polarization-based strain measurements, or conversely, as strain tunable optical polarizers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000639044400045 Publication Date 2021-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:178264 Serial 8136  
Permanent link to this record
 

 
Author Tchakoua, T.; Powell, A.D.; Gerrits, N.; Somers, M.F.; Doblhoff-Dier, K.; Busnengo, H.F.; Kroes, G.-J. url  doi
openurl 
  Title Simulating highly activated sticking of H₂ on Al(110) : quantum versus quasi-classical dynamics Type A1 Journal article
  Year 2023 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal  
  Volume 127 Issue 11 Pages 5395-5407  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We evaluate the importance of quantum effects on the sticking of H2 on Al(110) for conditions that are close to those of molecular beam experiments that have been done on this system. Calculations with the quasi-classical trajectory (QCT) method and with quantum dynamics (QD) are performed using a model in which only motion in the six molecular degrees of freedom is allowed. The potential energy surface used has a minimum barrier height close to the value recently obtained with the quantum Monte Carlo method. Monte Carlo averaging over the initial rovibrational states allowed the QD calculations to be done with an order of magnitude smaller computational expense. The sticking probability curve computed with QD is shifted to lower energies relative to the QCT curve by 0.21 to 0.05 kcal/mol, with the highest shift obtained for the lowest incidence energy. Quantum effects are therefore expected to play a small role in calculations that would evaluate the accuracy of electronic structure methods for determining the minimum barrier height to dissociative chemisorption for H2 + Al(110) on the basis of the standard procedure for comparing results of theory with molecular beam experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000971346700001 Publication Date 2023-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 4.536  
  Call Number UA @ admin @ c:irua:196071 Serial 8525  
Permanent link to this record
 

 
Author Frolov, A.S.; Sanchez-Barriga, J.; Callaert, C.; Hadermann, J.; Fedorov, A., V; Usachov, D.Y.; Chaika, A.N.; Walls, B.C.; Zhussupbekov, K.; Shvets, I., V.; Muntwiler, M.; Amati, M.; Gregoratti, L.; Varykhalov, A.Y.; Rader, O.; Yashina, L., V. pdf  url
doi  openurl
  Title Atomic and electronic structure of a multidomain GeTe crystal Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 14 Issue 12 Pages 16576-16589  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Renewed interest in the ferroelectric semi-conductor germanium telluride was recently triggered by the direct observation of a giant Rashba effect and a 30-year-old dream about a functional spin field-effect transistor. In this respect, all-electrical control of the spin texture in this material in combination with ferroelectric properties at the nanoscale would create advanced functionalities in spintronics and data information processing. Here, we investigate the atomic and electronic properties of GeTe bulk single crystals and their (111) surfaces. We succeeded in growing crystals possessing solely inversion domains of similar to 10 nm thickness parallel to each other. Using HAADF-TEM we observe two types of domain boundaries, one of them being similar in structure to the van der Waals gap in layered materials. This structure is responsible for the formation of surface domains with preferential Te-termination (similar to 68%) as we determined using photoelectron diffraction and XPS. The lateral dimensions of the surface domains are in the range of similar to 10-100 nm, and both Ge- and Te-terminations reveal no reconstruction. Using spin-ARPES we establish an intrinsic quantitative relationship between the spin polarization of pure bulk states and the relative contribution of different terminations, a result that is consistent with a reversal of the spin texture of the bulk Rashba bands for opposite configurations of the ferroelectric polarization within individual nanodomains. Our findings are important for potential applications of ferroelectric Rashba semiconductors in nonvolatile spintronic devices with advanced memory and computing capabilities at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603308800022 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number UA @ admin @ c:irua:175027 Serial 6716  
Permanent link to this record
 

 
Author Kante, M.V.; Weber, M.L.; Ni, S.; van den Bosch, I.C.G.; van der Minne, E.; Heymann, L.; Falling, L.J.; Gauquelin, N.; Tsvetanova, M.; Cunha, D.M.; Koster, G.; Gunkel, F.; Nemsak, S.; Hahn, H.; Estrada, L.V.; Baeumer, C. url  doi
openurl 
  Title A high-entropy oxide as high-activity electrocatalyst for water oxidation Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume 17 Issue 6 Pages 5329-5339  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-delta with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono-or bimetallic oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953440900001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:196097 Serial 7390  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: