toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Buyle, M.; Audenaert, A.; Brusselaers, J.; Van Passel, S. pdf  url
doi  openurl
  Title Rebound effects following technological advancement? The case of a global shock in ferrochrome supply Type A1 Journal article
  Year 2023 Publication Journal of cleaner production Abbreviated Journal  
  Volume 391 Issue Pages 136264-11  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Energy and Materials in Infrastructure and Buildings; Engineering Management (ENM)  
  Abstract Novel recycling technologies aim at increasing material efficiency by turning former waste products into valuable reclaimed resources. A key question is whether such technologies really reduce primary resource consumption or instead stimulate aggregated market demand. In this study the consequences of a positive shock in ferrochrome supply to the global stainless steel value chain is assessed quantitatively. This new source might be unlocked by technology under development for the recovery of chromium from carbon and stainless steel slags. The aim of this study is to quantitatively assess the income and substitution effects of reclaimed ferrochrome along a part of the stainless steel value chain. The impact of the supply shock is analysed by means of a vector autoregression (VAR), a dynamic model where lagged values of all included variables estimate current state of the system. Additionally, the VAR model is extended to a structural vector autoregression (SVAR) to account for contemporary effects as well. Both the VAR and SVAR model indicate that additional ferrochrome supply leads to an increase in aggregated supply of stainless steel, in combination with a substitution effect between ferrochrome and nickel. The extended SVAR model additionally highlights that contemporaneous effects do play an important role as well to capture the direct rebound effect in the ferrochrome market when working with quarterly data. In other words, an additional supply of reclaimed ferrochrome triggers a complex combination of interactions and consequences, yet it does not necessarily lead to a lower overall material consumption. The main contributions of this paper are the assessment of direct rebound effects of supplying reclaimed metals along the value chain and the demonstration that quantifying the effects of circular strategies is feasible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000930165300001 Publication Date 2023-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0959-6526 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.1; 2023 IF: 5.715  
  Call Number UA @ admin @ c:irua:193569 Serial 7365  
Permanent link to this record
 

 
Author Nelen, D.; Manshoven, S.; Peeters, J.R.; Vanegas, P.; D'Haese, N.; Vrancken, K. doi  openurl
  Title A multidimensional indicator set to assess the benefits of WEEE material recycling Type A1 Journal article
  Year 2014 Publication Journal of cleaner production Abbreviated Journal  
  Volume 83 Issue Pages 305-316  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract EU strategies for waste management have long recognized the key role of recycling to move towards sustainable consumption and production. This resulted in a range of regulatory measures, among which the Waste Electrical and Electronic Equipment (WEEE) directive, which sets weight-based targets for recovery, preparation for re-use and recycling. The increasing strategic relevance of the supply of raw materials has, however, spurred a more integrated approach towards resource efficiency. In addition to the prevention of disposal, recycling practices are now also meant to contribute to sustainable materials management by pursuing (i) a higher degree of material cycle closure, (ii) an improved recovery of strategically relevant materials, and (iii) the avoidance of environmental burdens associated with the extraction and refining of primary raw materials. In response to this evolution, this paper reports about the development of an indicator set that allows to quantitatively demonstrate these recycling benefits, hence going further than the weight-based objectives employed in the WEEE directive. The indicators can be calculated for WEEE recycling processes for which information is available on both input and output fractions. It offers a comprehensive framework that aims to support decision making processes on product design, to identify opportunities for the optimization of WEEE End-of-Life scenarios, and to assess the achieved (or expected) results of implemented (or planned) recycling optimization strategies. The paper is illustrated by a case study on the recycling of LCD televisions. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343781500030 Publication Date 2014-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:121160 Serial 7393  
Permanent link to this record
 

 
Author Beames, A.; Broekx, S.; Heijungs, R.; Lookman, R.; Boonen, K.; Van Geert, Y.; Dendoncker, K.; Seuntjens, P. pdf  doi
openurl 
  Title Accounting for land-use efficiency and temporal variations between brownfield remediation alternatives in life-cycle assessment Type A1 Journal article
  Year 2015 Publication Journal of cleaner production Abbreviated Journal  
  Volume 101 Issue Pages 109-117  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The latest life-cycle assessment methods account for land use, due to the production, use and disposal of products and services, in terms of ecosystem damage. The process of brownfield remediation converts otherwise idle urban space into productive space. The value to ecosystems in this context is of course limited since the brownfield site remains urban. When evaluating brownfield remediation technologies, the availability of space on-site is dependent on the duration of time required by the remediation technology to reach the remediation target. Remediation technology alternatives tend to vary largely in terms of duration. Comparative life-cycle assessments of remediation technologies, to date, present the large variations between alternatives in terms of remediation duration but do not translate this into an impact or parameter. The restored subsurface zone is often defined as a functional unit, when in fact the surface area is the resource restored by the remediation service. The economic benefits of making land resources available are particularly important considerations in the context of brownfield remediation. The research proposes an innovative impact assessment approach that allows land to be considered as a finite resource. The method is applied in a comparative life-cycle assessment of two potential remediation scenarios for an idle brownfield in the Brussels region of Belgium. The results show that there is a trade-off between greenhouse gas emissions and land availability and that both are largely dependent on the efficiency of the contaminant extraction mechanism. The results also raise the question as to whether the economic valuation of land, like precious metals and fossil fuels, provides an accurate reflection of the true value of the resource. Considering land as a resource at the midpoint level is also relevant in other urban contexts where competition exists between different land-uses, where urban sprawl is detrimental to undeveloped areas and where urban intensification is a policy objective. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000356988200010 Publication Date 2015-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:127010 Serial 7412  
Permanent link to this record
 

 
Author Vingerhoets, R.; Spiller, M.; De Backer, J.; Adriaens, A.; Vlaeminck, S.E.; Meers, E. pdf  url
doi  openurl
  Title Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region Type A1 Journal article
  Year 2023 Publication Journal of cleaner production Abbreviated Journal  
  Volume 410 Issue Pages 137278-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The agri-food value chain is a major cause of nitrogen (N) and phosphorus (P) emissions and associated environmental and health impacts. The EU's farm-to-fork strategy (F2F) demands an agri-food value chain approach to reduce nutrient emissions by 50% and fertilizer use by 20%. Substance flow analysis (SFA) is a method that can be applied to study complex systems such as the agri-food chain. A review of 60 SFA studies shows that they often lack detail by not sufficiently distinguishing between nodes, products and types of emissions. The present study aims to assess the added value of detail in SFAs and to illustrate that valuable indicators can be derived from detailed assessments. This aim will be attained by presenting a highly-detailed SFA for the livestock-intensive region of Flanders, Belgium. The SFA distinguishes 40 nodes and 1827 flows that are classified into eight different categories (e.g. by-products, point source emissions) following life cycle methods. Eight novel indicators were calculated, including indicators that assess the N and P recovery potential. Flanders has a low overall nutrient use efficiency (11% N, 18% P). About 55% of the N and 56% of the P embedded in recoverable streams are reused providing 35% and 37% of the total N and P input. Optimized nutrient recycling could replace 45% of N and 48% of P of the external nutrient input, exceeding the target set by the F2F strategy. Detailed accounting for N and P flows and nodes leads to the identification of more recoverable streams and larger N and P flows. More detailed flow accounting is a prerequisite for the quantification of technological intervention options. Future research should focus on including concentration and quality as a parameter in SFAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000991013600001 Publication Date 2023-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.1; 2023 IF: 5.715  
  Call Number UA @ admin @ c:irua:196227 Serial 7770  
Permanent link to this record
 

 
Author Peng, L.; Liu, Y.; Sun, J.; Wang, D.; Dai, X.; Ni, B.-J. doi  openurl
  Title Enhancing immobilization of arsenic in groundwater: A model-based evaluation Type A1 Journal article
  Year 2017 Publication Journal of cleaner production Abbreviated Journal  
  Volume 166 Issue Pages 449-457  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The mobilization of arsenic (As) in aquatic environment (groundwater) can cause severe environmental and healthy issues. To develop remediation strategies, we proposed a comprehensive mathematical model to describe the As removal in a arsenite (As (III)) oxidizing and ferrous iron (Fe (II)) oxidizing denitrifying granular biofilm system. In the model framework, the growth-linked microbial oxidation of As (III) and Fe (II) was coupled to chemolithotrophic denitrification of one-step reduction of nitrate to nitrogen gas. Meanwhile, the precipitation of ferric iron (Fe (III)) and adsorption of arsenate (As (V)) onto the biogenic Fe (III) (hydr)oxides were also considered. The model was calibrated by comparing the model predictions against experimental data from batch experiments. The validity of the model was further demonstrated through testing against long-term experimental results from five independent bioreactors with different reactor configurations and operational conditions. Modeling results revealed that the granule size would exert a limited impact on arsenic and iron removal. Nevertheless, their removal efficiencies increased rapidly with the increase of hydraulic retention time (HRT) from 1 h to 12 h, but became independent of HRT as it further increased. The established model framework enables interpretation of a range of experimental observations on As and Fe removal and helps to identify the optimal conditions for enhanced arsenic remediation. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000412607100046 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:146635 Serial 7919  
Permanent link to this record
 

 
Author Kim, E.; Spooren, J.; Broos, K.; Nielsen, P.; Horckmans, L.; Geurts, R.; Vrancken, K.C.; Quaghebeur, M. pdf  doi
openurl 
  Title Valorization of stainless steel slag by selective chromium recovery and subsequent carbonation of the matrix material Type A1 Journal article
  Year 2016 Publication Journal of cleaner production Abbreviated Journal  
  Volume 117 Issue Pages 221-228  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study focuses on the recycling of stainless steel (SS) slags containing about 1.2 wt% of chromium (Cr). The selective recovery of Cr from SS slag by a hydrometallurgical method (alkaline pressure leaching) was investigated. Leaching experiments were carried out based on 2(4-1) factorial design of experiment (DOE) with the following parameters: NaOH concentration, temperature, leaching time, and mechanical activation (MA). Results show that temperature and MA are the most influencing factors for an enhanced Cr leaching. The maximum Cr leaching was 46% at 1 M NaOH, 240 degrees C, 6 h, MA 30 min, while the matrix material was dissolved only to a limited extent (Al 2.88%, Si 0.12%, Ca 0.05%). After Cr leaching followed by alkali washing, a carbonation treatment is proposed to stabilize the remaining Cr in the matrix material and make the subsequent recycling of the matrix material as a construction material possible. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371552200025 Publication Date 2016-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:132432 Serial 8731  
Permanent link to this record
 

 
Author Borms, L.; Van Opstal, W.; Brusselaers, J.; Van Passel, S. url  doi
openurl 
  Title The working future : an analysis of skills needed by circular startups Type A1 Journal article
  Year 2023 Publication Journal of cleaner production Abbreviated Journal  
  Volume 409 Issue Pages 137261-137269  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Aside from potential environmental benefits, the implementation of circular economy principles in businesses can have merits for the labour market. The current unemployment in several regions of Europe and the qualitative mismatch between supply and demand could be countered by reskilling the labour force to adjust supply and demand to one another for increased reuse, repair, or recycling, among others. This study uses interviews to increase the focus of the research question and uses survey data to perform an ordered probit regression analysis to sketch the current and future landscape of startups’ skills in Flanders (Belgium), and to analyse the relationship between circular strategies and different types of skills. The results show that design to lower material use increases the need for transport and logistics skills, digitalisation increases the need for R&D and IT skills, and the recuperation of waste requires technical knowledge. Furthermore, gender, age, and experience of the entrepreneur influence the needed skills. The paper probed for policy recommendations for the uptake of circular strategies and recommendations for future research. The most asked policy measures by the respondents are innovation and collaboration support (subsidies), fiscal measures that support circular goods and services, and public procurement for circular goods and services. This research is of relevance for several stakeholders, such as startup ecosystems, sector organisations, policy makers in innovation policy and labour market policy, and educational institutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000988763400001 Publication Date 2023-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access  
  Notes Approved Most recent IF: 11.1; 2023 IF: 5.715  
  Call Number UA @ admin @ c:irua:195706 Serial 9246  
Permanent link to this record
 

 
Author Vagin, M.Y.; Trashin, S.A.; Beloglazkina, E.K.; Majouga, A.G. pdf  doi
openurl 
  Title Direct reagentless detection of the affinity binding of recombinant His-tagged firefly luciferase with a nickel-modified gold electrode Type A1 Journal article
  Year 2015 Publication Mendeleev communications Abbreviated Journal  
  Volume 25 Issue 4 Pages 290-292  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The direct reagentless electrochemical detection of recombinant firefly luciferase binding with a gold electrode modified with nickel complex of 1,16-di[4-(2,6-dihydroxycarbonyl)pyridyl]-1,16-dioxa-8,9-dithiahexadecane has been carried out.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360416600021 Publication Date 2015-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0959-9436 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:127814 Serial 7811  
Permanent link to this record
 

 
Author Shi, X.; Ronsse, F.; Roegiers, J.; Pieters, J.G. pdf  doi
openurl 
  Title 3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion. Part 1: solids flow dynamics and back-mixing Type A1 Journal article
  Year 2019 Publication Renewable energy Abbreviated Journal  
  Volume 143 Issue Pages 1465-1476  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Three-dimensional (3D) computational fluid dynamics (CFD) simulations were performed to study solids flow dynamics and solids back-mixing behavior in a screw reactor (designed for thermal conversion of dry biomass particles) based on the Eulerian-Eulerian method. Simulation results were compared against experimental data with respect to filling degree and mean residence time of particles. The mean deviations for filling degree and for mean residence time between simulation and experiment were about 0.01 and 11.4 s, respectively, which shows that the model is reasonably accurate in predicting solids flow behavior in the screw reactor. The solids flow dynamics inside the reactor were discussed. The solids residence time distribution (RTD) was calculated and the degree of solids back-mixing in the forward transportation direction of the reactor was analyzed. It was found that solids being flung over the shaft and solids back-leakage, resulting from the low solids forward transportation velocity at the clearance between the flight and the bottom shell of the screw reactor, were responsible for solids back-mixing. The degree of solids back-mixing can be reduced at higher screw rotating speeds when keeping inlet mass flow rate of solids constant. (C) 2019 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482686100039 Publication Date 2019-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-1481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162757 Serial 7384  
Permanent link to this record
 

 
Author Eltayeb, M.A.H.; Van Grieken, R.E.; Maenhaut, W.; Annegarn, H.A.J. doi  openurl
  Title Aerosol-soil fractionation for Namib Desert samples Type A1 Journal article
  Year 1993 Publication Atmospheric environment: part A : general topics Abbreviated Journal  
  Volume 27 Issue Pages 669-678  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1993KY38100004 Publication Date 2003-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-1686; 1878-2124 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:6247 Serial 7425  
Permanent link to this record
 

 
Author Rojas, C.M.; Injuk, J.; Van Grieken, R.; Laane, R.W. doi  openurl
  Title Dry and wet deposition fluxes of Cd, Cu, Pb, and Zn into the Southern Bight of the North Sea Type A1 Journal article
  Year 1993 Publication Atmospheric environment: part A : general topics Abbreviated Journal  
  Volume 27 Issue Pages 251-259  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1993KP20600014 Publication Date 2003-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-1686; 1878-2124 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:6236 Serial 7827  
Permanent link to this record
 

 
Author Vleugels, G.; Dewolfs, R.; Van Grieken, R. doi  openurl
  Title On the memory effect of limestone for air pollution Type A1 Journal article
  Year 1993 Publication Atmospheric environment: part A : general topics Abbreviated Journal  
  Volume 27 Issue Pages 1931-1934  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1993LX59700015 Publication Date 2003-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-1686; 1878-2124 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:6125 Serial 8331  
Permanent link to this record
 

 
Author Struyf, H.; Van Grieken, R. doi  openurl
  Title An overview of wet deposition of micropollutants to the North Sea Type A1 Journal article
  Year 1993 Publication Atmospheric environment: part A : general topics Abbreviated Journal  
  Volume 27 Issue Pages 2669-2687  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1993MJ81600020 Publication Date 2003-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-1686; 1878-2124 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:6262 Serial 8353  
Permanent link to this record
 

 
Author Blansaer, N.; Alloul, A.; Verstraete, W.; Vlaeminck, S.E.; Smets, B.F. pdf  url
doi  openurl
  Title Aggregation of purple bacteria in an upflow photobioreactor to facilitate solid/liquid separation : impact of organic loading rate, hydraulic retention time and water composition Type A1 Journal article
  Year 2022 Publication Bioresource technology Abbreviated Journal Bioresource Technol  
  Volume 348 Issue Pages 126806-126809  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) form an interesting group of microbes for resource recovery from wastewater. Solid/liquid separation is key for biomass and value-added products recovery, yet insights into PNSB aggregation are thus far limited. This study explored the effects of organic loading rate (OLR), hydraulic retention time (HRT) and water composition on the aggregation of Rhodobacter capsulatus in an anaerobic upflow photobioreactor. Between 2.0 and 14.6 gCOD/(L.d), the optimal OLR for aggregation was 6.1 gCOD/(L.d), resulting in a sedimentation flux of 5.9 kgTSS/(m2.h). With HRT tested between 0.04 and 1.00 d, disaggregation occurred at the relatively long HRT (1 d), possibly due to accumulation of thus far unidentified heat-labile metabolites. Chemical oxygen demand (COD) to nitrogen ratios (6–35 gCOD/gN) and the nitrogen source (ammonium vs. glutamate) also impacted aggregation, highlighting the importance of the type of wastewater and its pre-treatment. These novel insights to improve purple biomass separation pave the way for cost-efficient PNSB applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000800442200008 Publication Date 2022-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4  
  Call Number UA @ admin @ c:irua:185843 Serial 7123  
Permanent link to this record
 

 
Author Papini, G.; Muys, M.; Van Winckel, T.; Meerburg, F.A.; Van Beeck, W.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Boosting aerobic microbial protein productivity and quality on brewery wastewater : impact of anaerobic acidification, high-rate process and biomass age Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 368 Issue Pages 128285  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Consortia of aerobic heterotrophic bacteria (AHB) are appealing as sustainable alternative protein ingredient for aquaculture given their high nutritional qualities, and their production potential on feed-grade industrial wastewater. Today, the impacts of pre-treatment, bioprocess choice and key parameter settings on AHB productivity and nutritional properties are unknown. This study investigated for the first time AHB microbial protein production effects based on (i) raw vs anaerobically fermented brewery wastewater, (ii) high-rate activated sludge (HRAS) without vs with feast-famine conditions, and (iii) three short solid retention time (SRT): 0.25, 0.50 and 1.00 d. High biomass (4.4–8.0 g TSS/L/d) and protein productivities (1.9–3.2 g protein/L/d) were obtained while achieving COD removal efficiencies up to 98 % at SRT 0.50 d. The AHB essential amino acid (EAA) profiles were above rainbow trout requirements, excluding the S-containing EAA, highlighting the AHB biomass replacement potential for unsustainable fishmeal in salmonid diets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000902092100009 Publication Date 2022-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:191780 Serial 7133  
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Alloul, A.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Towards mainstream partial nitritation/anammox in four seasons : feasibility of bioaugmentation with stored summer sludge for winter anammox assistance Type A1 Journal article
  Year 2022 Publication Bioresource technology Abbreviated Journal Bioresource Technol  
  Volume 347 Issue Pages 126619-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The strong effect of low temperatures on anammox challenges its mainstream application over the winter in temperate climates. Winter bioaugmentation with stored summer surplus sludge is a potential solution to guarantee sufficient nitrogen removal in winter. Firstly, the systems for which nitrogen removal deteriorated by the temperature decrease (25 °C → 20 °C) could be fully restored bioaugmenting with granules resp. flocs stored for 6 months at 118 resp. 220% of the initial biomass levels. Secondly, the reactivation of these stored sludges was tested in lower temperature systems (15.3 ± 0.4/10.4 ± 0.4 °C). Compared to the activity before storage, between 56% and 41% of the activity of granules was restored within one month, and 41%–32% for flocs. Additionally, 85–87% of granules and 50–53% of flocs were retained in the systems. After reactivation (15.3 ± 0.4/10.4 ± 0.4 °C), a more specialized community was formed (diversity decreased) with Candidatus Brocadia still dominant in terms of relative abundance. Capital and operating expenditures (CAPEX, OPEX) were negligible, representing only 0.19–0.36% of sewage treatment costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000781730900001 Publication Date 2021-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4  
  Call Number UA @ admin @ c:irua:185210 Serial 7220  
Permanent link to this record
 

 
Author Xie, Y.; Jia, M.; De Wilde, F.; Daeninck, K.; De Clippeleir, H.; Verstraete, W.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Feasibility of packed-bed trickling filters for partial nitritation/anammox : effects of carrier material, bottom ventilation openings, hydraulic loading rate and free ammonia Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 373 Issue Pages 128713-128719  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study pioneers the feasibility of cost-effective partial nitritation/anammox (PN/A) in packed-bed trickling filters (TFs). Three parallel TFs tested different carrier materials, the presence or absence of bottom ventilation openings, hydraulic loading rates (HLR, 0.4–2.2 m3 m−2 h−1), and free ammonia (FA) levels on synthetic medium. The inexpensive Argex expanded clay was recommended due to the similar nitrogen removal rates as commercially used plastics. Top-only ventilation at an optimum HLR of 1.8 m3 m−2 h−1 could remove approximately 60% of the total nitrogen load (i.e., 300 mg N L-1 d−1, 30 °C) and achieve relatively low NO3–-N accumulation (13%). Likely FA levels of around 1.3–3.2 mg N L-1 suppressed nitratation. Most of the total nitrogen removal took place in the upper third of the reactor, where anammox activity was highest. Provided further optimizations, the results demonstrated TFs are suitable for low-energy shortcut nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000945892500001 Publication Date 2023-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:193652 Serial 7306  
Permanent link to this record
 

 
Author Wang, D.; Liu, Y.; Ngo, H.H.; Zhang, C.; Yang, Q.; Peng, L.; He, D.; Zeng, G.; Li, X.; Ni, B.-J. pdf  url
doi  openurl
  Title Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation Type A1 Journal article
  Year 2017 Publication Bioresource technology Abbreviated Journal  
  Volume 238 Issue Pages 343-351  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%.However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402485500042 Publication Date 2017-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:144155 Serial 7489  
Permanent link to this record
 

 
Author de Baerdemaeker, T.; Lemmens, B.; Dotremont, C.; Fret, J.; Roef, L.; Goiris, K.; Diels, L. pdf  doi
openurl 
  Title Benchmark study on algae harvesting with backwashable submerged flat panel membranes Type A1 Journal article
  Year 2013 Publication Bioresource technology Abbreviated Journal  
  Volume 129 Issue Pages 582-591  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The feasibility of algae harvesting with submerged flat panel membranes was investigated as pre-concentration step prior to centrifugation. Polishing of the supernatant coming from the centrifuge was evaluated as well. The effect of membrane polymer (polyvinyl chloride [PVC], polyethersulfone polyvinyl-pyrollidone [PES-PVP], poly vinylidene fluoride [PVDF]), pore size (microfiltration [MF], ultrafiltration [UF]), algae cell concentrations and species were investigated at lab-scale. In addition, backwashing as fouling control was compared to standard relaxation. PVDF was the superior polymer, and UF showed better fouling resistance. Backwashing outperformed relaxation in fouling control. The backwashable membranes allowed up to 300% higher fluxes compared to commercial flat panel benchmark (PVC) membranes. Estimations on energy consumption for membrane filtration followed by centrifugation revealed relatively low values of 0.169 kW h/kg of dry weight of algae compared to 0.5 kW h/kg for algae harvesting via classical centrifuge alone. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000324566000079 Publication Date 2012-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:111203 Serial 7554  
Permanent link to this record
 

 
Author Alloul, A.; Muys, M.; Hertoghs, N.; Kerckhof, F.-M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Cocultivating aerobic heterotrophs and purple bacteria for microbial protein in sequential photo- and chemotrophic reactors Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 319 Issue Pages 124192  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Aerobic heterotrophic bacteria (AHB) and purple non-sulfur bacteria (PNSB) are typically explored as two separate types of microbial protein, yet their properties as respectively a bulk and added-value feed ingredient make them appealing for combined use. The feasibility of cocultivation in a sequential photo- and chemotrophic approach was investigated. First, mapping the chemotrophic growth kinetics for four Rhodobacter, Rhodopseudomonas and Rhodospirillum species on different carbon sources showed a preference for fructose (µmax 2.4–3.9 d−1 28 °C; protein 36–59%DW). Secondly, a continuous photobioreactor inoculated with Rhodobacter capsulatus (VFA as C-source) delivered the starter culture for an aerobic batch reactor (fructose as C-source). This two-stage system showed an improved nutritional quality compared to AHB production: higher protein content (45–71%DW), more attractive amino/fatty acid profile and contained up to 10% PNSB. The findings strengthen protein production with cocultures and might enable the implementation of the technology for resource recovery on streams such as wastewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613136600013 Publication Date 2020-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:171766 Serial 7677  
Permanent link to this record
 

 
Author Hu, J.; Zhao, J.; Wang, D.; Li, X.; Zhang, D.; Xu, Q.; Peng, L.; Yang, Q.; Zeng, G. pdf  url
doi  openurl
  Title Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge Type A1 Journal article
  Year 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 254 Issue Pages 7-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this study, the impact of diclofenac (DCF), an antiinflammatory drug being extensively used in human health care and veterinary treatment, on the production of volatile fatty acids (VFAs) from anaerobic fermentation of waste activated sludge (WAS) was investigated for the first time. Experimental results showed that when DCF concentration increased from 2.5 to 25 mg/kg total suspended solid (TSS), the maximum production of VFAs increased from 599 to 1113 mg COD/L, but further increase of DCF to 47.5 mg/kg TSS decreased VFAs yield to 896 mg COD/L. The mechanism investigation revealed that DCF had no effect on the hydrolysis process, promoted the process of acidogenesis, acetogenesis, and homoacetogenesis, but severely inhibited methanogenesis, leading to the accumulation of VFAs. Microbial community analysis showed that the addition of DCF could promote the relative abundance of VFAs (especially acetic acid) producers, which was well consistent with the results obtained above.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426436100002 Publication Date 2018-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149849 Serial 7837  
Permanent link to this record
 

 
Author Ma, J.; Duong, T.H.; Smits, M.; Verstraete, W.; Carballa, M. pdf  doi
openurl 
  Title Enhanced biomethanation of kitchen waste by different pre-treatments Type A1 Journal article
  Year 2011 Publication Bioresource technology Abbreviated Journal  
  Volume 102 Issue 2 Pages 592-599  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Five different pre-treatments were investigated to enhance the solubilisation and anaerobic biodegradability of kitchen waste (

KW) in thermophilic batch and continuous tests. In the batch solubilisation tests, the highest and the lowest solubilisation efficiency were achieved with the thermo-acid and the pressuredepressure pre-treatments, respectively. However, in the batch biodegradability tests, the highest cumulative biogas production was obtained with the pressuredepressure method. In the continuous tests, the best performance in terms of an acceptable biogas production efficiency of 60% and stable in-reactor CODs and VFA concentrations corresponded to the pressuredepressure reactor, followed by freezethaw, acid, thermo-acid, thermo and control. The maximum OLR (5 g COD L−1 d−1) applied in the pressuredepressure and freezethaw reactors almost doubled the control reactor. From the overall analysis, the freezethaw pre-treatment was the most profitable process with a net potential profit of around 11.5 ton−1 KW.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286782700022 Publication Date 2010-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:85249 Serial 7910  
Permanent link to this record
 

 
Author Sui, Y.; Muys, M.; Van de Waal, D.; D'Adamo, S.; Vermeir, P.; Fernandes, T.V.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 287 Issue Pages 121398  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Microalga Dunaliella salina is known for its carotenogenesis. At the same time, it can also produce high-quality protein. The optimal conditions for D. salina to co-produce intracellular pools of both compounds, however, are yet unknown. This study investigated a two-phase cultivation strategy to optimize combined high-quality protein and carotenoid production of D. salina. In phase-one, a gradient of nitrogen concentrations was tested. In phase-two, effects of nitrogen pulse and high illumination were tested. Results reveal optimized protein quantity, quality (expressed as essential amino acid index EAAI) and carotenoids content in a two-phase cultivation, where short nitrogen starvation in phase-one was followed by high illumination during phase-two. Adopting this strategy, productivities of protein, EAA and carotenoids reached 22, 7 and 3 mg/L/d, respectively, with an EAAI of 1.1. The quality of this biomass surpasses FAO/WHO standard for human nutrition, and the observed level of β-carotene presents high antioxidant pro-vitamin A activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469414500008 Publication Date 2019-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:159661 Serial 7916  
Permanent link to this record
 

 
Author De Cocker, P.; Bessiere, Y.; Hernandez-Raquet, G.; Dubos, S.; Mozo, I.; Gaval, G.; Caligaris, M.; Barillon, B.; Vlaeminck, S.E.; Sperandio, M. pdf  url
doi  openurl
  Title Enrichment and adaptation yield high anammox conversion rates under low temperatures Type A1 Journal article
  Year 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 250 Issue Pages 505-512  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study compared two anammox sequencing batch reactors (SBR) for one year. SBRconstantT was kept at 30 °C while temperature in SBRloweringT was decreased step-wise from 30 °C to 20 °C and 15 °C followed by over 140 days at 12.5 °C and 10 °C. High retention of anammox bacteria (AnAOB) and minimization of competition with AnAOB were key. 5-L anoxic reactors with the same inoculum were fed synthetic influent containing 25.9 mg NH4+-N/L and 34.1 mg NO2−-N/L (no COD). Specific ammonium removal rates continuously increased in SBRconstantT, reaching 785 mg NH4+-N/gVSS/d, and were maintained in SBRloweringT, reaching 82.2 and 91.8 mg NH4+-N/gVSS/d at 12.5 and 10 °C respectively. AnAOB enrichment (increasing hzsA and 16S rDNA gene concentrations) and adaptation (shift from Ca. Brocadia to Ca. Kuenenia in SBRloweringT) contributed to these high rates. Rapidly settling granules developed, with average diameters of 1.2 (SBRconstantT) and 1.6 mm (SBRloweringT). Results reinforce the potential of anammox for mainstream applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430740000062 Publication Date 2017-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:148998 Serial 7920  
Permanent link to this record
 

 
Author Cagnetta, C.; Saerens, B.; Meerburg, F.A.; Decru, S.O.; Broeders, E.; Menkveld, W.; Vandekerckhove, T.G.L.; De Vrieze, J.; Vlaeminck, S.E.; Verliefde, A.R.D.; De Gusseme, B.; Weemaes, M.; Rabaey, K. pdf  url
doi  openurl
  Title High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 291 Issue Pages 121833  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) systems typically generate diluted sludge which requires further thickening prior to anaerobic digestion (AD), besides the need to add considerable coagulant and flocculant for the solids separation. As an alternative to conventional gravitational settling, a dissolved air flotation (DAF) unit was coupled to a HRAS system or a high-rate contact stabilization (HiCS) system. The HRAS-DAF system allowed up to 78% removal of the influent solids, and the HiCS-DAF 67%. Both were within the range of values typically obtained for HRAS-settler systems, albeit at a lower chemical requirement. The separated sludge had a high concentration of up to 47 g COD L−1, suppressing the need of further thickening before AD. Methanation tests showed a biogas yield of up to 68% on a COD basis. The use of a DAF separation system can thus enable direct organics removal at high sludge concentration and with low chemical needs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480326200048 Publication Date 2019-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:161098 Serial 8036  
Permanent link to this record
 

 
Author Muys, M.; Sui, Y.; Schwaiger, B.; Lesueur, C.; Vandenheuvel, D.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 275 Issue Pages 247-257  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Microalgal biomass production is a resource-efficient answer to the exponentially increasing demand for protein, yet variability in biomass quality is largely unexplored. Nutritional value and safety were determined for Chlorella and Spirulina biomass from different producers, production batches and the same production batch. Chlorella presented a similar protein content (47 ± 8%) compared to Spirulina (48 ± 4%). However, protein quality, expressed as essential amino acid index, and digestibility were lower for Chlorella (1.1 ± 0.1 and 51 ± 9%, respectively) compared to Spirulina (1.3 ± 0.1 and 61 ± 4%, respectively). Generally, variability was lower between batches and within a batch. Heavy metals, pesticides, mycotoxins, antibiotics and nitrate did not violate regulatory limits, while polycyclic aromatic hydrocarbon levels exceeded the norm for some samples, indicating the need for continuous monitoring. This first systematic screening of commercial microalgal biomass revealed a high nutritional variability, necessitating further optimization of cultivation and post-processing conditions. Based on price and quality, Spirulina was preferred above Chlorella.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456405000030 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155979 Serial 8040  
Permanent link to this record
 

 
Author Sakarika, M.; Kornaros, M. pdf  url
doi  openurl
  Title Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation : effect of different nutrient limitation strategies Type A1 Journal article
  Year 2017 Publication Bioresource technology Abbreviated Journal  
  Volume 243 Issue Pages 356-365  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The present study aimed at: (1) determining the effect of sulfur addition on biomass growth and (2) assessing the effect of sulfur, phosphorus and nitrogen limitation on lipid accumulation by C. vulgaris SAG 211-11b. The sulfur cellular content was more than two-fold higher under nitrogen and phosphorus limitation (0.52% and 0.54% w w(-1), respectively) compared to sulfur requirements (0.20% w w(-1)) under sulfur limiting conditions. The nitrogen needs are significantly lower (2.81-3.35% w w(-1)) when compared to other microalgae and become 23% lower under nitrogen or phosphorus limitation. The microalga exhibited substrate inhibition above 30 g L-1 initial glucose concentration. Sulfur limitation had the most significant effect on lipid accumulation, resulting in maximum total lipid content of 53.43 +/- 3.93% g g(DW)(1). In addition to enhancing lipid productivity, adopting the optimal nutrient limitation strategy can result in cost savings by avoiding unnecessary nutrient additions and eliminate the environmental burden due to wasted resources. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411239300042 Publication Date 2017-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:146663 Serial 8139  
Permanent link to this record
 

 
Author Sui, Y.; Muys, M.; Vermeir, P.; D'Adamo, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 275 Issue Pages 145-152  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The microalga Dunaliella salina has been widely studied for carotenogenesis, yet its protein production for human nutrition has rarely been reported. This study unveils the effects of growth phase and light regime on protein and essential amino acid (EAA) levels in D. salina. Cultivation under 24-h continuous light was compared to 12-h/12-h light/dark cycle. The essential amino acid index (EAAI) of D. salina showed accumulating trends up to 1.53 in the stationary phase, surpassing FAO/WHO standard for human nutrition. Light/dark conditions inferred a higher light-usage efficiency, yielding 597% higher protein and 1828% higher EAA mass on light energy throughout the growth, accompanied by 138% faster growth during the light phase of the light/dark cycle, compared to continuous light. The findings revealed D. salina to be especially suitable for high-quality protein production, particularly grown under light/dark conditions, with nitrogen limitation as possible trigger, and harvested in the stationary phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456405000018 Publication Date 2018-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155981 Serial 8173  
Permanent link to this record
 

 
Author Spanoghe, J.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Microbial food from light, carbon dioxide and hydrogen gas : kinetic, stoichiometric and nutritional potential of three purple bacteria Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 337 Issue Pages 125364  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The urgency for a protein transition towards more sustainable solutions is one of the major societal challenges. Microbial protein is one of the alternative routes, in which land- and fossil-free production should be targeted. The photohydrogenotrophic growth of purple bacteria, which builds on the H2– and CO2-economy, is unexplored for its microbial protein potential. The three tested species (Rhodobacter capsulatus, Rhodobacter sphaeroides and Rhodopseudomonas palustris) obtained promising growth rates (2.3–2.7 d−1 at 28°C) and protein productivities (0.09–0.12 g protein L−1 d−1), rendering them likely faster and more productive than microalgae. The achieved protein yields (2.6–2.9 g protein g−1 H2) transcended the ones of aerobic hydrogen oxidizing bacteria. Furthermore, all species provided full dietary protein matches for humans and their fatty acid content was dominated by vaccenic acid (82–86%). Given its kinetic and nutritional performance we recommend to consider Rhodobacter capsulatus as a high-potential sustainable source of microbial food.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694862500007 Publication Date 2021-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:178752 Serial 8243  
Permanent link to this record
 

 
Author Coppens, J.; Lindeboom, R.; Muys, M.; Coessens, W.; Alloul, A.; Meerbergen, K.; Lievens, B.; Clauwaert, P.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine Type A1 Journal article
  Year 2016 Publication Bioresource technology Abbreviated Journal  
  Volume 211 Issue Pages 41-50  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine contains the majority of nutrients in urban wastewaters and is an ideal nutrient recovery target. In this study, stabilization of real undiluted urine through nitrification and subsequent microalgae cultivation were explored as strategy for biological nutrient recovery. A nitrifying inoculum screening revealed a commercial aquaculture inoculum to have the highest halotolerance. This inoculum was compared with municipal activated sludge for the start-up of two nitrification membrane bioreactors. Complete nitrification of undiluted urine was achieved in both systems at a conductivity of 75 mS cm−1 and loading rate above 450 mg N L−1 d−1. The halotolerant inoculum shortened the start-up time with 54%. Nitrite oxidizers showed faster salt adaptation and Nitrobacter spp. became the dominant nitrite oxidizers. Nitrified urine as growth medium for Arthrospira platensis demonstrated superior growth compared to untreated urine and resulted in a high protein content of 62%. This two-stage strategy is therefore a promising approach for biological nutrient recovery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375186700006 Publication Date 2016-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139913 Serial 8307  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: