toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chakraborty, J.; Chatterjee, A.; Molkens, K.; Nath, I.; Arenas Esteban, D.; Bourda, L.; Watson, G.; Liu, C.; Van Thourhout, D.; Bals, S.; Geiregat, P.; Van der Voort, P. pdf  url
doi  openurl
  Title Decoding Excimer Formation in Covalent–Organic Frameworks Induced by Morphology and Ring Torsion Type A1 Journal Article
  Year 2024 Publication Advanced Materials Abbreviated Journal Advanced Materials  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract A thorough and quantitative understanding of the fate of excitons in covalent–organic frameworks (COFs) after photoexcitation is essential for their augmented optoelectronic and photocatalytic applications via precise structure tuning. The synthesis of a library of COFs having identical chemical backbone with impeded conjugation, but varied morphology and surface topography to study the effect of these physical properties on the photophysics of the materials is herein reported. The variation of crystallite size and surface topography substantified different aggregation pattern in the COFs, which leads to disparities in their photoexcitation and relaxation properties. Depending on aggregation, an inverse correlation between bulk luminescence decay time and exciton binding energy of the materials is perceived. Further transient absorption spectroscopic analysis confirms the presence of highly localized, immobile, Frenkel excitons (of diameter 0.3–0.5 nm) via an absence of annihilation at high density, most likely induced by structural torsion of the COF skeletons, which in turn preferentially relaxes via long‐lived (nanosecond to microsecond) excimer formation (in femtosecond scale) over direct emission. These insights underpin the importance of structural and topological design of COFs for their targeted use in photocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001206226700001 Publication Date 2024-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 29.4 Times cited Open Access  
  Notes PVDV, JC, AC, and IN acknowledge the FWO-Vlaanderen for research grant G020521N and the research board of UGent (BOF) through a Concerted Research Action (GOA010-17). JC acknowledges UGent for BOF postdoctoral grant (2022.0032.01). AC acknowledges FWO- Vlaanderen for postdoctoral grant (12T7521N). KM, DVT and PG acknowledges FWO- Vlaanderen for research grant G0B2921N. SB and DAE acknowledge financial support from ERC Consolidator Grant Number 815128 REALNANO. CHL acknowledges China Scholarship Council doctoral grant (201908110280). PVDV acknowledges Hercules Project AUGE/17/07 for the UV VIS DRS spectrometer and UGent BASBOF BOF20/BAS/015 for the powder X-Ray Diffractometer. PG thanks UGent for support of the Core Facility NOLIMITS. Approved Most recent IF: 29.4; 2024 IF: 19.791  
  Call Number EMAT @ emat @c:irua:205967 Serial 9118  
Permanent link to this record
 

 
Author Chakraborty, J.; Chatterjee, A.; Molkens, K.; Nath, I.; Arenas Esteban, D.; Bourda, L.; Watson, G.; Liu, C.; Van Thourhout, D.; Bals, S.; Geiregat, P.; Van der Voort, P. pdf  url
doi  openurl
  Title Decoding Excimer Formation in Covalent–Organic Frameworks Induced by Morphology and Ring Torsion Type A1 Journal Article
  Year 2024 Publication Advanced Materials Abbreviated Journal Advanced Materials  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract A thorough and quantitative understanding of the fate of excitons in covalent–organic frameworks (COFs) after photoexcitation is essential for their augmented optoelectronic and photocatalytic applications via precise structure tuning. The synthesis of a library of COFs having identical chemical backbone with impeded conjugation, but varied morphology and surface topography to study the effect of these physical properties on the photophysics of the materials is herein reported. The variation of crystallite size and surface topography substantified different aggregation pattern in the COFs, which leads to disparities in their photoexcitation and relaxation properties. Depending on aggregation, an inverse correlation between bulk luminescence decay time and exciton binding energy of the materials is perceived. Further transient absorption spectroscopic analysis confirms the presence of highly localized, immobile, Frenkel excitons (of diameter 0.3–0.5 nm) via an absence of annihilation at high density, most likely induced by structural torsion of the COF skeletons, which in turn preferentially relaxes via long‐lived (nanosecond to microsecond) excimer formation (in femtosecond scale) over direct emission. These insights underpin the importance of structural and topological design of COFs for their targeted use in photocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001206226700001 Publication Date 2024-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 29.4 Times cited Open Access  
  Notes PVDV, JC, AC, and IN acknowledge the FWO-Vlaanderen for research grant G020521N and the research board of UGent (BOF) through a Concerted Research Action (GOA010-17). JC acknowledges UGent for BOF postdoctoral grant (2022.0032.01). AC acknowledges FWOVlaanderen for postdoctoral grant (12T7521N). KM, DVT and PG acknowledges FWOVlaanderen for research grant G0B2921N. SB and DAE acknowledge financial support from ERC Consolidator Grant Number 815128 REALNANO. CHL acknowledges China Scholarship Council doctoral grant (201908110280). PVDV acknowledges Hercules Project AUGE/17/07 for the UV VIS DRS spectrometer and UGent BASBOF BOF20/BAS/015 for the powder X-Ray Diffractometer. PG thanks UGent for support of the Core Facility NOLIMITS. Approved Most recent IF: 29.4; 2024 IF: 19.791  
  Call Number EMAT @ emat @c:irua:205967 Serial 9130  
Permanent link to this record
 

 
Author Xu, H.; Li, H.; Gauquelin, N.; Chen, X.; Wu, W.-F.; Zhao, Y.; Si, L.; Tian, D.; Li, L.; Gan, Y.; Qi, S.; Li, M.; Hu, F.; Sun, J.; Jannis, D.; Yu, P.; Chen, G.; Zhong, Z.; Radovic, M.; Verbeeck, J.; Chen, Y.; Shen, B. pdf  doi
openurl 
  Title Giant tunability of Rashba splitting at cation-exchanged polar oxide interfaces by selective orbital hybridization Type A1 Journal article
  Year 2024 Publication Advanced materials Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The 2D electron gas (2DEG) at oxide interfaces exhibits extraordinary properties, such as 2D superconductivity and ferromagnetism, coupled to strongly correlated electrons in narrow d-bands. In particular, 2DEGs in KTaO3 (KTO) with 5d t2g orbitals exhibit larger atomic spin-orbit coupling and crystal-facet-dependent superconductivity absent for 3d 2DEGs in SrTiO3 (STO). Herein, by tracing the interfacial chemistry, weak anti-localization magneto-transport behavior, and electronic structures of (001), (110), and (111) KTO 2DEGs, unambiguously cation exchange across KTO interfaces is discovered. Therefore, the origin of the 2DEGs at KTO-based interfaces is dramatically different from the electronic reconstruction observed at STO interfaces. More importantly, as the interface polarization grows with the higher order planes in the KTO case, the Rashba spin splitting becomes maximal for the superconducting (111) interfaces approximately twice that of the (001) interface. The larger Rashba spin splitting couples strongly to the asymmetric chiral texture of the orbital angular moment, and results mainly from the enhanced inter-orbital hopping of the t2g bands and more localized wave functions. This finding has profound implications for the search for topological superconductors, as well as the realization of efficient spin-charge interconversion for low-power spin-orbitronics based on (110) and (111) KTO interfaces. An unambiguous cation exchange is discovered across the interfaces of (001), (110), and (111) KTaO3 2D electron gases fabricated at room temperature. Remarkably, the (111) interfaces with the highest superconducting transition temperature also turn out to show the strongest electron-phonon interaction and the largest Rashba spin splitting. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001219658400001 Publication Date 2024-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:206037 Serial 9152  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D. pdf  url
doi  openurl
  Title Advanced electron microscopy for advanced materials Type A1 Journal article
  Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue 42 Pages 5655-5675  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000310602200001 Publication Date 2012-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 107 Open Access  
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70  
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Salje, E.K.H. pdf  doi
openurl 
  Title Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy Type A1 Journal article
  Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue 4 Pages 523-527  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High-resolution aberration-corrected transmission electron microscopy aided by statistical parameter estimation theory is used to quantify localized displacements at a (110) twin boundary in orthorhombic CaTiO3. The displacements are 36 pm for the Ti atoms and confined to a thin layer. This is the first direct observation of the generation of ferroelectricity by interfaces inside this material which opens the door for domain boundary engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000299156400011 Publication Date 2011-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 150 Open Access  
  Notes Fwo Approved Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:94110 Serial 717  
Permanent link to this record
 

 
Author Figuerola, A.; Franchini, I.R.; Fiore, A.; Mastria, R.; Falqui, A.; Bertoni, G.; Bals, S.; Van Tendeloo, G.; Kudera, S.; Cingolani, R.; Manna, L. pdf  doi
openurl 
  Title End-to-end assembly of shape-controlled nanocrystals via a nanowelding approach mediated by gold domains Type A1 Journal article
  Year 2009 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 21 Issue 5 Pages 550-554  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Welding nanocrystals for assembly: The welding of Au domains grown on the tips of shape-controlled cadmium chalcogenide colloidal nanocrystals is used as a strategy for their assembly. Iodine-induced coagulation of selectively grown Au domains leads to assemblies such as flowerlike structures based on bullet-shaped nanocrystals, linear and cross-linked chains of nanorods, and globular networks with tetrapods as building blocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000263371800005 Publication Date 2008-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 110 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 19.791; 2009 IF: 8.379  
  Call Number UA @ lucian @ c:irua:75960 Serial 1037  
Permanent link to this record
 

 
Author Breynaert, E.; Emmerich, J.; Mustafa, D.; Bajpe, S.R.; Altantzis, T.; Van Havenbergh, K.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Kirschhock, C.E.A.; Martens, J.A.; pdf  url
doi  openurl
  Title Enhanced self-assembly of metal oxides and metal-organic frameworks from precursors with magnetohydrodynamically induced long-lived collective spin states Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 30 Pages 5173-5178  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Magneto-hydrodynamic generation of long-lived collective spin states and their impact on crystal morphology is demonstrated for three different, technologically relevant materials: COK-16 metal organic framework, manganese oxide nanotubes, and vanadium oxide nano-scrolls.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000340546300015 Publication Date 2014-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 7 Open Access OpenAccess  
  Notes IAP-PAI; Marie Curie IEF; 262348 ESMI; 335078 COLOURATOM; 246791 COUNTATOMS; IWT; Methusalem; FWO; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:118827 Serial 1053  
Permanent link to this record
 

 
Author Zhang, G.; Turner, S.; Ekimov, E.A.; Vanacken, J.; Timmermans, M.; Samuely, T.; Sidorov, V.A.; Stishov, S.M.; Lu, Y.; Deloof, B.; Goderis, B.; Van Tendeloo, G.; Van de Vondel, J.; Moshchalkov, V.V.; pdf  doi
openurl 
  Title Global and local superconductivity in boron-doped granular diamond Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 13 Pages 2034-2040  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000333616700008 Publication Date 2013-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 34 Open Access  
  Notes Methusalem Funding; FWO projects; MP1201 COST Action; ERC Grant N246791-COUNTATOMS; post-doctoral grant (S.T.) and for project no. G.0568.10N.;Hercules Foundation Approved Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:116150 Serial 1346  
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Karkin, A.E.; Morozova, N.V.; Shchennikov, V.V.; Bykova, E.; Abakumov, A.M.; Tsirlin, A.A.; Glazyrin, K.V.; Dubrovinsky, L. pdf  url
doi  openurl
  Title A hard oxide semiconductor with a direct and narrow bandgap and switchable pn electrical conduction Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 48 Pages 8185-8191  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract An oxide semiconductor (perovskite-type Mn2O3) is reported which has a narrow and direct bandgap of 0.45 eV and a high Vickers hardness of 15 GPa. All the known materials with similar electronic band structures (e.g., InSb, PbTe, PbSe, PbS, and InAs) play crucial roles in the semiconductor industry. The perovskite-type Mn2O3 described is much stronger than the above semiconductors and may find useful applications in different semiconductor devices, e.g., in IR detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000346480800016 Publication Date 2014-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 27 Open Access  
  Notes Approved Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:122230 Serial 1408  
Permanent link to this record
 

 
Author Verbeeck, J.; Tian, H.; Van Tendeloo, G. pdf  doi
openurl 
  Title How to manipulate nanoparticles with an electron beam? Type A1 Journal article
  Year 2013 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 25 Issue 8 Pages 1114-1117  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000315102600003 Publication Date 2012-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 75 Open Access  
  Notes FWO; VORTEX; Countatoms ECASJO_; Approved Most recent IF: 19.791; 2013 IF: 15.409  
  Call Number UA @ lucian @ c:irua:105287UA @ admin @ c:irua:105287 Serial 1494  
Permanent link to this record
 

 
Author Tian, H.; Verbeeck, J.; Brück, S.; Paul, M.; Kufer, D.; Sing, M.; Claessen, R.; Van Tendeloo, G. pdf  doi
openurl 
  Title Interface-induced modulation of charge and polarization in thin film Fe3O4 Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 3 Pages 461-465  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Charge and polarization modulations in Fe3O4 are controlled by taking advantage of interfacial strain effects. The feasibility of oxidation state control by strain modification is demonstrated and it is shown that this approach offers a stable configuration at room temperature. Direct evidence of how a local strain field changes the atomic coordination and introduces atomic displacements leading to polarization of Fe ions is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000334289300011 Publication Date 2013-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 15 Open Access  
  Notes Vortex; FWO; Countatoms; Hercules ECASJO_; Approved Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:112419UA @ admin @ c:irua:112419 Serial 1694  
Permanent link to this record
 

 
Author Li, M.R.; Croft, M.; Stephens, P.W.; Ye, M.; Vanderbilt, D.; Retuerto, M.; Deng, Z.; Grams, C.P.; Hemberger, J.; Hadermann, J.; Li, W.M.; Jin, C.Q.; Saouma, F.O.; Jang, J.I.; Akamatsu, H.; Gopalan, V.; Walker, D.; Greenblatt, M.; pdf  doi
openurl 
  Title Mn2FeWO6 : a new Ni3TeO6-type polar and magnetic oxide Type A1 Journal article
  Year 2015 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 27 Issue 27 Pages 2177-2181  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Mn22+Fe2+W6+O6, a new polar magnetic phase, adopts the corundum-derived Ni3TeO6-type structure with large spontaneous polarization (P-S) of 67.8 mu C cm-2, complex antiferromagnetic order below approximate to 75 K, and field-induced first-order transition to a ferrimagnetic phase below approximate to 30 K. First-principles calculations predict a ferrimagnetic (udu) ground state, optimal switching path along the c-axis, and transition to a lower energy udu-udd magnetic double cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000352548900004 Publication Date 2015-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 32 Open Access  
  Notes Approved Most recent IF: 19.791; 2015 IF: 17.493  
  Call Number c:irua:126002 Serial 3545  
Permanent link to this record
 

 
Author Idrissi, H.; Wang, B.; Colla, M.S.; Raskin, J.P.; Schryvers, D.; Pardoen, T. pdf  doi
openurl 
  Title Ultrahigh strain hardening in thin palladium films with nanoscale twins Type A1 Journal article
  Year 2011 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 23 Issue 18 Pages 2119-2122  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline Pd thin films containing coherent growth twin boundaries are deformed using on-chip nanomechanical testing. A large work-hardening capacity is measured. The origin of the observed behavior is unraveled using transmission electron microscopy and shows specific dislocations and twin boundaries interactions. The results indicate the potential for large strength and ductility balance enhancement in Pd films, as needed in membranes for H technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000291164200013 Publication Date 2011-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 57 Open Access  
  Notes Iap Approved Most recent IF: 19.791; 2011 IF: 13.877  
  Call Number UA @ lucian @ c:irua:90103 Serial 3794  
Permanent link to this record
 

 
Author Doenen, M.; Zhang, L.; Erni, R.; Williams, O.A.; Hardy, A.; van Bael, M.K.; Wagner, P.; Haenen, K.; Nesladek, M.; Van Tendeloo, G. pdf  doi
openurl 
  Title Diamond nucleation by carbon transport from buried nanodiamond TiO2 sol-gel composites Type A1 Journal article
  Year 2009 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 21 Issue 6 Pages 670-673  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000263492000007 Publication Date 2008-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 20 Open Access  
  Notes Fwo; Iap-P6/42; Esteem 026019 Approved Most recent IF: 19.791; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:76329 Serial 688  
Permanent link to this record
 

 
Author Vlasov, I.L.; Lebedev, O.I.; Ralchenko, V.G.; Goovaerts, E.; Bertoni, G.; Van Tendeloo, G.; Konov, V.I. pdf  doi
openurl 
  Title Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition Type A1 Journal article
  Year 2007 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 19 Issue 22 Pages 4058-4062  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Nanostructured and organic optical and electronic materials (NANOrOPT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000251383900055 Publication Date 2007-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 75 Open Access  
  Notes Approved Most recent IF: 19.791; 2007 IF: NA  
  Call Number UA @ lucian @ c:irua:66983 Serial 1518  
Permanent link to this record
 

 
Author Vlasov, I.I.; Barnard, A.S.; Ralchenko, V.G.; Lebedev, O.I.; Kanzyuba, M.V.; Saveliev, A.V.; Konov, V.I.; Goovaerts, E. pdf  doi
openurl 
  Title Nanodiamond photoemitters based on strong narrow-band luminescence from silicon-vacancy defects Type A1 Journal article
  Year 2009 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 21 Issue 7 Pages 808-812  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Nanostructured and organic optical and electronic materials (NANOrOPT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000263737800012 Publication Date 2008-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 98 Open Access  
  Notes Approved Most recent IF: 19.791; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:74513 Serial 2253  
Permanent link to this record
 

 
Author Bals, S.; Van Tendeloo, G.; Kisielowski, C. pdf  doi
openurl 
  Title A new approach for electron tomography: annular dark-field transmission electron microscopy Type A1 Journal article
  Year 2006 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 18 Issue 7 Pages 892-895  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Annular dark-field transmission electron microscopy uses an annular objective aperture that blocks the central beam and all electrons scattered up to a certain serniangle. A contrast suitable for electron tomography is generated and 3D reconstructions of CdTe tetrapods and C nanotubes (see figure) are successfully obtained. With short exposure times and high contrast, the technique could be useful not only for materials science, but also for biological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000236950500013 Publication Date 2006-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 53 Open Access  
  Notes Fwo Approved Most recent IF: 19.791; 2006 IF: NA  
  Call Number UA @ lucian @ c:irua:58258 Serial 2306  
Permanent link to this record
 

 
Author Yang, X.-Y.; Li, Y.; Van Tendeloo, G.; Xiao, F.-S.; Su, B.-L. pdf  doi
openurl 
  Title One-pot synthesis of catalytically stable and active nanoreactors: encapsulation of size-controlled nanoparticles within a hierarchically macroporous core@ordered mesoporous shell system Type A1 Journal article
  Year 2009 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 21 Issue 13 Pages 1368-1372  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Size-controlled, catalytically active nanoparticles are successfully encapsulated in a one-pot synthesis to form novel hierarchical macroporous core@mesoporous shell structures, where macroporous cores are connected by uniform and ordered mesoporous channels. Most importantly, the encapsulated nanoparticles can be used as nanoreactors, with high activities and excellent long-term recycling stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000265432700011 Publication Date 2009-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 61 Open Access  
  Notes Iap Approved Most recent IF: 19.791; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:77316 Serial 2466  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Amelinckx, S. pdf  doi
openurl 
  Title Structural studies on superconducting materials and fullerites by electron microscopy Type A1 Journal article
  Year 1993 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 5 Issue 9 Pages 620-629  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos A1993LW20600003 Publication Date 2004-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.493 Times cited 2 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:6838 Serial 3262  
Permanent link to this record
 

 
Author Pauwels, B.; Van Tendeloo, G.; Thoelen, C.; van Rhijn, W.; Jacobs, P.A. doi  openurl
  Title Structure determination of spherical MCM-41 particles Type A1 Journal article
  Year 2001 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 13 Issue 17 Pages 1317-1320  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000170921100008 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 91 Open Access  
  Notes Approved Most recent IF: 19.791; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:54809 Serial 3300  
Permanent link to this record
 

 
Author Leroux, F.; Gysemans, M.; Bals, S.; Batenburg, K.J.; Snauwaert, J.; Verbiest, T.; van Haesendonck, C.; Van Tendeloo, G. pdf  doi
openurl 
  Title Three-dimensional characterization of helical silver nanochains mediated by protein assemblies Type A1 Journal article
  Year 2010 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 22 Issue 19 Pages 2193-2197  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Characterization methods for the structural investigation of biotemplates for nanodevices remain widely unexplored, despite the fact that biotemplating methods for nanodevice fabrication are becoming more widespread. In this study several techniques are used to characterize the morphology and 3D distribution of silver nanoparticles deposited on insulin fibrils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000278601400016 Publication Date 2010-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 51 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 19.791; 2010 IF: NA  
  Call Number UA @ lucian @ c:irua:83296 Serial 3645  
Permanent link to this record
 

 
Author Kremer, S.P.B.; Kirschhock, C.E.A.; Aerts, A.; Villani, K.; Martens, J.A.; Lebedev, O.I.; Van Tendeloo, G. pdf  doi
openurl 
  Title Tiling silicalite-1 nanoslabs into 3D mosaics Type A1 Journal article
  Year 2003 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 15 Issue 20 Pages 1705-1707  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000186425600003 Publication Date 2003-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 82 Open Access  
  Notes Approved Most recent IF: 19.791; 2003 IF: NA  
  Call Number UA @ lucian @ c:irua:54810 Serial 3662  
Permanent link to this record
 

 
Author Roesler, C.; Aijaz, A.; Turner, S.; Filippousi, M.; Shahabi, A.; Xia, W.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A. pdf  doi
openurl 
  Title Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk-Shell Metal@Zn/Co ZIF nanostructures Type A1 Journal article
  Year 2016 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 22 Issue 22 Pages 3304-3311  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal-organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well-defined hollow Zn/Co-based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn-MOF (ZIF-8) on preformed Co-MOF (ZIF-67) nanocrystals that involve in situ self-sacrifice/excavation of the Co-MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co-ZIF shells to generate yolk-shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co-ZIF with dominance of the Zn-MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000371419200001 Publication Date 2016-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 43 Open Access  
  Notes Approved Most recent IF: 5.317  
  Call Number UA @ lucian @ c:irua:132347 Serial 4192  
Permanent link to this record
 

 
Author Sun, Z.; Madej, E.; Wiktor; Sinev, I.; Fischer, R.A.; Van Tendeloo, G.; Muhler, M.; Schuhmann, W.; Ventosa, E. pdf  doi
openurl 
  Title One-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene for lithium-ion batteries Type A1 Journal article
  Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 21 Issue 21 Pages 16154-16161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanostructure engineering has been demonstrated to improve the electrochemical performance of iron oxide based electrodes in Li-ion batteries (LIBs). However, the synthesis of advanced functional materials often requires multiple steps. Herein, we present a facile one-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene through high-pressure pyrolysis of ferrocene in the presence of pristine graphene. The ferrocene precursor supplies both iron and carbon to form the carbon-coated iron oxide, while the graphene acts as a high-surface-area anchor to achieve small metal oxide nanoparticles. When evaluated as a negative-electrode material for LIBs, our composite showed improved electrochemical performance compared to commercial iron oxide nanopowders, especially at fast charge/discharge rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000363890700036 Publication Date 2015-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 8 Open Access  
  Notes Approved Most recent IF: 5.317; 2015 IF: 5.731  
  Call Number UA @ lucian @ c:irua:129510 Serial 4218  
Permanent link to this record
 

 
Author Roesler, C.; Dissegna, S.; Rechac, V.L.; Kauer, M.; Guo, P.; Turner, S.; Ollegott, K.; Kobayashi, H.; Yamamoto, T.; Peeters, D.; Wang, Y.; Matsumura, S.; Van Tendeloo, G.; Kitagawa, H.; Muhler, M.; Llabres i Xamena, F.X.; Fischer, R.A. pdf  doi
openurl 
  Title Encapsulation of bimetallic metal nanoparticles into robust zirconium-based metal-organic frameworks : evaluation of the catalytic potential for size-selective hydrogenation Type A1 Journal article
  Year 2017 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 23 Issue 15 Pages 3583-3594  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The realization of metal nanoparticles (NPs) with bimetallic character and distinct composition for specific catalytic applications is an intensively studied field. Due to the synergy between metals, most bimetallic particles exhibit unique properties that are hardly provided by the individual monometallic counterparts. However, as small-sized NPs possess high surface energy, agglomeration during catalytic reactions is favored. Sufficient stabilization can be achieved by confinement of NPs in porous support materials. In this sense, metal-organic frameworks (MOFs) in particular have gained a lot of attention during the last years; however, encapsulation of bimetallic species remains challenging. Herein, the exclusive embedding of preformed core-shell PdPt and RuPt NPs into chemically robust Zr-based MOFs is presented. Microstructural characterization manifests partial retention of the core-shell systems after successful encapsulation without harming the crystallinity of the microporous support. The resulting chemically robust NP@UiO-66 materials exhibit enhanced catalytic activity towards the liquid-phase hydrogenation of nitrobenzene, competitive with commercially used Pt on activated carbon, but with superior size-selectivity for sterically varied substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000397502900010 Publication Date 2016-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 13 Open Access Not_Open_Access  
  Notes ; This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (DFG). ; Approved Most recent IF: 5.317  
  Call Number UA @ lucian @ c:irua:142485 Serial 4653  
Permanent link to this record
 

 
Author Canossa, S.; Gonzalez-Nelson, A.; Shupletsov, L.; Carmen Martin, M.; Van der Veen, M.A. url  doi
openurl 
  Title Overcoming Crystallinity Limitations of Aluminium Metal-Organic Frameworks by Oxalic Acid Modulated Synthesis Type A1 Journal article
  Year 2020 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J  
  Volume 26 Issue 16 Pages 3564-3570  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A modulated synthesis approach based on the chelating properties of oxalic acid (H2C2O4) is presented as a robust and versatile method to achieve highly crystalline Al‐based metal‐organic frameworks. A comparative study on this method and the already established modulation by hydrofluoric acid was conducted using MIL‐53 as test system. The superior performance of oxalic acid modulation in terms of crystallinity and absence of undesired impurities is explained by assessing the coordination modes of the two modulators and the structural features of the product. The validity of our approach was confirmed for a diverse set of Al‐MOFs, namely X‐MIL‐53 (X=OH, CH3O, Br, NO2), CAU‐10, MIL‐69, and Al(OH)ndc (ndc=1,4‐naphtalenedicarboxylate), highlighting the potential benefits of extending the use of this modulator to other coordination materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000517650300001 Publication Date 2020-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited Open Access OpenAccess  
  Notes The Elettra Synchrotron facility (CNR Trieste, Basovizza, Italy) is acknowledged for granting beamtime at the single-crystal diffraction beamline XRD1 (Proposal ID 20185483) and the beamline staff is gratefully thanked for the precious assistance. This work was funded by the European Research Council (grant number 759 212) within the Horizon 2020 Framework Programme (H2020-EU.1.1). The work by A.G.-N. forms part of the research programme of DPI, NEWPOL project 731.015.506. Approved Most recent IF: 4.3; 2020 IF: 5.317  
  Call Number EMAT @ emat @c:irua:167706 Serial 6388  
Permanent link to this record
 

 
Author Borah, R.; Ninakanti, R.; Nuyts, G.; Peeters, H.; Pedrazo-Tardajos, A.; Nuti, S.; Vande Velde, C.; De Wael, K.; Lenaerts, S.; Bals, S.; Verbruggen, S. pdf  url
doi  openurl
  Title Selectivity in ligand functionalization of photocatalytic metal oxide nanoparticles for phase transfer and self‐assembly applications Type A1 Journal article
  Year 2021 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J  
  Volume Issue Pages chem.202100029-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Functionalization of photocatalytic metal oxide nanoparticles of TiO 2 , ZnO, WO 3 and CuO with amine‐terminated (oleylamine) and thiol‐terminated (1‐dodecanethiol) alkyl chained ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO 2 and WO 3 , while 1‐dodecanethiol binds stably only to ZnO and CuO. Similarly, polar to non‐polar solvent phase transfer of TiO 2 and WO 3 nanoparticles could be achieved by using oleylamine, but not by 1‐dodecanethiol, while the contrary holds for ZnO and CuO. The surface chemistry of ligand functionalized nanoparticles was probed by ATR‐FTIR spectroscopy, that enabled to elucidate the occupation of the ligands at the active sites. The photo‐stability of the ligands on the nanoparticle surface was determined by the photocatalytic self‐cleaning properties of the material. While TiO 2 and WO 3 degrade the ligands within 24 hours under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, since the ligand functionalized nanoparticles are hydrophobic in nature, they can thus be self‐assembled at the air‐water interface, for obtaining nanoparticle films with demonstrated photocatalytic as well as anti‐fogging properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652651400001 Publication Date 2021-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 15 Open Access OpenAccess  
  Notes R.B. and S.W.V. acknowledge financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Program by means of the grant agreement no. 731019 EUSMI and the ERC Consolidator grant no. 815128 REALNANO.; sygmaSB Approved Most recent IF: 5.317  
  Call Number UA @ admin @ c:irua:177495 Serial 6787  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Kavak, S.; Bals, S.; Meynen, V. pdf  url
doi  openurl
  Title Modifying the Stöber Process: Is the Organic Solvent Indispensable? Type A1 Journal Article
  Year 2022 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The Stöber method is one of the most important and fundamental processes for the synthesis of inorganic (nano)materials but has the drawback of using a large amount of organic solvent. Herein, ethanol was used as an example to explore if the organic solvent in a typical Stöber method can be omitted. It was found that ethanol increases the particle size of the obtained silica spheres and aids the formation of uniform silica particles rather than forming a gel. Nevertheless, the results indicated that an organic solvent in the initial synthesis mixture is not indispensable. An initially immiscible synthesis method was discovered, which can replace the organic solvent-based Stöber method to successfully synthesize silica particles with the same size ranges as the original Stöber process without addition of organic solvents. Moreover, this process can be of further value for the extension to synthesis processes of other materials based on the Stöber process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000898283500001 Publication Date 2022-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited 3 Open Access OpenAccess  
  Notes The authors are grateful to Alexander Vansant and Dr. Steven Mullens of VITO for their contributions to the DLS measurements in this paper. J.W acknowledges the State Scholarship funded by the China Scholarship Council (201806060123). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). S.K acknowledges the Flemish Fund for Scientific Research (FWO Flanders) through a PhD research grant (1181122N). Approved Most recent IF: 4.3  
  Call Number EMAT @ emat @c:irua:191646 Serial 7233  
Permanent link to this record
 

 
Author Lelouche, S.N.K.; Lemir, I.; Biglione, C.; Craig, T.; Bals, S.; Horcajada, P. url  doi
openurl 
  Title AuNP/MIL-88B-NH₂ nanocomposite for the valorization of nitroarene by green catalytic hydrogenation Type A1 Journal article
  Year 2024 Publication Chemistry: a European journal Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The efficiency of a catalytic process is assessed based on conversion, yield, and time effectiveness. However, these parameters are insufficient for evaluating environmentally sustainable research. As the world is urged to shift towards green catalysis, additional factors such as reaction media, raw material availability, sustainability, waste minimization and catalyst biosafety, need to be considered to accurately determine the efficacy and sustainability of the process. By combining the high porosity and versatility of metal organic frameworks (MOFs) and the activity of gold nanoparticles (AuNPs), efficient, cyclable and biosafe composite catalysts can be achieved. Thus, a composite based on AuNPs and the nanometric flexible porous iron(III) aminoterephthalate MIL-88B-NH2 was successfully synthesized and fully characterized. This nanocomposite was tested as catalyst in the reduction of nitroarenes, which were identified as anthropogenic water pollutants, reaching cyclable high conversion rates at short times for different nitroarenes. Both synthesis and catalytic reactions were performed using green conditions, and even further tested in a time-optimizing one-pot synthesis and catalysis experiment. The sustainability and environmental impact of the catalytic conditions were assessed by green metrics. Thus, this study provides an easily implementable synthesis, and efficient catalysis, while minimizing the environmental and health impact of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001204094600001 Publication Date 2024-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0947-6539 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:205426 Serial 9135  
Permanent link to this record
 

 
Author Kirschhock, C.E.A.; Kremer, S.P.B.; Vermant, J.; Van Tendeloo, G.; Jacobs, P.A.; Martens, J.A. doi  openurl
  Title Design and synthesis of hierarchical materials from ordered zeolitic building units Type A1 Journal article
  Year 2005 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 11 Issue 15 Pages 4306-4313  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000230761400001 Publication Date 2005-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 93 Open Access  
  Notes Approved Most recent IF: 5.317; 2005 IF: 4.907  
  Call Number UA @ lucian @ c:irua:60019 Serial 658  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: