toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Drăgan, A.-M.; Parrilla, M.; Sleegers, N.; Slosse, A.; Van Durme, F.; van Nuijs, A.; Oprean, R.; Cristea, C.; De Wael, K. pdf  doi
openurl 
  Title Investigating the electrochemical profile of methamphetamine to enable fast on-site detection in forensic analysis Type A1 Journal article
  Year 2023 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal  
  Volume 255 Issue Pages 124208-124211  
  Keywords A1 Journal article; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Methamphetamine (MA) is a synthetic psychoactive drug which is consumed both licitly and illicitly. In some countries it is prescribed for attention-deficit and hyperactivity disorder, and short-term treatment of obesity. More often though, it is abused for its psychostimulant properties. Unfortunately, the spread and abuse of this synthetic drug have increased globally, being reported as the most widely consumed synthetic psychoactive drug in the world in 2019. Attempting to overcome the shortcomings of the currently used on-site methods for MA detection in suspected cargos, the present study explores the potential of electrochemical identification of MA by means of square wave voltammetry on disposable graphite screen-printed electrodes. Hence, the analytical characterization of the method was evaluated under optimal conditions exhibiting a linear range between 50 mu M and 2.5 mM MA, a LOD of 16.7 mu M, a LOQ of 50.0 mu M and a sensitivity of 5.3 mu A mM-1. Interestingly, two zones in the potential window were identified for the detection of MA, depending on its concentration in solution. Furthermore, the oxidative pathway of MA was elucidated employing liquid chromatography – mass spectrometry to understand the change in the electrochemical profile. Thereafter, the selectivity of the method towards MA in mixtures with other drugs of abuse as well as common adulterants/cutting agents was evaluated. Finally, the described method was employed for the analysis of MA in confiscated samples and compared with forensic methods, displaying its potential as a fast and easy-to-use method for on-site analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000925076200001 Publication Date 2023-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.1; 2023 IF: 4.162  
  Call Number UA @ admin @ c:irua:194314 Serial 8890  
Permanent link to this record
 

 
Author Parrilla, M.; Detamornrat, U.; Domínguez-Robles, J.; Donnelly, R.F.; De Wael, K. pdf  url
doi  openurl
  Title Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose Type A1 Journal article
  Year 2022 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal  
  Volume 249 Issue Pages 123695-123699  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract According to the World Health Organization, about 422 million people worldwide have diabetes, with 1.5 million deaths directly attributed each year. Therefore, there is still a need to effectively monitor glucose in diabetic patients for proper management. Recently, wearable patches based on microneedle (MN) sensors provide minimally invasive analysis of glucose through the interstitial fluid (ISF) while exhibiting excellent correlation with blood glucose. Despite many advances in wearable electrochemical sensors, long-term stability and continuous monitoring remain unsolved challenges. Herein, we present a highly stable electrochemical biosensor based on a redox mediator bilayer consisting of Prussian blue and iron-nickel hexacyanoferrate to increase the long-term stability of the readout coupled with a hollow MN array as a sampling unit for ISF uptake. First, the enzymatic biosensor is developed by using affordable screen-printed electrodes (SPE) and optimized for long-term stability fitting the physiological range of glucose in ISF (i.e., 2.5–22.5 mM). In parallel, the MN array is assessed for minimally invasive piercing of the skin. Subsequently, the biosensor is integrated with the MN array leaving a microfluidic spacer that works as the electrochemical cell. Interestingly, a microfluidic channel connects the cell with an external syringe to actively and rapidly withdraw ISF toward the cell. Finally, the robust MN sensing patch is characterized during in vitro and ex vivo tests. Overall, affordable wearable MN-based patches for the continuous monitoring of glucose in ISF are providing an advent in wearable devices for rapid and life-threatening decision-making processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000826441800002 Publication Date 2022-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:188955 Serial 8955  
Permanent link to this record
 

 
Author Felipe Montiel, N.; Parrilla, M.; Beltrán, V.; Nuyts, G.; Van Durme, F.; De Wael, K. pdf  url
doi  openurl
  Title The opportunity of 6-monoacetylmorphine to selectively detect heroin at preanodized screen printed electrodes Type A1 Journal Article
  Year 2021 Publication Talanta Abbreviated Journal Talanta  
  Volume Issue Pages 122005  
  Keywords A1 Journal Article; Antwerp X-ray Analysis, Electrochemistry and Speciation (AXES) ;  
  Abstract The illicit consumption of heroin is an increasing concern in our society. For this reason, rapid analytical methods to seize heroin samples in the field are of paramount importance to hinder drug trafficking, and thus prevent the availability of heroin in the drug market. The present work reports on the enriched electrochemical fingerprint of heroin, allowing its selective detection in street samples, based on the use of electrochemical pretreated screen printed electrodes (p-SPE). The voltammetric identification is built on two oxidation peaks of both heroin and its degradation product 6-monoacetylmorphine (6-MAM), generated in alkaline conditions. Interestingly, an anodic pretreatment of the screen printed electrodes (SPE) shifts the peak potential of paracetamol (the most encountered cutting agent in heroin seizures), allowing the detection of 6-MAM peak, overlapping with the paracetamol signal in the case of untreated SPE. Subsequently, the characterization of the p-SPE with scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, Raman and Fourier transform infrared (FTIR) spectroscopy is provided to demonstrate local changes on the surface of the electrode. From an analytical perspective, p-SPE provide higher sensitivity (0.019 μA μM-1), excellent reproducibility (6-MAM, RSD = 2.85%, and heroin RSD = 0.91%, n = 5) and lower limits of detection (LOD) (5.2 μM) in comparison to untreated SPE. The proposed protocol which integrates a tailor-made script is interrogated against common cutting agents, and finally, validated with the screening of 14 street samples, also analyzed by standard methods. Besides, a comparison with portable spectroscopic techniques on the confiscated samples shows the better performance of the electrochemical strategy. Overall, this sensing approach offers promising results for the rapid on-site profiling of suspicious heroin samples, also in the presence of paracetamol.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000656959000033 Publication Date 2021-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0039-9140 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 833787, BorderSens. The authors acknowledge financial support from the University of Antwerp (IOF). Approved Most recent IF: 4.162  
  Call Number AXES @ axes @c:irua:174844 Serial 6663  
Permanent link to this record
 

 
Author Menegaldo, B.; Aleccia, D.; Nuyts, G.; Amato, A.; Orsega, E.F.; Moro, G.; Balliana, E.; De Wael, K.; Moretto, L.M.; Beltran, V. pdf  doi
openurl 
  Title Stories of the life of Saint George : materials and techniques from a Barbelli mural painting Type A1 Journal article
  Year 2023 Publication Studies in conservation Abbreviated Journal  
  Volume Issue Pages 1-14  
  Keywords A1 Journal article; Art; History; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Gian Giacomo Inchiocchio (1604-1656), better known as Barbelli, was one of the main exponents of Lombard painting of the seventeenth century. A large body of work is attributed to him, encompassing a wide range of drawings, murals, and oil paintings. However, despite his broad production, there are still many open questions regarding his painting techniques and materials. In this paper, a multi-analytical study of the cycle Stories of the life of Saint George that originally decorated the presbytery of the parish church of Casaletto Vaprio (Cremona, Italy) was performed, combining non-invasive techniques with the characterisation of selected micro samples. Results show that Barbelli used a very limited number of inorganic pigments, often mixing them together to create different colours and shades. Remains of caseinate and degradation products (i.e. weddellite and whewellite) related to the strappo intervention were also highlighted. The study helped to decipher the materials and technique of this painting, providing data that can be used as a reference to study his extensive production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001080139100001 Publication Date 2023-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0039-3630; 2047-0584 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.8 Times cited Open Access  
  Notes Approved Most recent IF: 0.8; 2023 IF: 0.578  
  Call Number UA @ admin @ c:irua:200302 Serial 9098  
Permanent link to this record
 

 
Author Geerlings, N.M.J.; Karman, C.; Trashin, S.; As, K.S.; Kienhuis, M.V.M.; Hidalgo-Martinez, S.; Vasquez-Cardenas, D.; Boschker, H.T.S.; De Wael, K.; Middelburg, J.J.; Polerecky, L.; Meysman, F.J.R. url  doi
openurl 
  Title Division of labor and growth during electrical cooperation in multicellular cable bacteria Type A1 Journal article
  Year 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 117 Issue 10 Pages 5478-5485  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13 C (bicarbonate and propionate) and 15 N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519530400054 Publication Date 2020-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited 6 Open Access  
  Notes ; We thank Arnold van Dijk for helping with the GasBench isotope ratio mass spectrometry analysis. N.M.J.G. is the recipient of a Ph.D. scholarship for teachers from the Netherlands Organisation for Scientific Research (NWO) in the Netherlands (grant 023.005.049). K.S.A. received financial support from the Olaf Schuiling fund. F.J.R.M. was financially supported by the Research Foundation Flanders (FWO) via grant G043119N, and the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072). J.J.M. was supported by the Ministry of Education via the Netherlands Earth System Science Centre. The NanoSIMS facility was partly supported by an NWO large infrastructure subsidy to J.J.M. (175.010.2009.011). ; Approved Most recent IF: 11.1; 2020 IF: 9.661  
  Call Number UA @ admin @ c:irua:166452 Serial 6487  
Permanent link to this record
 

 
Author Krupińska, B.; Van Grieken, R.; De Wael, K. pdf  doi
openurl 
  Title Air quality monitoring in a museum for preventive conservation : results of a three-year study in the Plantin-Moretus Museum in Antwerp, Belgium Type A1 Journal article
  Year 2013 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 110 Issue Pages 350-360  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Through different research projects on air quality in museums, researcher and conservators try identifying various risks of air pollution on materials. The conclusions may be later translated into specific actions for a maximum preservation of the museum collections, a process known as preventive conservation. Air pollution is a particular problem in historical buildings such as museums, because they were not originally built to exhibit and protect art objects in a sustainable way. This article reports on the data and results that were obtained during 10 sampling campaigns, in the period between November 2008 and February 2012 in a museum in Antwerp (Belgium), i.e. Plantin-Moretus Museum/Print Room. Different pollutants were measured inside and outside the museum such as inorganic gases, particulate matter and black carbon. The report specifically addresses environmental factors that may be responsible for damage to the collections present in museums. Thanks to the knowledge about the current situation in the museum, accurate solutions regarding preventive conservation, in general, are suggested.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326851200051 Publication Date 2013-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 46 Open Access  
  Notes ; The presented work was realised in the frame of the project Preventive conservation/preservation in the museum Plantin-Moretus/Prentenkabinet, Antwerp, financed by the Flemish Government. Special thanks are due to Mrs Hanne Moris and Mrs Elke van Herck and all the staff of the Museum Plantin-Moretus/Print Room in Antwerp for their sincere interest in this work and their eager assistance during all the sampling campaigns. VMM and Dr. Edward Roekens is acknowledged for sharing the black carbon measurements. Barbara Krupinska is supported as PhD student by the Flemish Fund for Scientific Research (FWO, Belgium). ; Approved Most recent IF: 3.034; 2013 IF: 3.583  
  Call Number UA @ admin @ c:irua:108402 Serial 5460  
Permanent link to this record
 

 
Author Vermeulen, M.; Janssens, K.; Sanyova, J.; Rahemi, V.; McGlinchey, C.; De Wael, K. pdf  url
doi  openurl
  Title Assessing the stability of arsenic sulfide pigments and influence of the binding media on their degradation by means of spectroscopic and electrochemical techniques Type A1 Journal article
  Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 138 Issue 138 Pages 82-91  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this paper, we used the semiconducting and lightfastness properties of synthetic and mineral arsenic sulfide pigments to study their stability by means of electrochemical and microfadometric techniques. A combination of these techniques shows that in the early stage of the degradation process, amorphous arsenic sulfides are more stable than both crystalline forms, while upon longer exposure time, amorphous pigments will fade more than both mineral pigments, making it less suitable. While the stability study was carried out on unbound pigments, the influence of the organic binder on the relative degradation of the arsenic sulfide pigments was investigated through a multi-analytical approach on pigment/binder mock-up paint samples. For this purpose, the formation of arsenic trioxide was assessed by micro Fourier transform infrared (μ-FTIR) spectroscopy while the influence of the binder on the formation of sulfates was studied by means of synchrotron radiation X-ray near edge structure (μ-XANES). Both techniques elucidate a higher stability of all pigments in gum arabic while the use of egg yolk as binder leads to the most degradation, most likely due to its sulfur-rich composition. In the context of the degradation of arsenic sulfide pigments, other binders such as animal glue, egg white or linseed oil show an intermediate impact.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428103000010 Publication Date 2018-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 4 Open Access  
  Notes ; This research is made possible with the support of the Belgian Science Policy Office (BELSPO, Brussels) through the research program Science for a Sustainable Development – SDD, “Long-term role and fate of metal-sulfides in painted works of art – S2ART” (grant number SD/RI/04A). We gratefully acknowledge Megane Willems (Institut Paul-Lambin) for her help with mu-FFIR analyses and realization of the mock-up paint samples. We acknowledge the Paul Scherrer Institut, Villigen, Switzerland for provision of synchrotron radiation beamtime at beamline Phoenix of the SLS. ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:150149 Serial 5482  
Permanent link to this record
 

 
Author Krupińska, B.; Worobiec, A.; Rotondo, G.G.; Novaković, V.; Kontozova, V.; Ro, C.-U.; Van Grieken, R.; De Wael, K. pdf  doi
openurl 
  Title Assessment of the air quality (NO2, SO2, O3 and particulate matter) in the Plantin-Moretus Museum/Print Room in Antwerp, Belgium, in different seasons of the year Type A1 Journal article
  Year 2012 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 102 Issue 1 Pages 49-53  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract The Plantin-Moretus Museum/Print Room in Antwerp, Belgium, gathers one of the most precious collections of typographical material and old printed books in the world. Rich decorations of this former printing-house and the history of the building itself underline its uniqueness. The cultural heritage (CH) objects collected in the museum, in particular books and manuscripts are vulnerable to the atmospheric pollution and can be irreversibly damaged. To assess the air quality inside the museum, four consecutive sampling campaigns were performed in each season of the year. The gas monitoring of nitrogen dioxide (NO2), sulphur dioxide (SO2) and ozone (O3) was carried out outside the building, in galleries and in showcases by means of using diffusive samplers. The particulate matter (PM) was collected in bulk form and as single particles and then analysed with use of energy dispersive X-ray fluorescence (EDXRF) and electron probe micro-analyser (EPMA), respectively. The museum complex turned out to show good protection against gaseous pollutants, especially SO2 and O3. The concentrations of these pollutants were significantly reduced inside the building in comparison to the outdoor ones. Similar protective character of the museum complex was established in case of the coarse fraction of PM; however with some limitations. Single particle analysis showed that the relative abundance of carbon-rich particles inside the museum was greater than outside. Moreover, these particles contributed more to the fine fraction of PM than to the coarse fraction. Therefore, for better preservation of cultural heritage, special attention should be paid to the small particles and their distribution within the museum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000301559100007 Publication Date 2011-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 25 Open Access  
  Notes ; The presented work was realised in the frame of the project Preventive conservation/preservation in the museum Plantin-Moretus/Prentenkabinet, Antwerp, financed by the Flemish Government. Special thanks are due to Mrs Hanne Moris and Mrs Elke van Herck and all the staff of the Museum Plantin-Moretus/Print Room in Antwerp for their sincere interest in this work and their eager assistance during all the sampling campaigns. Barbara Krupinska is supported as PhD student by the Flemish Fund for Scientific Research (FWO, Belgium). ; Approved Most recent IF: 3.034; 2012 IF: 2.879  
  Call Number UA @ admin @ c:irua:94466 Serial 5483  
Permanent link to this record
 

 
Author Horemans, B.; Cardell, C.; Bencs, L.; Kontozova-Deutsch, V.; De Wael, K.; Van Grieken, R. pdf  doi
openurl 
  Title Evaluation of airborne particles at the Alhambra monument in Granada, Spain Type A1 Journal article
  Year 2011 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 99 Issue 2 Pages 429-438  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract As a part of an ongoing investigation regarding the air quality at the Alhambra monument (UNESCO World Cultural Heritage), indoor and outdoor atmospheric aerosols (PM1 and PM10-1) and pollutant gases (O3, NO2, SO2 and NH3) were studied during summer and winter. Bulk elements, ionic compounds and black carbon (BC) in aerosols were analyzed with X-ray fluorescence spectrometry, ion chromatography and aethalometry/reflectometry, respectively. Natural PM10-1 aerosols, such as carbonate-rich soil and sea salts, reacted with a typical urban atmosphere, producing a mixture of particulates with diverse chemical composition. The content/formation of secondary inorganic aerosols depended on the air temperature and absolute humidity. Ratios of typical mineral elements (i.e., Ti/Fe and Si/Fe) showed that Saharan dust events contribute to the composition of the observed mineral aerosol content. BC, V and Ni originated from diesel exhaust, while Cu, Cr, Pb and Zn came mainly from non-exhaust vehicular emissions. Weathering phenomena, such as blackening and pigment discoloration, which could arise from gradual aerosol deposition indoors, are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000295770700042 Publication Date 2011-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 39 Open Access  
  Notes ; ; Approved Most recent IF: 3.034; 2011 IF: 3.048  
  Call Number UA @ admin @ c:irua:91720 Serial 5611  
Permanent link to this record
 

 
Author Buczyńska, A.J.; Geypens, B.; Van Grieken, R.; De Wael, K. pdf  url
doi  openurl
  Title Optimization of sample clean-up for the GC-C-IRMS and GC-IT-MS analysis of PAHs from air particulate matter Type A1 Journal article
  Year 2015 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 119 Issue Pages 83-92  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The optimization of sample clean-up for the analysis of air particulate matter PAHs stable carbon isotope ratio using Solid Phase Extraction (SPE) cartridges is described in this paper. Various adsorbents, such as silica gel, alumina, florisil, commercially available for sample purification were compared. Best performance for the clean-up of 24-h air particulate matter samples was obtained with activated silica-gel columns in terms of selectivity and reproducibility. One step clean-up was optimized for concentration determination and in case of co-elutions, a second step was additionally used for carbon isotope ratio analysis. The method was subsequently validated with standard reference material and was checked for carbon isotope fractionation artefacts. No significant differences in δ13C values were found for unprocessed solutions of PAHs and solution subjected to the extraction and purification procedure. The procedure was tested on air particulate matter samples collected in three different locations in Belgium. Statistically significant differences in carbon isotope ratio of PAHs between Borgerhout location and Zelzate or Gent were noticed, confirming the differences in distribution and diagnostic ratios found during the concentration analyses and different PAH sources in these locations. The results, therefore, seem very promising for the use of δ13C of PAHs as an additional information helpful in source identification of these pollutants  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348957800013 Publication Date 2014-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 3.034; 2015 IF: 2.746  
  Call Number UA @ admin @ c:irua:120641 Serial 5759  
Permanent link to this record
 

 
Author Kontozova-Deutsch, V.; Deutsch, F.; Godoi, R.H.M.; Van Grieken, R.; De Wael, K. pdf  doi
openurl 
  Title Urban air pollutants and their micro effects on medieval stained glass windows Type A1 Journal article
  Year 2011 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 99 Issue 2 Pages 508-513  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Levels of urban gaseous and particulate pollutants were investigated in the Cathedral of Cologne, Germany in the framework of the EU-project VIDRIO. The purpose of this study was to evaluate the influence of a protective double glazing system on the preservation of ancient stained glass windows by sampling at protected and unprotected windows (indoors, in the interspace and outdoor of the Cathedral). The interspace between the ancient stained glass window and the protective glazing is flushed in the Cathedral by indoor air, hence isolating the historic glass from the outdoor air and exposing it to indoor air on both sides of the glass panels. Concentrations of aggressive gaseous pollutants such as NO2, SO2, O3 and CO2 as well as elemental concentrations of bulk particles and relative abundances of single particles were surveyed at all sampling locations. Elemental concentrations in bulk particulate matter were found to be significantly lower inside the Cathedral in comparison to the outdoor air. This result is advantageous for the stained glass windows. Single particle analysis of the samples from Cologne showed also soil dust and organic particles as well as sulphates and nitrates, from which the latter two compounds are dangerous for the stained glass windows. On the base of the obtained results, it can be concluded that the protective glazing system in the Cathedral of Cologne can be considered as predominantly advantageous from both the gases' point of view (except for NO2-candles burning) and from the particles' point of view.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000295770700053 Publication Date 2011-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 6 Open Access  
  Notes ; This research was supported by the European Commission through the “VIDRIO-project”, contract no. EVK4-CT-2001-00045. Financial support is gratefully acknowledged. The authors acknowledge the assistance and advice during the experimental work given by the Dombauhutte team in Cologne, especially by Dr. Ulrike Brinkman and Gunter Hettinger. ; Approved Most recent IF: 3.034; 2011 IF: 3.048  
  Call Number UA @ admin @ c:irua:91078 Serial 5889  
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Cambré, S.; Domínguez-Robles, J.; Detamornrat, U.; Donnelly, R.F.; Oprean, R.; Cristea, C.; De Wael, K. pdf  url
doi  openurl
  Title Microneedle array-based electrochemical sensor functionalized with SWCNTs for the highly sensitive monitoring of MDMA in interstitial fluid Type A1 Journal article
  Year 2023 Publication Microchemical journal Abbreviated Journal  
  Volume 193 Issue Pages 109257-11  
  Keywords A1 Journal article; Pharmacology. Therapy; Nanostructured and organic optical and electronic materials (NANOrOPT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drug consumption constitutes a great concern worldwide due to its increased spread and abuse, and the negative consequences exerted on society. For instance, 3,4-methylenedioxymethamphetamine (MDMA), a synthetic amphetamine-type substance, was abused by 20 million people worldwide in 2020. This psychoactive substance exerts a myriad of effects on the human body being dangerous for the consumer’s health. Besides, MDMA has been used in the treatment of some psychiatric conditions. Therefore, the development of wearable devices for MDMA sensing in biological fluids is of great importance for forensic toxicology (e.g., monitoring of patients with suspected or known MDMA consumption) as well as for therapeutic management of patients. Herein, we report the development of a wearable electrochemical platform based on a hollow microneedle (MN) array sensor for the monitoring of MDMA in the interstitial fluid by square-wave voltammetry. First, the holes of the MN array were modified with conductive pastes to devise a MN patch with a three-electrode system. Subsequently, the functionalization of the working electrode with nanomaterials enhanced MDMA detection. Thereafter, analytical parameters were evaluated exhibiting a slope of 0.05 µA µM−1 within a linear range from 1 to 50 µM and a limit of detection of 0.75 µM in artificial interstitial fluid. Importantly, critical parameters such as selectivity, piercing capability, temperature, reversibility and stability were assessed. Overall, the obtained MN sensor exhibited excellent analytical performance, making it a promising tool for MDMA tracking in interstitial fluid for individuals on probation or under therapeutic treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001067945900001 Publication Date 2023-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited Open Access Not_Open_Access: Available from 27.02.2024  
  Notes Approved Most recent IF: 4.8; 2023 IF: 3.034  
  Call Number UA @ admin @ c:irua:198183 Serial 8898  
Permanent link to this record
 

 
Author Truta, F.; Cruz, A.G.; Tertis, M.; Zaleski, C.; Adamu, G.; Allcock, N.S.; Suciu, M.; Stefan, M.-G.; Kiss, B.; Piletska, E.; De Wael, K.; Piletsky, S.A.; Cristea, C. pdf  doi
openurl 
  Title NanoMIPs-based electrochemical sensors for selective detection of amphetamine Type A1 Journal article
  Year 2023 Publication Microchemical journal Abbreviated Journal  
  Volume 191 Issue Pages 108821-10  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract A highly sensitive and portable electrochemical sensor based on molecularly imprinted nanoparticles (nanoMIPs) was developed. NanoMIPs were computationally designed for specific recognition of amphetamine, and then synthetized using solid phase synthesis. NanoMIPs were immobilized onto screen-printed carbon electrodes using a composite film comprising chitosan, nanoMIPs, and graphene oxide.Ferrocenylmethyl methacrylate was incorporated in nanoMIPs allowing electrochemical detection. The signal recorded for the electrochemical oxidation of ferrocene has proven to be dependent on the presence of amphetamine interacting with nanMIPs. The sensor was tested successfully with street samples, with high sensitivity and satisfactory recoveries (from 100.9% to 107.6%). These results were validated with UPL-MS/MS. The present technology is suitable for forensic applications in selective determination of amphetamine in street samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001008428600001 Publication Date 2023-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.8; 2023 IF: 3.034  
  Call Number UA @ admin @ c:irua:197397 Serial 8903  
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Rutten, R.; De Wael, K. pdf  url
doi  openurl
  Title Novel (photo)electrochemical analysis of aqueous industrial samples containing phenols Type A1 Journal article
  Year 2022 Publication Microchemical journal Abbreviated Journal  
  Volume 181 Issue Pages 107778-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Phenols are considered as toxic pollutants and their discharge into the environment by industries is regulated by a concentration limit. As these limits are in the low mg L−1 to µg L−1-range, sensitive methods are necessary to detect these phenols. Here, aqueous industrial phenolic samples throughout a cleaning process were analyzed by two novel electrochemical sensors. Both the photoelectrochemical (PEC) sensor and the square wave voltammetric (SWV) sensor could successfully follow the decrease of the concentration of phenols along the industrial cleaning process. The discharge sample (μg L−1) could only be analyzed by the PEC sensor and not by the SWV sensor, as the phenolic concentration was close to the LOD of the latter. With HPLC-diode array detector (DAD) measurements, classical phenols such as phenol (PHOH), hydroquinone, resorcinol and o-cresol could be identified in the industrial samples, and their presence could be linked to the electrochemical responses. At last, the performance of the PEC and SWV sensors were compared with commercial colorimetric and chemical oxygen demand (COD) test kits. This comparison demonstrated the high sensitivity of the PEC sensor in the μg L−1 concentrated phenolic samples. Together with the identification of the redox peaks through HPLC-DAD analysis, the SWV sensor can be a powerful tool in the qualitative analysis of mg L−1 concentrated phenolic samples due to its speed, simplicity and absence of laborious sample pre-treatment steps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000837838400003 Publication Date 2022-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:189428 Serial 8906  
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Slosse, A.; Van Durme, F.; Åberg, J.; Björk, K.; Bijvoets, S.M.; Sap, S.; Heerschop, M.W.J.; De Wael, K. pdf  url
doi  openurl
  Title Paraformaldehyde-coated electrochemical sensor for improved on-site detection of amphetamine in street samples Type A1 Journal article
  Year 2022 Publication Microchemical journal Abbreviated Journal  
  Volume 179 Issue Pages 107518-107519  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The increasing illicit production, distribution and abuse of amphetamine (AMP) poses a challenge for law enforcement worldwide. To effectively combat this issue, fast and portable tools for the on-site screening of suspicious samples are required. Electrochemical profile (EP)-based sensing of illicit drugs has proven to be a viable option for this purpose as it allows rapid voltammetric measurements via the use of disposable and low-cost graphite screen-printed electrodes (SPEs). In this work, a highly practical paraformaldehyde (PFA)-coated sensor, which unlocks the detectability of primary amines through derivatization, is developed for the on-site detection of AMP in seized drug samples. A potential interval was defined at the sole AMP peak (which is used for identification of the target analyte) to account for potential shifts due to fluctuations in concentration and temperature, which are relevant factors for on-site use. Importantly, it was found that AMP detection was not hindered by the presence of common diluents and adulterants such as caffeine, even when present in high amounts. When inter-drug differentiation is desired, a simultaneous second test with the same solution on an unmodified electrode is introduced to provide the required additional electrochemical information. Finally, the concept was validated by analyzing 30 seized AMP samples (reaching a sensitivity of 96.7 %) and comparing its performance to that of commercially available Raman and Fourier Transform Infrared (FTIR) devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000809675500010 Publication Date 2022-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:188454 Serial 8910  
Permanent link to this record
 

 
Author Van Echelpoel, R.; Parrilla, M.; Sleegers, N.; Thiruvottriyur Shanmugam, S.; van Nuijs, A.L.N.; Slosse, A.; Van Durme, F.; De Wael, K. pdf  url
doi  openurl
  Title Validated portable device for the qualitative and quantitative electrochemical detection of MDMA ready for on-site use Type A1 Journal article
  Year 2023 Publication Microchemical journal Abbreviated Journal  
  Volume 190 Issue Pages 108693-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Identifying and quantifying 3,4-methyl​enedioxy​methamphetamine (MDMA) on-site in suspected illicit drug samples, whether it be at recreational settings or manufacturing sites, is a major challenge for law enforcement agencies (LEAs). Various analytical techniques exist to fulfil this goal, e.g. colourimetry and portable spectroscopic techniques, each having its specific limitations (e.g. low accuracy, fluorescence, no quantification) and strengths (e.g. fast, easy to use). In this work, for the first time, an electrochemical MDMA sensor is presented to become a detection tool that can realistically be used on-site. More specifically, the use of a single buffer solution and an unmodified screen-printed electrode, along with the integration of a data analysis algorithm and mobile application permits the straightforward on-site identification and quantification of MDMA in suspicious samples. Multiple studies investigating different parameters, including pH, concentration, reproducibility, temperature and binary mixture analyses, were executed. To fully understand all the occurring redox processes, liquid chromatography coupled with high-resolution mass spectrometry analysis of partially electrolyzed MDMA samples was performed unravelling oxidation of the methylenedioxy group. Validation of the methodology was executed on 15 MDMA street samples analysed by gas chromatography coupled with mass spectrometry and compared with the performance of a commercial portable Raman and Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) device. The novel methodology outperformed the spectroscopic techniques, correctly identifying all 15 street samples. Additionally, the electrochemical sensor predicted the purity of the tablets with a mean absolute error of 2.3%. Overall, this new, electrochemical detection strategy provides LEAs the rapid, low-cost, on-site detection and quantification of MDMA in suspicious samples, without requiring specialized training.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000977060400001 Publication Date 2023-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.8; 2023 IF: 3.034  
  Call Number UA @ admin @ c:irua:195415 Serial 8952  
Permanent link to this record
 

 
Author Trashin, S.; De Jong, M.; Luyckx, E.; Dewilde, S.; De Wael, K. url  doi
openurl 
  Title Electrochemical evidence for neuroglobin activity on NO at physiological concentrations Type A1 Journal article
  Year 2016 Publication Journal of biological chemistry Abbreviated Journal J Biol Chem  
  Volume 291 Issue 36 Pages 18959-18966  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The true function of neuroglobin (Ngb) and, particularly, human Ngb (NGB) has been under debate since its discovery 15 years ago. It has been expected to play a role in oxygen binding/supply, but a variety of other functions have been put forward, including NO dioxygenase activity. However, in vitro studies that could unravel these potential roles have been hampered by the lack of an Ngb-specific reductase. In this work, we used electrochemical measurements to investigate the role of an intermittent internal disulfide bridge in determining NO oxidation kinetics at physiological NO concentrations. The use of a polarized electrode to efficiently interconvert the ferric (Fe3+) and ferrous (Fe2+) forms of an immobilized NGB showed that the disulfide bridge both defines the kinetics of NO dioxygenase activity and regulates appearance of the free ferrous deoxy-NGB, which is the redox active form of the protein in contrast to oxy-NGB. Our studies further identified a role for the distal histidine, interacting with the hexacoordinated iron atom of the heme, in oxidation kinetics. These findings may be relevant in vivo, for example in blocking apoptosis by reduction of ferric cytochrome c, and gentle tuning of NO concentration in the tissues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383242300031 Publication Date 2016-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0021-9258; 1083-351x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.125 Times cited 11 Open Access  
  Notes ; This work was supported by Fonds Wetenschappelijk Onderzoek (FWO) Grant G.0687.13 and Universiteit Antwerpen GOA BOF 28312. The authors declare that they have no conflicts of interest with the contents of this article. ; Approved Most recent IF: 4.125  
  Call Number UA @ admin @ c:irua:134340 Serial 5590  
Permanent link to this record
 

 
Author Horemans, B.; Van Holsbeke, C.; Vos, W.; Darchuk, L.; Novakovic, V.; Fontan, A.C.; de Backer, J.; van Grieken, R.; de Backer, W.; De Wael, K. doi  openurl
  Title Particle deposition in airways of chronic respiratory patients exposed to an urban aerosol Type A1 Journal article
  Year 2012 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol  
  Volume 46 Issue 21 Pages 12162-12169  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Urban atmospheres in modern cities carry characteristic mixtures of particulate pollution which are potentially aggravating for chronic respiratory patients (CRP). Although air quality surveys can be detailed, the obtained information is not always useful to evaluate human health effects. This paper presents a novel approach to estimate particle deposition rates in airways of CRP, based on real air pollution data. By combining computational fluid dynamics with physical-chemical characteristics of particulate pollution, deposition rates are estimated for particles of different toxicological relevance, that is, minerals, iron oxides, sea salts, ammonium salts, and carbonaceous particles. Also, it enables some qualitative evaluation of the spatial, temporal, and patient specific effects on the particle dose upon exposure to the urban atmosphere. Results show how heavy traffic conditions increases the deposition of anthropogenic particles in the trachea and lungs of respiratory patients (here, +0.28 and +1.5 μg·h1, respectively). In addition, local and synoptic meteorological conditions were found to have a strong effect on the overall dose. However, the pathology and age of the patient was found to be more crucial, with highest deposition rates for toxic particles in adults with a mild anomaly, followed by mild asthmatic children and adults with severe respiratory dysfunctions (7, 5, and 3 μg·h1, respectively).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000310665000082 Publication Date 2012-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited 5 Open Access  
  Notes ; We are grateful for the financial support of n.v. Vooruitzicht. Furthermore, co-workers at the environmental analysis research group are acknowledged for their help in the fieldwork. ; Approved Most recent IF: 6.198; 2012 IF: 5.257  
  Call Number UA @ lucian @ c:irua:101411 Serial 2557  
Permanent link to this record
 

 
Author Lybaert, J.; Maes, B.U.W.; Tehrani, K.A.; De Wael, K. url  doi
openurl 
  Title The electrochemistry of tetrapropylammonium perruthenate, its role in the oxidation of primary alcohols and its potential for electrochemical recycling Type A1 Journal article
  Year 2015 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 182 Issue Pages 693-698  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY)  
  Abstract The search for strategies aiming at more sustainable (oxidation) reactions has led to the application of electrochemistry for recycling the spent catalyst. In this work, an electrochemical study of the tetrapropylammonium perruthenate catalyst (TPAP) and its activity towards a primary alcohol, n-butanol, has been carried out as well as a control study with tert-butanol. The redox chemistry of TPAP and the transition between the perruthenate anion and ruthenium tetroxide in a non-aqueous solvent have been, for the first time, investigated in depth. The oxidation reaction of n-butanol in the presence of TPAP has been electrochemically elucidated by performing potentiostatic experiments and registration of the corresponding oxidation current. Furthermore, it was shown that, by applying a specific potential, the reoxidized TPAP is able to oxidize/convert the primary alcohol, paving the way for practical applications using TPAP in electrochemical synthesis. The conversion of n-butanol into n-butanal was proven by the use of GC-MS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000365075800084 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 4.798; 2015 IF: 4.504  
  Call Number UA @ admin @ c:irua:127676 Serial 5599  
Permanent link to this record
 

 
Author Pauwels, D.; Ching, H.Y.V.; Samanipour, M.; Neukermans, S.; Hereijgers, J.; Van Doorslaer, S.; De Wael, K.; Breugelmans, T. pdf  url
doi  openurl
  Title Identifying intermediates in the reductive intramolecular cyclisation of allyl 2-bromobenzyl ether by an improved electron paramagnetic resonance spectroelectrochemical electrode design combined with density functional theory calculations Type A1 Journal article
  Year 2018 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 271 Issue 271 Pages 10-18  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The electrochemical activation of C-X bonds requires very negative electrode potentials. Lowering the overpotentials and increasing the catalytic activity requires intensive electrocatalytic research. A profound understanding of the reaction mechanism and the influence of the electrocatalyst allows optimal tuning of the electrocatalyst. This can be achieved by combining electrochemical techniques with electron paramagnetic resonance (EPR) spectroscopy. Although this was introduced in the mid-twentieth century, the application of this combined approach in electrocatalytic research is underexploited. Several reasons can be listed, such as the limited availability of EPR instrumentation and electrochemical devices for such in situ experiments. In this work, a simple and inexpensive construction adapted for in situ EPR electrocatalytic research is proposed. The proof of concept is provided by studying a model reaction, namely the reductive cyclisation of allyl 2-bromobenzyl ether which has interesting industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430369800002 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; The authors would like to thank Melissa Van Landeghem for her assistance with the experimental work and analysis of the data. Jonas Hereijgers greatly acknowledges the Research Foundation Flanders (FWO) for support through a Post-Doctoral grant (12Q8817N). H.Y. Vincent Ching gratefully acknowledges the University of Antwerp for a Post-Doctoral grant. Sabine Van Doorslaer and Tom Breugelmans acknowledge the FWO for research funding (research grant G093317N). ; Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:150463 Serial 5652  
Permanent link to this record
 

 
Author Lybaert, J.; Tehrani, K.A.; De Wael, K. pdf  url
doi  openurl
  Title Mediated electrolysis of vicinal diols by neocuproine palladium catalysts Type A1 Journal article
  Year 2017 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 247 Issue Pages 685-691  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY)  
  Abstract Synthetic electrochemistry agrees well with the principles of sustainable chemistry, therefore it is considered as a more environmentally friendly approach than some current synthetic methods Here, we present a new strategy for the chemoselective oxidation of vicinal diols, viz. the integration of neocuproine palladium catalysts and electrosynthesis. Benzoquinones are used as an effective mediator as the reduced species (hydroquinones) can be easily reoxidized at relative low potentials at an electrode surface. NeocuproinePd(OAc)2 efficiently works as a catalyst in an electrolysis reaction for vicinal diols at room temperature. This is a remarkable observation given the fact that aerobic oxidation reactions of alcohols typically need a more complex catalyst, i.e. [neocuproinePdOAc]2[OTf]2. In this article we describe the optimization of the electrolysis conditions for the neocuproinePd(OAc)2 catalyst to selectively oxidize diols. The suggested approach leads to conversion of alcohols with high yields and provides an interesting alternative to perform oxidation reactions under mild conditions by the aid of electrochemistry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000408582300072 Publication Date 2017-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:144118 Serial 5706  
Permanent link to this record
 

 
Author Gaetani, C.; Gheno, G.; Borroni, M.; De Wael, K.; Moretto, L.M.; Ugo, P. pdf  url
doi  openurl
  Title Nanoelectrode ensemble immunosensing for the electrochemical identification of ovalbumin in works of art Type A1 Journal article
  Year 2019 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 312 Issue 312 Pages 72-79  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This research is aimed to the study and application of an electrochemical immunosensor for the detection of ovalbumin (OVA) from egg white (or albumen) used as a binder in some works of art, such as some historical photographic prints and tempera paintings. The immunosensor takes advantage of the interesting biodetection capabilities offered by nanoelectrode ensembles (NEEs). The NEEs used to this aim are prepared by template deposition of gold nanoelectrodes within the pores of track-etched polycarbonate (PC) membranes. The affinity of polycarbonate for proteins is exploited to capture OVA from the aqueous extract obtained by incubation in phosphate buffer of a small sample fragment (<1 mg). The captured protein is reacted selectively with anti-OVA antibody, labelled with glucose oxidase (GOx). In the case of positive response, the addition of the GOx substrate (i.e. glucose) and a suitable redox mediator (a ferrocenyl derivative) reflects in the up rise of an electrocatalytic oxidation current, which depends on the OVA amount captured on the NEE, this amount correlating with OVA concentration in the extract. After optimization, the sensor is successfully applied to identify OVA in photographic prints dating back to the late 19th century, as well as in ancient tempera paintings from the 15th and 18th centuries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468595500008 Publication Date 2019-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:159573 Serial 5743  
Permanent link to this record
 

 
Author Stefan, G.; Hosu, O.; De Wael, K.; Jesus Lobo-Castanon, M.; Cristea, C. pdf  doi
openurl 
  Title Aptamers in biomedicine : selection strategies and recent advances Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 376 Issue Pages 137994  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Aptamers have come in the spotlight as bio-mimetic molecular recognition elements in the field of biomedicine due to various applications in diagnostics, drug delivery, therapeutics, and pharmaceutical analysis. Aptamers are composed of nucleic acid strands (DNA or RNA) that can specifically interact in a three-dimensional tailored design with the target molecule. The basic method to generate aptamers is Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Recent technological advances in aptamer selection allow for faster and cheaper production of a new generation of high-affinity aptamers compared to the traditional SELEX, which can last up to several months. Rigorous characterization performed by multiple research groups endorsed several well-defined aptamer sequences. Binding affinity, nature of the biomolecular interactions and structural characterization are of paramount importance for aptamer screening and development of applications. However, remarkable challenges still need to be dealt with before the aptamers can make great contributions to the biomedical field. Poor specificity and sensitivity, questionable clinical use, low drug loading, in vivo stability and toxicity are only some of the identified challenges. This review accounts for the 30th celebration of the SELEX technology underlining the most important aptamers' achievements in the biomedical field within mostly the past five years. Aptamers' advantages over antibodies are discussed. Because of potential clinical translational utility, insights of remarkable developments in aptamer-based methods for diagnosis and monitoring of disease biomarkers and pharmaceuticals are discussed focusing on the recent studies (2015-2020). The current challenges and promising opportunities for aptamers for therapeutic and theragnostic purposes are also presented. (C) 2021 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761900003 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:177677 Serial 7491  
Permanent link to this record
 

 
Author Schram, J.; Thiruvottriyur Shanmugam, S.; Sleegers, N.; Florea, A.; Samyn, N.; van Nuijs, A.L.N.; De Wael, K. pdf  doi
openurl 
  Title Local conversion of redox inactive molecules into redox active ones : a formaldehyde based strategy for the electrochemical detection of illicit drugs containing primary and secondary amines Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 367 Issue Pages 137515  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract Electrochemical techniques have evidenced to be highly suitable for the development of portable, rapid and accurate screening methods for the detection of illicit drugs in seized samples. However, the redox inactivity of primary amines, one of the most common functional groups of illicit drugs, masks voltammetric detection in aqueous environment at carbon electrodes and, therefore, leads to false negative results if only these primary amines are present in the structures. This work explores the feasibility of a derivatisation approach that introduces formaldehyde in the measuring conditions in order to achieve methylation, via an Eschweiler-Clarke mechanism, of illicit drugs containing primary and secondary amines, using amphetamine (AMP) and methamphetamine (MET) as model molecules. As a result the electrochemical fingerprint is enriched and thereby the detectability enhanced. A combination of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOFMS) and square-wave voltammetric (SWV) measurements is employed to identify reaction products and link them to the observed redox peaks. Although an alkaline environment (pH 12.0) proved to increase the reaction yield, a richer electrochemical fingerprint (EF) is obtained in neutral conditions (pH 7.0). Similarly, the addition of formate improved the reaction conversion but reduced the EF by eliminating a redox peak that is attributed to side products formed in the absence of formate. To illustrate the applicability, the derivatisation strategy is applied to several prominent illicit drugs containing primary and secondary amines to demonstrate its EF enriching capabilities. Finally, real street samples from forensic seizures are analysed. Overall, this strategy unlocks the detectability of the hitherto undetectable AMP and other drugs only containing primary amines, while strongly facilitating the identification of MET and analogues. These findings are not limited to illicit drugs, the insights can ultimately be applied to other target molecules containing similar functional groups. (C) 2020 Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000607620700010 Publication Date 2020-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:176083 Serial 8177  
Permanent link to this record
 

 
Author Mendonça, C.D.; Khan, S.U.; Rahemi, V.; Verbruggen, S.W.; Machado, S.A.S.; De Wael, K. pdf  url
doi  openurl
  Title Surface plasmon resonance-induced visible light photocatalytic TiO₂ modified with AuNPs for the quantification of hydroquinone Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 389 Issue Pages 138734  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The impregnation of size-controlled gold nanoparticles (AuNPs) on an anatase TiO2 structure (AuNPs@TiO2) was studied for the photoelectrochemical detection of hydroquinone (HQ) under visible light illumination integrated into a flow injection analysis (FIA) setup. The crystalline form of TiO2 was preserved during synthesis and the homogeneous distribution of AuNPs over the TiO2 structure was confirmed. Its photoelectrocatalytic activity was improved due to the presence of AuNPs, preventing charge recombination in TiO2 and improving its light absorption ability by the surface plasmon resonance effect (SPR). The FIA system was used in order to significantly reduce the electrode fouling during electroanalysis through periodic washing steps of the electrode surface. During the amperometric detection process, reactive oxygen species (ROS), generated by visible light illumination of AuNPs@TiO2, participate in the oxidation process of HQ. The reduction of the oxidized form of HQ, i.e. benzoquinone (BQ) occurs by applying a negative potential and the measurable amperometric response will be proportional to the initial HQ concentration. The influencing parameters on the response of the amperometric photocurrent such as applied potential, flow rate and pH were investigated. The linear correlation between the amperometric response and the concentration of HQ was recorded (range 0.0125 – 1.0 µM) with a limit of detection (LOD) of 33.8 nM and sensitivity of 0.22 A M−1 cm−2. In this study, we illustrated for the first time that the impregnation of AuNPs in TiO2 allows the sensitive detection of phenolic substances under green laser illumination by using a photoelectrochemical flow system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000687283100018 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:178908 Serial 8626  
Permanent link to this record
 

 
Author Joosten, F.; Parrilla, M.; van Nuijs, A.L.N.; Ozoemena, K.Id; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical detection of illicit drugs in oral fluid : potential for forensic drug testing Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 2022 Issue 436 Pages 141309-141315  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drugs continue to pose a serious threat to society and public health. Drug (ab)use is linked to organised crime and violence. Therefore, to fight the so-called war on drugs, police and law enforcement agencies need to be equipped with accurate and efficient sensors for the detection of illicit drugs and drug use. Even though colour tests (for powders) and lateral flow immunoassays (for biological samples) lack accuracy, they are relied upon for fast and easy on-site detection. Alternatively, in recent years, there has been an increasing interest in electrochemical sensors as a promising technique for the rapid and accurate on-site detection of illicit drugs. While a myriad of literature exists on the use of electrochemical sensors for drug powder analysis, literature on their use for the detection of drug use in biological samples is scarce. To this end, this review presents an overview of strategies for the electrochemical detection of illicit drugs in oral fluid. First, pharmacokinetics of drugs in oral fluid and the legal limit dilemma regarding the analytical cut-offs for roadside drug detection tests are elaborated to present the reader with the background knowledge required to develop such a test. Subsequently, an overview of electrochemical strategies developed for the detection of illicit drugs in oral fluid is given. Importantly, key challenges to address in the development of roadside tests are highlighted to improve the design of the next electrochemical devices and to bring them to the field. Overall, electrochemical sensors for illicit drugs detection in oral fluid show promise to disrupt current strategies for roadside testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000882442300001 Publication Date 2022-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191107 Serial 8855  
Permanent link to this record
 

 
Author Montiel, F.N.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 436 Issue Pages 141446-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The illicit drug precursor market for the manufacture of amphetamine-type stimulants (ATS), mainly amphetamine, methamphetamine and methylenedioxymethamphetamine (MDMA), has emerged quickly in the last years. The evidence of a more complex and sophisticated drug market underlines the pressing need for new on-site methods to quickly detect precursors of synthetic drugs, with electrochemical analysis as a promising technique. Herein, the electrochemical fingerprints of ten common ATS precursors-3-oxo-2-phenylbutanenitrile (APAAN), 3-oxo-2-phenylbutanamide (APAA), methyl 3-oxo-2-phenylbutanoate (MAPA), benzyl methyl ketone (BMK), 1-(1,3-benzodioxol-5-yl)propan-2-one (PMK), ephedrine, pseudoephedrine, safrole, sassafras oil and piperonal- are reported for the first time. The electrochemical screening disclosed the redox inactivity of BMK, which is an essential starting material for the production of ATS. Therefore, the local derivatization of BMK at an electrode surface by reductive amination is presented as a feasible solution to enrich its electrochemical fingerprint. To prove that, the resulting mixture was analyzed using a set of chromatographic techniques to understand the reaction mechanism and to identify possible electrochemical active products. Two reaction products (i.e. methamphetamine and 1-phenylpropan-2-ol) were found and characterized using mass spectrometry and electrochemical methods. Subsequently, the optimization of the reaction parameters was carefully addressed to set the portable electrochemical sensing strategy. Ultimately, the analysis concept was validated for the qualitative identification of ATS precursors in seizures from a forensic institute. Overall, the electrochemical approach demonstrates to be a useful and affordable analytical tool for the early identification of ATS precursors to prevent trafficking and drug manufacture in clandestine laboratories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000914833800003 Publication Date 2022-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0013-4686 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191622 Serial 8858  
Permanent link to this record
 

 
Author Almabadi, M.H.; Truta, F.M.; Adamu, G.; Cowen, T.; Tertis, M.; Alanazi, K.D.M.; Stefan, M.-G.; Piletska, E.; Kiss, B.; Cristea, C.; De Wael, K.; Piletsky, S.A.; Cruz, A.G. url  doi
openurl 
  Title Integration of smart nanomaterials for highly selective disposable sensors and their forensic applications in amphetamine determination Type A1 Journal article
  Year 2023 Publication Electrochimica acta Abbreviated Journal  
  Volume 446 Issue Pages 142009-142010  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Screening drugs on the street and biological samples pose a challenge to law enforcement agencies due to existing detection methods and instrument limitations. Herein we present a graphene-assisted molecularly imprinted polymer nanoparticle-based sensor for amphetamine. These nanoparticles are electroactive by incorporating ferrocene in their structure. These particles act as specific actuators in electrochemical sensors, and the presence of a ferrocene redox probe embedded in the structure allows the detection of non-electroactive amphetamine. In a control approach, nanoparticles were covalently immobilised onto electrochemical sensors by drop-casting using silanes. Alternatively, nanoparticles were immobilised employing 3D printing and a graphene ink composite. The electrochemical performance of both approaches was evaluated. As a result, 3D printed nanoMIPs/graphene sensors displayed the highest selectivity in spiked human plasma, with sensitivity at 73 nA nM-1, LOD of 68 nM (RSD 2.4%) when compared to the silane drop cast electrodes. The main advantage of the optimised 3D printing technology is that it allows quantitative determination of amphetamine, a nonelectroactive drug, challenging to detect with conventional electrochemical sensors. In addition, the costefficient 3D printing method makes these sensors easy to manufacture, leading to robust, highly selective and sensitive sensors. As proof of concept, sensors were evaluated on the street specimens and clinically relevant samples and successfully validated using UPLC-MS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953087600001 Publication Date 2023-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.6; 2023 IF: 4.798  
  Call Number UA @ admin @ c:irua:196145 Serial 8888  
Permanent link to this record
 

 
Author Thirumalraj, alamurugan; Palanisamy, S.; Chen, S.-M.; De Wael, K. pdf  url
doi  openurl
  Title A graphene/gelatin composite material for the entrapment of hemoglobin for bioelectrochemical sensing applications Type A1 Journal article
  Year 2016 Publication Journal of the electrochemical society Abbreviated Journal J Electrochem Soc  
  Volume 163 Issue 7 Pages 265-271  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In the present work, a novel graphene (GN) and gelatin (GTN) composite was prepared and used as an immobilization matrix for hemoglobin (Hb). Compared with Hb immobilized on a bare, GN or GTN modified glassy carbon electrode (GCE), a stable and pair of well-defined quasi redox couple was observed at an Hb modified GN/GTN composite GCE at a formal potential of −0.306 V versus Ag|AgCl. The direct electrochemical behavior of Hb was greatly enhanced by the presence of both GTN and GN. A heterogeneous electron transfer rate constant (Ks) was calculated as 3.82 s−1 for Hb immobilized at GN/GTN modified GCE, which indicates the fast direct electron transfer of Hb toward the electrode surface. The biosensor shows a stable and wide linear response for H2O2 in the linear response range from 0.1 μM to 786.6 μM with an analytical sensitivity and limit of detection of 0.48 μAμM−1 cm−2 and 0.04 μM, respectively. The fabricated biosensor holds its high selectivity in the presence of potentially active interfering species and metal ions. The biosensor shows its satisfactory practical ability in the commercial contact lens solution and human serum samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377412900047 Publication Date 2016-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0013-4651 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.259 Times cited 9 Open Access  
  Notes ; This project was supported by the Ministry of Science and Technology (project no. NSC1012113M027001MY3), Taiwan (Republic of China). The authors express their sincere thanks to Prof. Bih-Show Lou, Chemistry Division, Center for General Education, Chang Gung University, Tao-Yuan, Taiwan for providing the human serum samples. ; Approved Most recent IF: 3.259  
  Call Number UA @ admin @ c:irua:132627 Serial 5635  
Permanent link to this record
 

 
Author Kuckova, S.; Hamidi-Asl, E.; Matulkova, I.; Hynek, R.; De Wael, K.; Sanyova, J.; Janssens, K. openurl 
  Title Technoques and applications of Surface-Enhanced Raman Scattering Spectroscopy (SERSS) focused on cultural heritage Type A1 Journal article
  Year 2018 Publication Chemické listy Abbreviated Journal Chem Listy  
  Volume 112 Issue 5 Pages 312-316  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The review is devoted to a modern method of vibrational spectroscopy – surface enhanced Raman spectroscopy Its principle and some of its special variants (imunnoSERS and TERS (Tip-Enhanced Raman Spectroscopy)) are described m a simpinified manner Wide application possibilities are demonstrated on selected examples from its application m culturinl heritage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0009-2770; 1213-7103 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.387 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 0.387  
  Call Number UA @ admin @ c:irua:151616 Serial 5869  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: