toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Borah, R.; Verbruggen, S.W.
  Title Coupled plasmon modes in 2D gold nanoparticle clusters and their effect on local temperature control Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 123 Issue 50 Pages 30594-30603
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Assemblies of closely separated gold nanoparticles exhibit a strong collective plasmonic response due to coupling of the plasmon modes of the individual nanostructures. In the context of self-assembly of nanoparticles, close-packed two-dimensional (2D) clusters of spherical nanoparticles present an important composite system that promises numerous applications. The present study probes the collective plasmonic characteristics and resulting photothermal behavior of close-packed 2D Au nanoparticle clusters to delineate the effects of the cluster size, interparticle distance, and particle size. Smaller nanoparticles (20 and 40 nm in diameter) that exhibit low individual scattering and high absorption were considered for their relevance to photothermal applications. In contrast to typical literature studies, the present study compares the optical response of clusters of different sizes ranging from a single nanoparticle up to large assemblies of 61 nanoparticles. Increasing the cluster size induces significant changes to the spectral position and optophysical characteristics. Based on the model outcome, an optimal cluster size for maximum absorption per nanoparticle is also determined for enhanced photothermal effects. The effect of the particle size and interparticle distance is investigated to elucidate the nature of interaction in terms of near-field and far-field coupling. The photothermal effect resulting from absorption is compared for different cluster sizes and interparticle distances considering a homogeneous water medium. A strong dependence of the steady-state temperature of the nanoparticles on the cluster size, particle position in the cluster, incident light polarization, and interparticle distance provides new physical insight into the local temperature control of plasmonic nanostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000503919500061 Publication Date 2019-11-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited Open Access
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:164530 Serial 5938
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Martens, J.A.; Lenaerts, S.
  Title Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 117 Issue 37 Pages 19142-19145
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Gold-silver alloy nanoparticles display surface plasmon resonance (SPR) over a broad range of the UV-vis spectrum. We propose a model to predict the SPR wavelength of gold-silver alloy colloids based on the combined effect of alloy composition and particle size. The SPR wavelength is derived from extinction spectra simulated using available experimental dielectric constant data and accounts for particle size by applying Mie theory. Comparison of calculated values with experimental data evidences the accuracy of the model. The new SPR wavelength estimation tool will be of particular interest for developing dedicated bimetallic plasmonic nanostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000330162600042 Publication Date 2013-08-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited 51 Open Access
  Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. JAM. acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 4.536; 2013 IF: 4.835
  Call Number UA @ admin @ c:irua:114837 Serial 5985
Permanent link to this record
 

 
Author Sirotina, A.P.; Callaert, C.; Volykhov, A.A.; Frolov, A.S.; Sanchez-Barriga, J.; Knop-Gericke, A.; Hadermann, J.; Yashina, L.V.
  Title Mechanistic studies of gas reactions with multicomponent solids : what can we learn by combining NAP XPS and atomic resolution STEM/EDX? Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 123 Issue 43 Pages 26201-26210
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Rapid development of experimental techniques has enabled real time studies of solid gas reactions at the level reaching the atomic scale. In the present paper, we focus on a combination of atomic resolution STEM/EDX, which visualizes the reaction zone, and near ambient pressure (NAP) XPS, which collects information for a surface layer of variable thickness under reaction conditions. We compare the behavior of two affined topological insulators, Bi2Te3 and Sb2Te3. We used a simple reaction with molecular oxygen occurring at 298 K, which is of practical importance to avoid material degradation. Despite certain limitations, a combination of in situ XPS and ex situ cross-sectional STEM/EDX allowed us to obtain a self-consistent picture of the solid gas reaction mechanism for oxidation of Sb2Te3 and Bi2Te3 crystals, which includes component redistribution between the oxide and the subsurface layer and Te segregation with formation of a thin ordered layer at the interface. The process is multistep in case of both compounds. At the very beginning of the oxidation process the reactivity is determined by the energy benefit of the corresponding element oxygen bond formation. Further in the oxidation process, the behavior of these two compounds becomes similar and features component redistribution between the oxide and the subsurface layer.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000493865700019 Publication Date 2019-10-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited Open Access
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:164664 Serial 6310
Permanent link to this record
 

 
Author Eren, I.; Ozen, S.; Sozen, Y.; Yagmurcukardes, M.; Sahin, H.
  Title Vertical van der Waals heterostructure of single layer InSe and SiGe Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 123 Issue 51 Pages 31232-31237
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We present a first-principles investigation on the stability, electronic structure, and mechanical response of ultrathin heterostructures composed of single layers of InSe and SiGe. First, by performing total energy optimization and phonon calculations, we show that single layers of InSe and SiGe can form dynamically stable heterostructures in 12 different stacking types. Valence and conduction band edges of the heterobilayers form a type-I heterojunction having a tiny band gap ranging between 0.09 and 0.48 eV. Calculations on elastic-stiffness tensor reveal that two mechanically soft single layers form a heterostructure which is stiffer than the constituent layers because of relatively strong interlayer interaction. Moreover, phonon analysis shows that the bilayer heterostructure has highly Raman active modes at 205.3 and 43.7 cm(-1), stemming from the out-of-plane interlayer mode and layer breathing mode, respectively. Our results show that, as a stable type-I heterojunction, ultrathin heterobilayer of InSe/SiGe holds promise for nanoscale device applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000505632900050 Publication Date 2019-12-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited Open Access
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:165718 Serial 6332
Permanent link to this record
 

 
Author Loenders, B.; Engelmann, Y.; Bogaerts, A.
  Title Plasma-Catalytic Partial Oxidation of Methane on Pt(111): A Microkinetic Study on the Role of Different Plasma Species Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 5 Pages 2966-2983
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
  Abstract We use microkinetic modeling to examine the potential of plasma-catalytic partial oxidation (POX) of CH4 as a promising new approach to produce oxygenates. We study how different plasma species affect POX of CH4 on the Pt(111) surface, and we discuss the associated kinetic and mechanistic changes. We discuss the effect of vibrationally excited CH4 and O2, as well as plasma-generated radicals and stable intermediates. Our results show that vibrational excitation enhances the turnover frequency (TOF) of catalytic CH4 dissociation and has good potential for improving the selectivities toward CH3OH, HCOOH, and C2 hydrocarbons. Nevertheless, when also considering plasma-generated radicals, we find that these species mainly govern the surface chemistry. Additionally, we find that plasma-generated radicals and stable intermediates enhance the TOFs of COx and oxygenates, increase the selectivity toward oxygenates, and make the formation of HCOOH more significant on Pt(111). We also briefly illustrate the potential impact of Eley−Rideal reactions that involve plasma-generated radicals. Finally, we reveal how various radicals affect the catalyst surface chemistry and we link this to the formation of different products. This allows us to make suggestions on how the plasma composition should be altered to improve the formation of desired products.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000619760700017 Publication Date 2021-02-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited Open Access OpenAccess
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, S001619N ; H2020 European Research Council, 810182 ; We thank Tom Butterworth for the interesting discussions regarding the calculation of the vibrational populations of methane and for taking the time to share his thoughts and experiences on the matter. This research is supported by the FWO-SBO project PLASMACATDesign (grant number S001619N). We also acknowledge financial support from the TOP-BOF project of the University of Antwerp and from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement no. 810182SCOPE ERC Synergy project). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the University of Antwerp. Approved Most recent IF: 4.536
  Call Number PLASMANT @ plasmant @c:irua:175873 Serial 6672
Permanent link to this record
 

 
Author Renero-Lecuna, C.; Herrero, A.; Jimenez de Aberasturi, D.; Martínez-Flórez, M.; Valiente, R.; Mychinko, M.; Bals, S.; Liz-Marzán, L.M.
  Title Nd3+-Doped Lanthanum Oxychloride Nanocrystals as Nanothermometers Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 36 Pages 19887-19896
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The development of optical nanothermometers operating in the near-infrared (NIR) is of high relevance toward temperature measurements in biological systems. We propose herein the use of Nd3+-doped lanthanum oxychloride nanocrystals as an efficient system with intense photoluminescence under NIR irradiation in the first biological transparency window and emission in the second biological window with excellent emission stability over time under 808 nm excitation, regardless of Nd3+ concentration, which can be considered as a particular strength of our system. Additionally, surface passivation through overgrowth of an inert LaOCl shell around optically active LaOCl/Nd3+ cores was found to further enhance the photoluminescence intensity and also the lifetime of the 1066 nm, 4F3/2 to 4I11/2 transition, without affecting its (ratiometric) sensitivity toward temperature changes. As required for biological applications, we show that the obtained (initially hydrophobic) nanocrystals can be readily transferred into aqueous solvents with high, long-term stability, through either ligand exchange or encapsulation with an amphiphilic polymer.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000697335100031 Publication Date 2021-09-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited 9 Open Access OpenAccess
  Notes The authors thank the financial support of the European Research Council (ERC-AdG-2017 787510, ERC-CoG-2019 815128) and of the European Commission (EUSMI, Grant 731019). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency−Grant MDM-2017−0720. Realnano; sygmaSB Approved Most recent IF: 4.536
  Call Number EMAT @ emat @c:irua:181671 Serial 6831
Permanent link to this record
 

 
Author Sanchez-Iglesias, A.; Jenkinson, K.; Bals, S.; Liz-Marzan, L.M.
  Title Kinetic regulation of the synthesis of pentatwinned gold nanorods below room temperature Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 43 Pages 23937-23944
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The synthesis of gold nanorods requires the presence of symmetry-breaking and shape-directing additives, among which bromide ions and quaternary ammonium surfactants have been reported as essential. As a result, hexadecyltrimethylammonium bromide (CTAB) has been selected as the most efficient surfactant to direct anisotropic growth. One of the difficulties arising from this selection is the low solubility of CTAB in water at room temperature, and therefore the seeded growth of gold nanorods is usually performed at 25 degrees C or above, which has restricted so far the analysis of kinetic effects derived from lower temperatures. We report a systematic study of the synthesis of gold nanorods from pentatwinned seeds using hexadecyltrimethylammonium chloride (CTAC) as the principal surfactant and a low concentration of bromide as shape-directing agent. Under these conditions, the synthesis can be performed at temperatures as low as 8 degrees C, and the corresponding kinetic effects can be studied, resulting in temperature-controlled aspect ratio tunability.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000716453300038 Publication Date 2021-10-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited 6 Open Access OpenAccess
  Notes realnano; sygmaSB; This work was supported by the National Science Foundation (NSF) under award NSF CHE-1808502 (P.C. and I.J.). This work made use of the EPIC facility of Northwestern University's NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN, and Northwestern's MRSEC program (NSF DMR-1720139). D.A E. and S.B. acknowledge funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128 REALNANO and Grant Agreement No. 731019 EUSMI). Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:184104 Serial 6868
Permanent link to this record
 

 
Author Zhou, X.-G.; Yang, C.-Q.; Sang, X.; Li, W.; Wang, L.; Yin, Z.-W.; Han, J.-R.; Li, Y.; Ke, X.; Hu, Z.-Y.; Cheng, Y.-B.; Van Tendeloo, G.
  Title Probing the electron beam-induced structural evolution of halide perovskite thin films by scanning transmission electron microscopy Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 19 Pages 10786-10794
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract A deep understanding of the fine structure at the atomic scale of halide perovskite materials has been limited by their sensitivity to the electron beam that is widely used for structural characterization. The sensitivity of a gamma-CsPbIBr2 perovskite thin film under electron beam irradiation is revealed by scanning transmission electron microscopy (STEM) through a universal large-range electron dose measurement, which is based on discrete single-electron events in the STEM mode. Our research indicates that the gamma-CsPbIBr2 thin film undergoes structural changes with increasing electron overall dose (e(-).A(-2)) rather than dose rate (e(-).A(-2).s(-1)), which suggests that overall dose is the key operative parameter. The electron beam-induced structural evolution of gamma-CsPbIBr2 is monitored by fine control of the electron beam dose, together with the analysis of high-resolution (S)TEM, diffraction, and energy-dispersive X-ray spectroscopy. Our results show that the gamma-CsPbIBr2 phase first forms an intermediate phase [e.g., CsPb(1-x)(IBr)((3-y))] with a superstructure of ordered vacancies in the pristine unit cell, while a fraction of Pb2+ is reduced to Pb-0. As the electron dose increases, Pb nanoparticles precipitate, while the remaining framework forms the Cs2IBr phase, accompanied by some amorphization. This work provides guidelines to minimize electron beam irradiation artifacts for atomic-resolution imaging on CsPbIBr2 thin films.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000655640900061 Publication Date 2021-05-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:179187 Serial 6880
Permanent link to this record
 

 
Author Altantzis, T.; Wang, D.; Kadu, A.; van Blaaderen, A.; Bals, S.
  Title Optimized 3D Reconstruction of Large, Compact Assemblies of Metallic Nanoparticles Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 47 Pages 26240-26246
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
  Abstract 3D characterization of assemblies of nanoparticles is of great importance to determine their structure-property connection. Such investigations become increasingly more challenging when the assemblies become larger and more compact. In this paper, we propose an optimized approach for electron tomography to minimize artefacts related to beam broadening in High Angle Annular Dark-Field Scanning Transmission Electron Microscopy mode. These artefacts are typically present at one side of the reconstructed 3D data set for thick nanoparticle assemblies. To overcome this problem, we propose a procedure in which two tomographic tilt series of the same sample are acquired. After acquiring the first series, the sample is flipped over 180o, and a second tilt series is acquired. By merging the two reconstructions, blurring in the reconstructed volume is minimized. Next, this approach is combined with an advanced three-dimensional reconstruction algorithm yielding quantitative structural information. Here, the approach is applied to a thick and compact assembly of spherical Au nanoparticles, but the methodology can we used to investigate a broad range of samples.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000752810100031 Publication Date 2021-12-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited 4 Open Access OpenAccess
  Notes This work was supported by the European Research Council (grant No. 815128−REALNANO to S.B.). T.A. acknowledges the University of Antwerp Research fund (BOF). D.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union’s Seventh Framework Program (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom).; sygmaSB Approved Most recent IF: 4.536
  Call Number EMAT @ emat @c:irua:185224 Serial 6904
Permanent link to this record
 

 
Author Akbali, B.; Yagmurcukardes, M.; Peeters, F.M.; Lin, H.-Y.; Lin, T.-Y.; Chen, W.-H.; Maher, S.; Chen, T.-Y.; Huang, C.-H.
  Title Determining the molecular orientation on the metal nanoparticle surface through surface-enhanced Raman spectroscopy and density functional theory simulations Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 29 Pages 16289-16295
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We report here the efficacy of surface-enhanced Raman spectroscopy (SERS) measurements as a probe for molecular orientation. 4-Aminobenzoic acid (PABA) on a surface consisting of silver (Ag) nanoparticles (NPs) is investigated. We find that the orientation of the PABA molecule on the SERS substrate is estimated based on the relative change in the magnitude of the C-H stretching bands on the SERS substrate, and it is found that the molecule assumes a horizontal orientation on the Ag-NP surface. The strong molecule-metal interaction is determined by an abnormal enhanced SERS band appearing at 980 cm(-1), and the peak is assigned to an out-of-plane amine vibrational mode, which is supported by our ab initio calculations. DFT-based Raman activity calculations corroborate the SERS results, revealing that (i) the PABA molecule attaches to the surface of Ag-NPs with its alpha dimers rather than single-molecule binding and (ii) the molecule preserves its alpha dimers in an aqueous environment. Our results demonstrate that SERS can be used to gain deeper insights into the molecular orientation on metal nanoparticle surfaces.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000680445800055 Publication Date 2021-07-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited 9 Open Access Not_Open_Access
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:180455 Serial 6978
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Mortazavi, B.; Ziabari, A.A.; Khatibani, A.B.; Nguyen, C., V; Ghergherehchi, M.; Gogova, D.
  Title Point defects in a two-dimensional ZnSnN₂ nanosheet : a first-principles study on the electronic and magnetic properties Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 23 Pages 13067-13075
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The reduction of dimensionality is a very effective way to achieve appealing properties in two-dimensional materials (2DMs). First-principles calculations can greatly facilitate the prediction of 2DM properties and find possible approaches to enhance their performance. We employed first-principles calculations to gain insight into the impact of different types of point defects (vacancies and substitutional dopants) on the electronic and magnetic properties of a ZnSnN2 (ZSN) monolayer. We show that Zn, Sn, and N + Zn vacancy-defected structures are p-type conducting, while the defected ZSN with a N vacancy is n-type conducting. For substitutional dopants, we found that all doped structures are thermally and energetically stable. The most stable structure is found to be B-doping at the Zn site. The highest work function value (5.0 eV) has been obtained for Be substitution at the Sn site. Li-doping (at the Zn site) and Be-doping (at the Sn site) are p-type conducting, while B-doping (at the Zn site) is n-type conducting. We found that the considered ZSN monolayer-based structures with point defects are magnetic, except those with the N vacancy defects and Be-doped structures. The ab initio molecular dynamics simulations confirm that all substitutionally doped and defected structures are thermally stable. Thus, our results highlight the possibility of tuning the magnetism in ZnSnN2 monolayers through defect engineering.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000664312500063 Publication Date 2021-06-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:179741 Serial 7012
Permanent link to this record
 

 
Author Canossa, S.; Ferrari, E.; Sippel, P.; Fischer, J.K.H.; Pfattner, R.; Frison, R.; Masino, M.; Mas-Torrent, M.; Lunkenheimer, P.; Rovira, C.; Girlando, A.
  Title Tetramethylbenzidine-TetrafluoroTCNQ (TMB-TCNQF(4)) : a narrow-gap semiconducting salt with room-temperature relaxor ferroelectric behavior Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 46 Pages 25816-25824
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract We present an extension and revision of the spectroscopic and structural data of the mixed-stack charge-transfer (CT) crystal 3,3 ',5,5 '-tetramethylbenzidine-tetrafluorotetracyano-quinodimethane (TMB-TCNQF4), associated with new electric and dielectric measurements. Refinement of synchrotron structural data at low temperature has led to revise the previously reported C2/m structure. The revised structure is P2(1)/m, with two dimerized stacks per unit cell, and is consistent with the low temperature vibrational data. However, polarized Raman data in the low-frequency region also indicate that by increasing temperature above 200 K, the structure presents an increasing degree of disorder, mainly along the stack axis. X-ray diffraction data at room temperature have confirmed that the correct structure is P2(1)/ m -no phase transitions -but did not allow substantiating the presence of disorder. On the other hand, dielectric measurements have evidenced a typical relaxor ferroelectric behavior already at room temperature, with a peak in the real part of dielectric constant epsilon'(T,v) around 200 K and 0.1 Hz. The relaxor behavior is explained in terms of the presence of spin solitons separating domains of opposite polarity that yield to ferroelectric nanodomains. TMB-TCNQF(4) is confirmed to be a narrow-gap band semiconductor (Ea similar to 0.3 eV) with a room-temperature conductivity of similar to 10(-4) Omega(-1) cm(-1).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000731170500008 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited Open Access Not_Open_Access
  Notes A.G. thanks Prof. Pascale Foury-Leylekian for very helpful discussions about the crystallographic issues. R.F. thanks Prof. Anthony Linden for his help in the X-ray diffraction data collection. J.K.H.F. and P.L. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via the Transregional Collaborative Research Center TRR80 (Augsburg, Munich). R.P. and M.M.-T. acknowledge support from the Marie Curie Cofund, Beatriu de Pinós Fellowships (Grant nos. AGAUR 2017 BP 00064). This work was also supported by the Spanish Ministry project GENESIS PID2019-111682RBI00, the “Severo Ochoa” Programme for Centers of Excellence in R&D (FUNFUTURE, CEX2019-000917-S), and the Generalitat de Catalunya (2017-SGR-918). The Elettra Synchrotron (CNR Trieste) is acknowledged for granting the beamtime at the single-crystal diffraction beamline XRD1 (Proposal ID 20185483). In Parma, the work has benefited from the equipment and support of the COMP-HUB Initiative, funded by the “Departments of Excellence” program of the Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:184866 Serial 7066
Permanent link to this record
 

 
Author Demiroglu, I.; Karaaslan, Y.; Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C.
  Title Computation of the thermal expansion coefficient of graphene with Gaussian approximation potentials Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 26 Pages 14409-14415
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Direct experimental measurement of thermal expansion coefficient without substrate effects is a challenging task for two-dimensional (2D) materials, and its accurate estimation with large-scale ab initio molecular dynamics is computationally very expensive. Machine learning-based interatomic potentials trained with ab initio data have been successfully used in molecular dynamics simulations to decrease the computational cost without compromising the accuracy. In this study, we investigated using Gaussian approximation potentials to reproduce the density functional theory-level accuracy for graphene within both lattice dynamical and molecular dynamical methods, and to extend their applicability to larger length and time scales. Two such potentials are considered, GAP17 and GAP20. GAP17, which was trained with pristine graphene structures, is found to give closer results to density functional theory calculations at different scales. Further vibrational and structural analyses verify that the same conclusions can be deduced with density functional theory level in terms of the reasoning of the thermal expansion behavior, and the negative thermal expansion behavior is associated with long-range out-of-plane phonon vibrations. Thus, it is argued that the enabled larger system sizes by machine learning potentials may even enhance the accuracy compared to small-size-limited ab initio molecular dynamics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000672734100027 Publication Date 2021-06-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:179850 Serial 7719
Permanent link to this record
 

 
Author Van de Sompel, P.; Khalilov, U.; Neyts, E.C.
  Title Contrasting H-etching to OH-etching in plasma-assisted nucleation of carbon nanotubes Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 14 Pages 7849-7855
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract To gain full control over the growth of carbon nanotubes (CNTs) using plasma-enhanced chemical vapor deposition (PECVD), a thorough understanding of the underlying plasma-catalyst mechanisms is required. Oxygen-containing species are often used as or added to the growth precursor gas, but these species also yield various radicals and ions, which may simultaneously etch the CNT during the growth. At present, the effect of these reactive species on the growth onset has not yet been thoroughly investigated. We here report on the etching mechanism of incipient CNT structures from OH and O radicals as derived from combined (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations. Our results indicate that the oxygen-containing radicals initiate a dissociation process. In particular, we show how the oxygen species weaken the interaction between the CNT and the nanocluster. As a result of this weakened interaction, the CNT closes off and dissociates from the cluster in the form of a fullerene. Beyond the specific systems studied in this work, these results are generically important in the context of PECVD-based growth of CNTs using oxygen-containing precursors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000641307100032 Publication Date 2021-04-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record
  Impact Factor (down) 4.536 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:178393 Serial 7729
Permanent link to this record
 

 
Author Nematollahi, P.; Ma, H.; Schneider, W.F.; Neyts, E.C.
  Title DFT and microkinetic comparison of ru-doped porphyrin-like graphene and nanotubes toward catalytic formic acid decomposition and formation Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 34 Pages 18673-18683
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Immobilization of single metal atoms on a solid host opens numerous possibilities for catalyst designs. If that host is a two-dimensional sheet, sheet curvature becomes a design parameter potentially complementary to host and metal composition. Here, we use a combination of density functional theory calculations and microkinetic modeling to compare the mechanisms and kinetics of formic acid decomposition and formation, chosen for their relevance as a potential hydrogen storage medium, over single Ru atoms anchored to pyridinic nitrogen in a planar graphene flake (RuN4-G) and curved carbon nanotube (RuN4-CNT). Activation barriers are lowered and the predicted turnover frequencies are increased over RuN4-CNT relative to RuN4-CNT. The results highlight the potential of curvature control as a means to achieve high performance and robust catalysts.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000693413400013 Publication Date 2021-08-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:181538 Serial 7805
Permanent link to this record
 

 
Author Korkmaz, Y.A.; Bulutay, C.; Sevik, C.
  Title k · p parametrization and linear and circular dichroism in strained monolayer (Janus) transition metal dichalcogenides from first-principles Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 13 Pages 7439-7450
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Semiconductor monolayer transition metal dichalcogenides (TMDs) have brought a new paradigm by introducing optically addressable valley degree of freedom. Concomitantly, their high flexibility constitutes a unique platform that links optics to mechanics via valleytronics. With the intention to expedite the research in this direction, we investigated ten TMDs, namely MoS2, MoSe2, MoTe2, WS2, WSe2, WTe2, MoSSe, MoSeTe, WSSe, and WSeTe, which particularly includes their so-called janus types (JTMDs). First, we obtained their electronic band structures using regular and hybrid density functional theory (DFT) calculations in the presence of the spin-orbit coupling and biaxial or uniaxial strain. Our DFT results indicated that against the expectations based on their reported piezoelectric behavior, JTMDs typically interpolated between the standard band properties of the constituent TMDs without producing a novel feature. Next, by fitting to our DFT data we generated both spinless and spinful k center dot p parameter sets which are quite accurate over the K valley where the optical activity occurs. As an important application of this parametrization, we considered the circular and linear dichroism under strain. Among the studied (J)TMDs, WTe2 stood out with its largest linear dichroism under uniaxial strain because of its narrower band gap and large K valley uniaxial deformation potential. This led us to suggest WTe2 monolayer membranes for optical polarization-based strain measurements, or conversely, as strain tunable optical polarizers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000639044400045 Publication Date 2021-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.536 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:178264 Serial 8136
Permanent link to this record
 

 
Author Bigiani, L.; Gasparotto, A.; Maccato, C.; Sada, C.; Verbeeck, J.; Andreu, T.; Morante, J.R.; Barreca, D.
  Title Dual improvement of beta-MnO₂ oxygen evolution electrocatalysts via combined substrate control and surface engineering Type A1 Journal article
  Year 2020 Publication Chemcatchem Abbreviated Journal Chemcatchem
  Volume Issue Pages 1-10
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The development of catalysts with high intrinsic activity towards the oxygen evolution reaction (OER) plays a critical role in sustainable energy conversion and storage. Herein, we report on the development of efficient (photo)electrocatalysts based on functionalized MnO(2)systems. Specifically,beta-MnO(2)nanostructures grown by plasma enhanced-chemical vapor deposition on fluorine-doped tin oxide (FTO) or Ni foams were decorated with Co(3)O(4)or Fe(2)O(3)nanoparticles by radio frequency sputtering. Upon functionalization, FTO-supported materials yielded a performance increase with respect to bare MnO2, with current densities at 1.65 Vvs. the reversible hydrogen electrode (RHE) up to 3.0 and 3.5 mA/cm(2)in the dark and under simulated sunlight, respectively. On the other hand, the use of highly porous and conductive Ni foam substrates enabled to maximize cooperative interfacial effects between catalyst components. The best performing Fe2O3/MnO(2)system provided a current density of 17.9 mA/cm(2)at 1.65 Vvs. RHE, an overpotential as low as 390 mV, and a Tafel slope of 69 mV/decade under dark conditions, comparing favorably with IrO(2)and RuO(2)benchmarks. Overall, the control of beta-MnO2/substrate interactions and the simultaneous surface property engineering pave the way to an efficient energy generation from abundant natural resources.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000571229000001 Publication Date 2020-09-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.5 Times cited 5 Open Access Not_Open_Access
  Notes ; This work has been financially supported by Padova University DOR 2017-2019, P-DiSC #03BIRD2016-UNIPD and #03BIRD2018-UNIPD projects. A.G. acknowledges AMGA Foundation and INSTM Consortium. J.V. gratefully acknowledges funding from the GOA project “Solarpaint” of the University of Antwerp and the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717-ESTEEM3. ; esteem3TA; esteem3reported Approved Most recent IF: 4.5; 2020 IF: 4.803
  Call Number UA @ admin @ c:irua:171949 Serial 6493
Permanent link to this record
 

 
Author Liu, J.-W.; Wu, S.-M.; Wang, L.-Y.; Tian, G.; Qin, Y.; Wu, J.-X.; Zhao, X.-F.; Zhang, Y.-X.; Chang, G.-G.; Wu, L.; Zhang, Y.-X.; Li, Z.-F.; Guo, C.-Y.; Janiak, C.; Lenaerts, S.; Yang, X.-Y.
  Title Pd/Lewis acid synergy in macroporous Pd@Na-ZSM-5 for enhancing selective conversion of biomass Type A1 Journal article
  Year 2020 Publication Chemcatchem Abbreviated Journal Chemcatchem
  Volume Issue Pages 1-6
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Pd nanometal particles encapsulated in macroporous Na-ZSM-5 with only Lewis acid sites have been successfully synthesized by a steam-thermal approach. The synergistic effect of Pd and Lewis acid sites have been investigated for significant enhancement of the catalytic selectivity towards furfural alcohol in furfural hydroconversion.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000554645800001 Publication Date 2020-07-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.5 Times cited 1 Open Access
  Notes ; We acknowledge a joint DFG-NSFC project (DFG JA466/39-1, NSFC grant 51861135313). This work was also supported by National Key R&D Program of China (2017YFC1103800), NSFC (U1662134, 21711530705), Jilin Province Science and Technology Development Plan (20180101208JC), HPNSF (2016CFA033), FRFCU (19lgzd16) and ISTCP (2015DFE52870). ; Approved Most recent IF: 4.5; 2020 IF: 4.803
  Call Number UA @ admin @ c:irua:171178 Serial 6579
Permanent link to this record
 

 
Author Barich, H.; Cánovas, R.; De Wael, K.
  Title Electrochemical identification of hazardous phenols and their complex mixtures in real samples using unmodified screen-printed electrodes Type A1 Journal article
  Year 2022 Publication Journal of electroanalytical chemistry : an international journal devoted to all aspects of electrode kynetics, interfacial structure, properties of electrolytes, colloid and biological electrochemistry. Abbreviated Journal J Electroanal Chem
  Volume 904 Issue Pages 115878
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract The electrochemical behavior of some of the most relevant endocrine-disrupting phenols using unmodified carbon screen-printed electrodes (SPEs) is described for the first time. Experiments were made to assess the electrochemical behavior of phenol (PHOH), pentachlorophenol (PCP), 4-tert octylphenol (OP) and bisphenol A (BPA) and their determination in the most favorable conditions, using voltammetric methods such as cyclic voltammetry (CV), linear sweep voltammetry (LSV) and square wave voltammetry (SWV) in Britton Robinson (BR) buffer. Further, the usefulness of the electrochemical approach was validated with real samples from a local river and was compared to commercial phenols test kit, which is commonly used for on-site screening in industrial streams and wastewaters. Finally, the approach was compared with a lab-bench standard method using real samples, i.e., high-performance liquid chromatography with a photodiode array detector (HPLC-DAD).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000741151200005 Publication Date 2021-11-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.5 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.5
  Call Number UA @ admin @ c:irua:184384 Serial 7150
Permanent link to this record
 

 
Author Yang, S.; An, H.; Anastasiadou, D.; Xu, W.; Wu, L.; Wang, H.; de Ruiter, J.; Arnouts, S.; Figueiredo, M.C.; Bals, S.; Altantzis, T.; van der Stam, W.; Weckhuysen, B.M.
  Title Waste-derived copper-lead electrocatalysts for CO₂ reduction Type A1 Journal article
  Year 2022 Publication ChemCatChem Abbreviated Journal Chemcatchem
  Volume 14 Issue 18 Pages e202200754-11
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
  Abstract It remains a real challenge to control the selectivity of the electrocatalytic CO2 reduction (eCO(2)R) reaction to valuable chemicals and fuels. Most of the electrocatalysts are made of non-renewable metal resources, which hampers their large-scale implementation. Here, we report the preparation of bimetallic copper-lead (CuPb) electrocatalysts from industrial metallurgical waste. The metal ions were extracted from the metallurgical waste through simple chemical treatment with ammonium chloride, and CuxPby electrocatalysts with tunable compositions were fabricated through electrodeposition at varying cathodic potentials. X-ray spectroscopy techniques showed that the pristine electrocatalysts consist of Cu-0, Cu1+ and Pb2+ domains, and no evidence for alloy formation was found. We found a volcano-shape relationship between eCO(2)R selectivity toward two electron products, such as CO, and the elemental ratio of Cu and Pb. A maximum Faradaic efficiency towards CO was found for Cu9.00Pb1.00, which was four times higher than that of pure Cu, under the same electrocatalytic conditions. In situ Raman spectroscopy revealed that the optimal amount of Pb effectively improved the reducibility of the pristine Cu1+ and Pb2+ domains to metallic Cu and Pb, which boosted the selectivity towards CO by synergistic effects. This work provides a framework of thinking to design and tune the selectivity of bimetallic electrocatalysts for CO2 reduction through valorization of metallurgical waste.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000853941300001 Publication Date 2022-06-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.5 Times cited 7 Open Access OpenAccess
  Notes S.Y and B.M.W. acknowledge support from the EU Framework Programme for Research and Innovation Horizon 2020 (SOCRATES-721385; project website: http://etn-socrates.eu/). W.v.d.S., M.C.F. and B.M.W. acknowledge support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research'. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). The Beijing Synchrotron Radiation Facility (1W1B, BSRF) is acknowledged for the beamtime. We are grateful to Annelies van der Bok and Bas Salzmann (Condensed Matter and Interfaces, Utrecht University, UU) for the support with the ICP-OES measurements. The authors thank dr. Robin Geitenbeek, Nikos Nikolopoulos, Ioannis Nikolopoulos, Jochem Wijten and Joris Janssens (Inorganic Chemistry and Catalysis, UU) for helpful discussions and technical support. The authors also thank Yuang Piao (Materials Chemistry and Catalysis, UU) for the help in the preparation of the figures of the article. Approved Most recent IF: 4.5
  Call Number UA @ admin @ c:irua:190703 Serial 7226
Permanent link to this record
 

 
Author Bal, K.M.; Fukuhara, S.; Shibuta, Y.; Neyts, E.C.
  Title Free energy barriers from biased molecular dynamics simulations Type A1 Journal article
  Year 2020 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
  Volume 153 Issue 11 Pages 114118
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Atomistic simulation methods for the quantification of free energies are in wide use. These methods operate by sampling the probability density of a system along a small set of suitable collective variables (CVs), which is, in turn, expressed in the form of a free energy surface (FES). This definition of the FES can capture the relative stability of metastable states but not that of the transition state because the barrier height is not invariant to the choice of CVs. Free energy barriers therefore cannot be consistently computed from the FES. Here, we present a simple approach to calculate the gauge correction necessary to eliminate this inconsistency. Using our procedure, the standard FES as well as its gauge-corrected counterpart can be obtained by reweighing the same simulated trajectory at little additional cost. We apply the method to a number of systems—a particle solvated in a Lennard-Jones fluid, a Diels–Alder reaction, and crystallization of liquid sodium—to demonstrate its ability to produce consistent free energy barriers that correctly capture the kinetics of chemical or physical transformations, and discuss the additional demands it puts on the chosen CVs. Because the FES can be converged at relatively short (sub-ns) time scales, a free energy-based description of reaction kinetics is a particularly attractive option to study chemical processes at more expensive quantum mechanical levels of theory.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000574665600004 Publication Date 2020-09-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.4 Times cited Open Access
  Notes Japan Society for the Promotion of Science, 19H02415 18J22727 ; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; This work was supported, in part, by a Grant-in-Aid for Scientific Research (B) (Grant No. 19H02415) and Grant-in-Aid for a JSPS Research Fellow (Grant No. 18J22727) from the Japan Society for the Promotion of Science (JSPS), Japan. K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation – Flanders), Grant No. 12ZI420N. S.F. was supported by JSPS through the Program for Leading Graduate Schools (MERIT). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. The authors are grateful to Pablo Piaggi for making the pair entropy CV code publicly available. Approved Most recent IF: 4.4; 2020 IF: 2.965
  Call Number PLASMANT @ plasmant @c:irua:172456 Serial 6420
Permanent link to this record
 

 
Author Baskurt, M.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
  Title Stable single-layers of calcium halides (CaX₂, X = F, Cl, Br, I) Type A1 Journal article
  Year 2020 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
  Volume 152 Issue 16 Pages 164116-164118
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract By means of density functional theory based first-principles calculations, the structural, vibrational, and electronic properties of 1H- and 1T-phases of single-layer CaX2 (X = F, Cl, Br, or I) structures are investigated. Our results reveal that both the 1H- and 1T-phases are dynamically stable in terms of their phonon band dispersions with the latter being the energetically favorable phase for all single-layers. In both phases of single-layer CaX2 structures, significant phonon softening occurs as the atomic radius increases. In addition, each structural phase exhibits distinctive Raman active modes that enable one to characterize either the phase or the structure via Raman spectroscopy. The electronic band dispersions of single-layer CaX2 structures reveal that all structures are indirect bandgap insulators with a decrease in bandgaps from fluorite to iodide crystals. Furthermore, the calculated linear elastic constants, in-plane stiffness, and Poisson ratio indicate the ultra-soft nature of CaX2 single-layers, which is quite important for their nanoelastic applications. Overall, our study reveals that with their dynamically stable 1T- and 1H-phases, single-layers of CaX2 crystals can be alternative ultra-thin insulators.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000531819100001 Publication Date 2020-04-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.4 Times cited 14 Open Access
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the TUBITAK under Project No. 117F095. H.S. acknowledges support from the Turkish Academy of Sciences under the GEBIP program. M.Y. was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 4.4; 2020 IF: 2.965
  Call Number UA @ admin @ c:irua:169543 Serial 6615
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
  Title Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory Type A1 Journal article
  Year 2022 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
  Volume 157 Issue 18 Pages 184113-10
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We calculate bubble nucleation rates in a Lennard-Jones fluid through explicit molecular dynamics simulations. Our approach-based on a recent free energy method (dubbed reweighted Jarzynski sampling), transition state theory, and a simple recrossing correction-allows us to probe a fairly wide range of rates in several superheated and cavitation regimes in a consistent manner. Rate predictions from this approach bridge disparate independent literature studies on the same model system. As such, we find that rate predictions based on classical nucleation theory, direct brute force molecular dynamics simulations, and seeding are consistent with our approach and one another. Published rates derived from forward flux sampling simulations are, however, found to be outliers. This study serves two purposes: First, we validate the reliability of common modeling techniques and extrapolation approaches on a paradigmatic problem in materials science and chemical physics. Second, we further test our highly generic recipe for rate calculations, and establish its applicability to nucleation processes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000885260600002 Publication Date 2022-11-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.4 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.4
  Call Number UA @ admin @ c:irua:192076 Serial 7266
Permanent link to this record
 

 
Author Broos, W.; Wittner, N.; Dries, J.; Vlaeminck, S.E.; Gunde-Cimerman, N.; Cornet, I.
  Title Rhodotorula kratochvilovae outperforms Cutaneotrichosporon oleaginosum in the valorisation of lignocellulosic wastewater to microbial oil Type A1 Journal article
  Year 2024 Publication Process biochemistry (1991) Abbreviated Journal
  Volume 137 Issue Pages 229-238
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
  Abstract Rhodotorula kratochvilovae has shown to be a promising species for microbial oil production from lignin-derived compounds. Yet, information on R. kratochvilovae’s detoxification and microbial oil production is scarce. This study investigated the growth and microbial oil production on the phenolic-containing effluent from poplar steam explosion and its detoxification with five R. kratochvilovae strains (EXF11626, EXF9590, EXF7516, EXF3697, EXF3471) and compared them with Cutaneotrichosporon oleaginosum. The R. kratochvilovae strains reached a maximum growth rate up to four times higher than C. oleaginosum. Furthermore, all R. kratochvilovae strains generally degraded phenolics more rapidly and to a larger extent than C. oleaginosum. However, the diluted substrate limited the lipid production by all strains as the maximum lipid content and titre were 10.5% CDW and 0.40 g/L, respectively. Therefore, future work should focus on increasing lipid production by using advanced fermentation strategies and stimulating the enzyme excretion by the yeasts for complex substrate breakdown.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2024-01-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-5113 ISBN Additional Links UA library record
  Impact Factor (down) 4.4 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 4.4; 2024 IF: 2.497
  Call Number UA @ admin @ c:irua:202365 Serial 9087
Permanent link to this record
 

 
Author Ustarroz, J.; Gupta, U.; Hubin, A.; Bals, S.; Terryn, H.
  Title Electrodeposition of Ag nanoparticles onto carbon coated TEM grids : a direct approach to study early stages of nucleation Type A1 Journal article
  Year 2010 Publication Electrochemistry communications Abbreviated Journal Electrochem Commun
  Volume 12 Issue 12 Pages 1706-1709
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract An innovative experimental approach to study the electrodeposition of small nanoparticles and the early stages of electrochemical nucleation and growth is presented. Carbon coated gold TEM grids are used as substrates for the electrodeposition of silver nanoparticles so that electrochemical data, FESEM, HAADFSTEM and HRTEM data can be acquired from the same sample without the need to remove the particles from the substrate. It is shown that the real distribution of nanoparticles cannot be resolved by FESEM whereas HAADFSTEM analysis confirms that a distribution of small nanoparticles (d ≈ 12 nm) coexist with large nanoparticles corresponding to a bimodal size distribution. Besides, particles grown under the same conditions have been found to present different structures such as monocrystals, polycrystals or aggregates of smaller particles.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000285904700010 Publication Date 2010-10-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1388-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.396 Times cited 52 Open Access
  Notes Fwo Approved Most recent IF: 4.396; 2010 IF: 4.287
  Call Number UA @ lucian @ c:irua:87612 Serial 900
Permanent link to this record
 

 
Author Zhang, L.; Batuk, D.; Chen, G.; Tarascon, J.-M.
  Title Electrochemically activated MnO as a cathode material for sodium-ion batteries Type A1 Journal article
  Year 2017 Publication Electrochemistry communications Abbreviated Journal Electrochem Commun
  Volume 77 Issue Pages 81-84
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Besides classical electrode materials pertaining to Li-ion batteries, recent interest has been devoted to pairs of active redox composites having a redox center and an intercalant source. Taking advantage of the NaPFG salt decomposition above 4.2 V. we extrapolate this concept to the electrochemical in situ preparation of F-based MnO composite electrodes for Na-ion batteries. Such electrodes exhibit a reversible discharge capacity of 145 mAh g(-1) at room temperature. The amorphization of pristine MnO electrode after activation is attributed to the electrochemical grinding effect caused by substantial atomic migration and lattice strain build-up upon cycling. (C) 2017 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000399510400019 Publication Date 2017-02-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1388-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.396 Times cited 8 Open Access OpenAccess
  Notes ; This work was partially supported by the Hong Kong Research Grants Council under the General Research Fund Project #611213. L.Z. thanks the HKUST for his Postgraduate Studentship. ; Approved Most recent IF: 4.396
  Call Number UA @ lucian @ c:irua:143648 Serial 4650
Permanent link to this record
 

 
Author Pauwels, D.; Pilehvar, S.; Geboes, B.; Hubin, A.; De Wael, K.; Breugelmans, T.
  Title A new multisine-based impedimetric aptasensing platform Type A1 Journal article
  Year 2016 Publication Electrochemistry communications Abbreviated Journal Electrochem Commun
  Volume 71 Issue Pages 23-27
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
  Abstract In this work an aptamer-based biosensor is combined with a multisine electrochemical impedance spectroscopy sensing methodology into a novel and promising biosensing strategy. Employing a multisine instead of a traditional single sine measuring method allows the detection and quantification of parameters that provide information about the accuracy and reliability of the results, such as noise and distortions. This does not only lead to a shorter measurement time, but it also enables an easy and fast evaluation of the quality of the data and fitting, leading to more accurate results.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000383445000006 Publication Date 2016-07-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.396 Times cited 1 Open Access
  Notes ; ; Approved Most recent IF: 4.396
  Call Number UA @ admin @ c:irua:134765 Serial 5746
Permanent link to this record
 

 
Author Canossa, S.; Gonzalez-Nelson, A.; Shupletsov, L.; Carmen Martin, M.; Van der Veen, M.A.
  Title Overcoming Crystallinity Limitations of Aluminium Metal-Organic Frameworks by Oxalic Acid Modulated Synthesis Type A1 Journal article
  Year 2020 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J
  Volume 26 Issue 16 Pages 3564-3570
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A modulated synthesis approach based on the chelating properties of oxalic acid (H2C2O4) is presented as a robust and versatile method to achieve highly crystalline Al‐based metal‐organic frameworks. A comparative study on this method and the already established modulation by hydrofluoric acid was conducted using MIL‐53 as test system. The superior performance of oxalic acid modulation in terms of crystallinity and absence of undesired impurities is explained by assessing the coordination modes of the two modulators and the structural features of the product. The validity of our approach was confirmed for a diverse set of Al‐MOFs, namely X‐MIL‐53 (X=OH, CH3O, Br, NO2), CAU‐10, MIL‐69, and Al(OH)ndc (ndc=1,4‐naphtalenedicarboxylate), highlighting the potential benefits of extending the use of this modulator to other coordination materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000517650300001 Publication Date 2020-03-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.3 Times cited Open Access OpenAccess
  Notes The Elettra Synchrotron facility (CNR Trieste, Basovizza, Italy) is acknowledged for granting beamtime at the single-crystal diffraction beamline XRD1 (Proposal ID 20185483) and the beamline staff is gratefully thanked for the precious assistance. This work was funded by the European Research Council (grant number 759 212) within the Horizon 2020 Framework Programme (H2020-EU.1.1). The work by A.G.-N. forms part of the research programme of DPI, NEWPOL project 731.015.506. Approved Most recent IF: 4.3; 2020 IF: 5.317
  Call Number EMAT @ emat @c:irua:167706 Serial 6388
Permanent link to this record
 

 
Author Bogaerts, A.
  Title Modeling plasmas in analytical chemistry—an example of cross-fertilization Type A1 Journal article
  Year 2020 Publication Analytical And Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem
  Volume 412 Issue 24 Pages 6059-6083
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract This paper gives an overview of the modeling work developed in our group in the last 25 years for various plasmas used in analytical spectrochemistry, i.e., glow discharges (GDs), inductively coupled plasmas (ICPs), and laser ablation (LA) for sample introduction in the ICP and for laser-induced breakdown spectroscopy (LIBS). The modeling approaches are briefly presented, which are different for each case, and some characteristic results are illustrated. These plasmas are used not only in analytical chemistry but also in other applications, and the insights obtained in these other fields were quite helpful for us to develop models for the analytical plasmas. Likewise, there is now a huge interest in plasma–liquid interaction, atmospheric pressure glow discharges (APGDs), and dielectric barrier discharges (DBDs) for environmental, medical, and materials applications of plasmas. The insights obtained in these fields are also very relevant for ambient desorption/ionization sources and for liquid sampling, which are nowadays very popular in analytical chemistry, and they could be very helpful in developing models for these sources as well.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000522701700005 Publication Date 2020-03-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.3 Times cited Open Access
  Notes M. Aghaei, Z. Chen, D. Autrique, T. Martens, and P. Heirman are gratefully acknowledged for their valuable efforts in the model developments illustrated in this paper. Approved Most recent IF: 4.3; 2020 IF: 3.431
  Call Number PLASMANT @ plasmant @c:irua:168600 Serial 6412
Permanent link to this record
 

 
Author Moro, G.; Barich, H.; Driesen, K.; Montiel, N.F.; Neven, L.; Mendonca, C.D.; Thiruvottriyur Shanmugam, S.; Daems, E.; De Wael, K.
  Title Unlocking the full power of electrochemical fingerprinting for on-site sensing applications Type A1 Journal article
  Year 2020 Publication Analytical And Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem
  Volume Issue Pages 1-14
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Electrochemical sensing for the semi-quantitative detection of biomarkers, drugs, environmental contaminants, food additives, etc. shows promising results in point-of-care diagnostics and on-site monitoring. More specifically, electrochemical fingerprint (EF)-based sensing strategies are considered an inviting approach for the on-site detection of low molecular weight molecules. The fast growth of electrochemical sensors requires defining the concept of direct electrochemical fingerprinting in sensing. The EF can be defined as the unique electrochemical signal or pattern, mostly recorded by voltammetric techniques, specific for a certain molecule that can be used for its quantitative or semi-quantitative identification in a given analytical context with specified circumstances. The performance of EF-based sensors can be enhanced by considering multiple features of the signal (i.e., oxidation or reduction patterns), in combination with statistical data analysis or sample pretreatments or by including electrode surface modifiers to enrich the EF. In this manuscript, some examples of EF-based sensors, strategies to improve their performances, and open challenges are discussed to unlock the full power of electrochemical fingerprinting for on-site sensing applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000523396300002 Publication Date 2020-04-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 4.3 Times cited 3 Open Access
  Notes ; The presented review is the result of a concerted effort and fruitful discussions among enthusiastic, young, and (for the occasion) female researchers of the AXES research group, each of them with specific expertise and background, under the guidance of the corresponding author. The authors acknowledge FWO-Flanders, BOF-UA, IOF-UA, FAPESP and EU for funding. ; Approved Most recent IF: 4.3; 2020 IF: 3.431
  Call Number UA @ admin @ c:irua:168563 Serial 6647
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: