toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Balasubramaniam, Y.; Pobedinskas, P.; Janssens, S.D.; Sakr, G.; Jomard, F.; Turner, S.; Lu, Y.G.; Dexters, W.; Soltani, A.; Verbeeck, J.; Barjon, J.; Nesládek, M.; Haenen, K.;
  Title Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond Type A1 Journal article
  Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 109 Issue 109 Pages 062105
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The fabrication of n-type diamond is essential for the realization of electronic components for extreme environments. We report on the growth of a 66 mu m thick homoepitaxial phosphorus-doped diamond on a (110)-oriented diamond substrate, grown at a very high deposition rate of 33 mu m h(-1). A pristine diamond lattice is observed by high resolution transmission electron microscopy, which indicates the growth of high quality diamond. About 2.9 x 10(16) cm(-3) phosphorus atoms are electrically active as substitutional donors, which is 60% of all incorporated dopant atoms. These results indicate that P-doped (110)-oriented diamond films deposited at high growth rates are promising candidates for future use in high-power electronic applications. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000383183600025 Publication Date 2016-08-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 20 Open Access
  Notes This work was financially supported by the EU through the FP7 Collaborative Project “DIAMANT,” the “H2020 Research and Innovation Action Project” “GreenDiamond” (No. 640947), and the Research Foundation-Flanders (FWO) (Nos. G.0C02.15N and VS.024.16N). J.V. acknowledges funding from the “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint” of the University of Antwerp. The TEM instrument was partly funded by the Hercules fund from the Flemish Government. We particularly thank Dr. J. E. Butler (Naval Research Laboratory, USA) for the sample preparation by laser slicing for TEM analysis, Dr. J. Pernot (Universite Grenoble Alpes/CNRS-Institut Neel, France) for helpful discussions, Ms. C. Vilar (Universite de Versailles St. Quentin en Yvelines, France) for technical help on SEM-CL experiments, and Dr. S. S. Nicley (Hasselt University, Belgium) for improving the language of the text. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.411
  Call Number UA @ lucian @ c:irua:137160 Serial 4407
Permanent link to this record
 

 
Author Milovanović, S.P.; Peeters, F.M.
  Title Strain controlled valley filtering in multi-terminal graphene structures Type A1 Journal article
  Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 109 Issue 109 Pages 203108
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by the deformation allows electrons from only one valley to transmit, and a current of electrons from a single valley is generated at the opposite side of the locally strained region. We show that valley filtering is most effective with bumps of a certain height and width. Despite the fact that the highest contribution to the polarized current comes from electrons from the lowest sub-band, contributions of other sub-bands are not negligible and can significantly enhance the output current. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000388000000049 Publication Date 2016-11-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 50 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. ; Approved Most recent IF: 3.411
  Call Number UA @ lucian @ c:irua:139165 Serial 4463
Permanent link to this record
 

 
Author Leenaerts, O.; Vercauteren, S.; Partoens, B.
  Title Band alignment of lateral two-dimensional heterostructures with a transverse dipole Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 110 Issue 110 Pages 181602
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract It was recently shown that the electronic band alignment in lateral two-dimensional heterostructures is strongly dependent on the system geometry, such as heterostructure width and layer thickness. This is so even in the absence of polar edge terminations because of the appearance of an interface dipole between the two different materials. In this study, this work is expanded to include two-dimensional materials that possess an electronic dipole over their surface, i.e., in the direction transverse to the crystal plane. To this end, a heterostucture consisting of polar hydrofluorinated graphene and non-polar graphane layers is studied with first-principles calculations. As for nonpolar heterostructures, a significant geometry dependence is observed with two different limits for the band offset. For infinitely wide heterostructures, the potential step in the vacuum is equally divided over the two sides of the heterostructure, resulting in a finite potential step in the heterostructure. For infinitely thick heterostructure slabs, on the other hand, the band offset is reduced, similar to the three-dimensional case.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000400931900014 Publication Date 2017-05-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 4 Open Access
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-VI). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 3.411
  Call Number UA @ lucian @ c:irua:143755 Serial 4586
Permanent link to this record
 

 
Author Verhulst, A.S.; Verreck, D.; Pourghaderi, M.A.; Van de Put, M.; Sorée, B.; Groeseneken, G.; Collaert, N.; Thean, A.V.-Y.
  Title Can p-channel tunnel field-effect transistors perform as good as n-channel? Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 105 Issue 4 Pages 043103
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We show that bulk semiconductor materials do not allow perfectly complementary p- and n-channel tunnel field-effect transistors (TFETs), due to the presence of a heavy-hole band. When tunneling in p-TFETs is oriented towards the gate-dielectric, field-induced quantum confinement results in a highest-energy subband which is heavy-hole like. In direct-bandgap IIIV materials, the most promising TFET materials, phonon-assisted tunneling to this subband degrades the subthreshold swing and leads to at least 10x smaller on-current than the desired ballistic on-current. This is demonstrated with quantum-mechanical predictions for p-TFETs with tunneling orthogonal to the gate, made out of InP, In0.53Ga0.47As, InAs, and a modified version of In0.53Ga0.47As with an artificially increased conduction-band density-of-states. We further show that even if the phonon-assisted current would be negligible, the build-up of a heavy-hole-based inversion layer prevents efficient ballistic tunneling, especially at low supply voltages. For p-TFET, a strongly confined n-i-p or n-p-i-p configuration is therefore recommended, as well as a tensily strained line-tunneling configuration. (C) 2014 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000341152600067 Publication Date 2014-07-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 8 Open Access
  Notes ; This work was supported by imec's industrial application program. D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for Promotion of Innovation through Science and Technology in Flanders (IWT). ; Approved Most recent IF: 3.411; 2014 IF: 3.302
  Call Number UA @ lucian @ c:irua:134433 Serial 4587
Permanent link to this record
 

 
Author Lindell, L.; Çakir, D.; Brocks, G.; Fahlman, M.; Braun, S.
  Title Role of intrinsic molecular dipole in energy level alignment at organic interfaces Type A1 Journal article
  Year 2013 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
  Volume 102 Issue 22 Pages 223301
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The energy level alignment in metal-organic and organic-organic junctions of the widely used materials tris-(8-hydroxyquinoline) aluminum (Alq(3)) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) is investigated. The measured alignment schemes for single and bilayer films of Alq(3) and NTCDA are interpreted with the integer charge transfer (ICT) model. Single layer films of Alq(3) feature a constant vacuum level shift of similar to 0.2-0.4 eV in the absence of charge transfer across the interface. This finding is attributed to the intrinsic dipole of the Alq(3) molecule and (partial) ordering of the molecules at the interfaces. The vacuum level shift changes the onset of Fermi level pinning, as it changes the energy needed for equilibrium charge transfer across the interface. (C) 2013 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000320621600081 Publication Date 2013-06-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 22 Open Access
  Notes ; We acknowledge funding from the European Community's Framework Programme under Grant No. FP7-NMP-228424 of the MINOTOR project as well as a project grant from the Swedish Energy Agency, STEM. ; Approved Most recent IF: 3.411; 2013 IF: 3.515
  Call Number UA @ lucian @ c:irua:128323 Serial 4605
Permanent link to this record
 

 
Author Lu, A.K.A.; Pourtois, G.; Agarwal, T.; Afzalian, A.; Radu, I.P.; Houssa, M.
  Title Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study Type A1 Journal article
  Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 108 Issue 4 Pages 043504
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs. (C) 2016 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000375217200061 Publication Date 2016-01-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 4 Open Access
  Notes Approved Most recent IF: 3.411
  Call Number UA @ lucian @ c:irua:144750 Serial 4677
Permanent link to this record
 

 
Author Volodin, A.; Van Haesendonck, C.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
  Title Stress dependence of the suspended graphene work function : vacuum Kelvin probe force microscopy and density functional theory Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 110 Issue 19 Pages 193101
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We report on work function measurements on graphene, which is exfoliated over a predefined array of wells in silicon oxide, by Kelvin probe force microscopy operating in a vacuum. The obtained graphene sealed microchambers can support large pressure differences, providing controllable stretching of the nearly impermeable graphene membranes. These measurements allow detecting variations of the work function induced by the mechanical stresses in the suspended graphene where the work function varies linearly with the strain and changes by 62 +/- 2 meV for 1 percent of strain. Our related ab initio calculations result in a work function variation that is a factor of 1.4 larger than the experimental value. The limited discrepancy between the theory and the experiment can be accounted for by a charge transfer from the unstrained to the strained graphene regions. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000402319200036 Publication Date 2017-05-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 8 Open Access
  Notes ; The authors wish to thank A. Klekachev (IMEC Leuven, Belgium) for the fabrication of the samples. This work was supported by the Science Foundation-Flanders (FWO, Belgium). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-Department EWI. The Hercules Foundation also funded the scanning probe microscopy equipment. ; Approved Most recent IF: 3.411
  Call Number UA @ lucian @ c:irua:144279 Serial 4690
Permanent link to this record
 

 
Author Jones, E.; Cooper, D.; Rouvière, J.-L.; Béché, A.; Azize, M.; Palacios, T.; Gradecak, S.
  Title Towards rapid nanoscale measurement of strain in III-nitride heterostructures Type A1 Journal article
  Year 2013 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
  Volume 103 Issue Pages 231904
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We report the structural and compositional nanoscale characterization of InAlN/GaN nanoribbon-structured high electron mobility transistors (HEMTs) through the use of geometric phase analysis (GPA) and nanobeam electron diffraction (NBED). The strain distribution in the HEMT layer is quantified and compared to the expected strain profile for the nominal structure predicted by finite element analysis (FEA). Using the experimental strain results, the actual structure is determined and used to modify the FEA model. The improved fit of the model demonstrates that GPA and NBED provide a powerful platform for routine and rapid characterization of strain in III-V semiconducting device systems leading to insights into device evolution during processing and future device optimization.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000328634900025 Publication Date 2013-12-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 6 Open Access
  Notes Approved Most recent IF: 3.411; 2013 IF: 3.515
  Call Number UA @ lucian @ c:irua:136443 Serial 4513
Permanent link to this record
 

 
Author Cooper, D.; Rouvière, J.-L.; Béché, A.; Kadkhodazadeh, S.; Semenova, E.S.; Dunin-Borkowsk, R.
  Title Quantitative strain mapping of InAs/InP quantum dots with 1 nm spatial resolution using dark field electron holography Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 99 Issue Pages 261911-261913
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The optical properties of semiconductor quantum dots are greatly influenced by their strain state. Dark field electron holography has been used to measure the strain in InAsquantum dotsgrown in InP with a spatial resolution of 1 nm. A strain value of 5.4% ± 0.1% has been determined which is consistent with both measurements made by geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images and with simulations.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000298638500027 Publication Date 2012-01-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 26 Open Access
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844
  Call Number UA @ lucian @ c:irua:136428 Serial 4507
Permanent link to this record
 

 
Author Cooper, D.; Le Royer, C.; Béché, A.; Rouvière, J.-L.
  Title Strain mapping for the silicon-on-insulator generation of semiconductor devices by high-angle annular dark field scanning electron transmission microscopy Type A1 Journal article
  Year 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
  Volume 100 Issue Pages 233121
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The strain in pMOS p-type metal-oxide-semiconductor devicesgrown on silicon-on-insulator substrates has been measured by using the geometrical phase analysis of high angle annular dark field scanning electron microscopy. We show that by using the latest generations of electron microscopes, the strain can now be quantitatively measured with a large field of view, a spatial resolution as low as 1 nm with a sensitivity as good as 0.15%. This technique is extremely flexible, provides both structural and strain information, and can be applied to all types of nanoscale materials both quickly and easily.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos Publication Date 2012-06-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited Open Access
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:136432 Serial 4509
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Barnes, J.-P.; Hartmann, J.-M.; Hutin, L.; Le Royer, C.; Béché, A.; Rouvière, J.-L.
  Title Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy Type A1 Journal article
  Year 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
  Volume 112 Issue Pages 124505
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Strain engineering in the conduction channel is a cost effective method of boosting the performance in state-of-the-art semiconductor devices. However, given the small dimensions of these devices, it is difficult to quantitatively measure the strain with the required spatial resolution. Three different transmission electron microscopy techniques, high-angle annular dark field scanning transmission electron microscopy, dark field electron holography, and nanobeam electron diffraction have been applied to measure the strain in simple bulk and SOI calibration specimens. These techniques are then applied to different gate length SiGe SOI pFET devices in order to measure the strain in the conduction channel. For these devices, improved spatial resolution is required, and strain maps with spatial resolutions as good as 1 nm have been achieved. Finally, we discuss the relative advantages and disadvantages of using these three different techniques when used for strain measurement.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000312829400128 Publication Date 2012-12-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 14 Open Access
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:136433 Serial 4510
Permanent link to this record
 

 
Author Rouvière, J.-L.; Béché, A.; Martin, Y.; Denneulin, T.; Cooper, D.
  Title Improved strain precision with high spatial resolution using nanobeam precession electron diffraction Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 103 Issue Pages 241913
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract NanoBeam Electron Diffraction is a simple and efficient technique to measure strain in nanostructures. Here, we show that improved results can be obtained by precessing the electron beam while maintaining a few nanometer probe size, i.e., by doing Nanobeam Precession Electron Diffraction (N-PED). The precession of the beam makes the diffraction spots more uniform and numerous, making N-PED more robust and precise. In N-PED, smaller probe size and better precision are achieved by having diffraction disks instead of diffraction dots. Precision in the strain measurement better than 2 × 10−4 is obtained with a probe size approaching 1 nm in diameter.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000328706500031 Publication Date 2013-12-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 53 Open Access
  Notes Approved Most recent IF: 3.411; 2013 IF: 3.515
  Call Number UA @ lucian @ c:irua:136442 Serial 4502
Permanent link to this record
 

 
Author Milovanović, S.P.; Tadic, M.Z.; Peeters, F.M.
  Title Graphene membrane as a pressure gauge Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 111 Issue 4 Pages 043101
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Straining graphene results in the appearance of a pseudo-magnetic field which alters its local electronic properties. Applying a pressure difference between the two sides of the membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000406779700035 Publication Date 2017-07-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 11 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem program, the Erasmus+ programme, and the Serbian Ministry of Education, Science and Technological Development. ; Approved Most recent IF: 3.411
  Call Number UA @ lucian @ c:irua:145202 Serial 4718
Permanent link to this record
 

 
Author Zhou, Y.; Ramaneti, R.; Anaya, J.; Korneychuk, S.; Derluyn, J.; Sun, H.; Pomeroy, J.; Verbeeck, J.; Haenen, K.; Kuball, M.
  Title Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 111 Issue 4 Pages 041901
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Polycrystalline diamond (PCD) was grown onto high-k dielectric passivated AlGaN/GaN-on-Si high electron mobility transistor (HEMT) structures, with film thicknesses ranging from 155 to 1000 nm. Transient thermoreflectance results were combined with device thermal simulations to investigate the heat spreading benefit of the diamond layer. The observed thermal conductivity (k(Dia)) of PCD films is one-to-two orders of magnitude lower than that of bulk PCD and exhibits a strong layer thickness dependence, which is attributed to the grain size evolution. The films exhibit a weak temperature dependence of k(Dia) in the measured 25-225 degrees C range. Device simulation using the experimental jDia and thermal boundary resistance values predicts at best a 15% reduction in peak temperature when the source-drain opening of a passivated AlGaN/GaN-on-Si HEMT is overgrown with PCD. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000406779700008 Publication Date 2017-07-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 78 Open Access Not_Open_Access
  Notes ; The authors are grateful to Professor Michael Uren and Dr. Roland B. Simon (University of Bristol) for helpful discussions and to Dr. Sien Drijkoningen (Hasselt University) for taking the SEM micrographs. This work was in part supported by DARPA under Contract No. FA8650-15-C-7517, monitored by Dr. Avram Bar Cohen and Dr. John Blevins, and supported by Dr. Joseph Maurer and Dr. Abirami Sivananthan. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA. Y.Z. acknowledges China Scholarship Council for the financial support. S.K. and J.V. acknowledge the FWO-Vlaanderen for financial support under contract G.0044.13N “Charge ordering.” ; Approved Most recent IF: 3.411
  Call Number UA @ lucian @ c:irua:145203 Serial 4728
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Tinck, S.; de Marneffe, J.-F.; Zhang, L.; Bogaerts, A.
  Title Mechanisms for plasma cryogenic etching of porous materials Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 111 Issue 17 Pages 173104
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Porous materials are commonly used in microelectronics, as they can meet the demand for continuously shrinking electronic feature dimensions. However, they are facing severe challenges in plasma etching, due to plasma induced damage. In this paper, we present both the plasma characteristics and surface processing during the etching of porous materials. We explain how the damage occurs in the porous material during plasma etching for a wide range of chuck temperatures and the responsible mechanism for plasma damage-free etching at cryogenic temperature, by a combination of experiments and numerical modeling.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000413863400032 Publication Date 2017-10-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 2 Open Access OpenAccess
  Notes We acknowledge the support from Marie Skłodowska- Curie actions (Grant Agreement-702604). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. L. Zhang and J.-F. de Marneffe acknowledge Dr. M. Cooke and A. Goodyear from Oxford Instruments Plasma Technology for processing the samples at their Yatton facility in the United Kingdom. Approved Most recent IF: 3.411
  Call Number PLASMANT @ plasmant @c:irua:147022 Serial 4762
Permanent link to this record
 

 
Author Abdullah, H.M.; Van der Donck, M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B.
  Title Graphene quantum blisters : a tunable system to confine charge carriers Type A1 Journal article
  Year 2018 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 112 Issue 21 Pages 213101
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Due to Klein tunneling, electrostatic confinement of electrons in graphene is not possible. This hinders the use of graphene for quantum dot applications. Only through quasi-bound states with finite lifetime has one achieved to confine charge carriers. Here, we propose that bilayer graphene with a local region of decoupled graphene layers is able to generate bound states under the application of an electrostatic gate. The discrete energy levels in such a quantum blister correspond to localized electron and hole states in the top and bottom layers. We find that this layer localization and the energy spectrum itself are tunable by a global electrostatic gate and that the latter also coincides with the electronic modes in a graphene disk. Curiously, states with energy close to the continuum exist primarily in the classically forbidden region outside the domain defining the blister. The results are robust against variations in size and shape of the blister which shows that it is a versatile system to achieve tunable electrostatic confinement in graphene. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000433140900025 Publication Date 2018-05-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 9 Open Access
  Notes ; H.M.A. and H.B. acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group Project Nos. RG1502-1 and RG1502-2. This work was supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (B.V.D.) and a doctoral fellowship (M.V.d.D.). ; Approved Most recent IF: 3.411
  Call Number UA @ lucian @ c:irua:151505UA @ admin @ c:irua:151505 Serial 5027
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Peeters, F.M.
  Title Topological Dirac semimetal phase in <tex> $GexSny alloys Type A1 Journal article
  Year 2018 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 112 Issue 25 Pages 251601
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Recently, two stable allotropes (germancite and stancite) for the group IV elements (Ge and Sn) with a staggered layered dumbell structure were proposed to be three-dimensional (3D) topological Dirac semimetals [Phys. Rev. B 93, 241117 (2016)]. A pair of Dirac points is on the rotation axis away from the time-reversal invariant momentum, and the stability of the 3D bulk Dirac points is protected by the C-3 rotation symmetry. Here, we use the first principles calculations to investigate GexSny alloys which share the same rhombohedral crystal structure with the space group of D-3d(6). Six GexSny alloys are predicted to be energetically and dynamically stable, where (x, y) = (8, 6) and (6, 8) and the alpha and beta phases of (10, 4) and (4, 10). Our results demonstrate that all the six GexSny alloys are topological Dirac semimetals. The different nontrivial surface states and surface Fermi arcs are identified. Our work will substantially enrich the family of 3D Dirac semimetals which are within the reach of experimental realization. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000435987400013 Publication Date 2018-06-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 8 Open Access
  Notes ; This work was supported by the Collaborative Innovation Center of Quantum Matter, the Fonds voor Wetenschappelijk Onderzoek (FWO-VI), and the FLAG-ERA Project TRANS 2D TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 3.411
  Call Number UA @ lucian @ c:irua:151970UA @ admin @ c:irua:151970 Serial 5045
Permanent link to this record
 

 
Author Ghimire, B.; Szili, E.J.; Lamichhane, P.; Short, R.D.; Lim, J.S.; Attri, P.; Masur, K.; Weltmann, K.-D.; Hong, S.-H.; Choi, E.H.
  Title The role of UV photolysis and molecular transport in the generation of reactive species in a tissue model with a cold atmospheric pressure plasma jet Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 114 Issue 9 Pages 093701
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Cold atmospheric pressure plasma jets (plasma) operated in ambient air provide a rich source of reactive oxygen and nitrogen species (RONS), which are known to influence biological processes important in disease. In the plasma treatment of diseased tissue such as subcutaneous cancer tumors, plasma RONS need to first traverse an interface between the plasma-skin surface and second be transported to millimeter depths in order to reach deep-seated diseased cells. However, the mechanisms in the plasma generation of RONS within soft tissues are not understood. In this study, we track the plasma jet delivery of RONS into a tissue model target and we delineate two processes: through target delivery of RONS generated (primarily) in the plasma jet and in situ RONS generation by UV photolysis within the target. We demonstrate that UV photolysis promotes the rapid generation of RONS in the tissue model target’s surface after which the RONS are transported to millimeter depths via a slower molecular process. Our results imply that the flux of UV photons from plasma jets is important for delivering RONS through seemingly impenetrable barriers such as skin. The findings have implications not only in treatments of living tissues but also in the functionalization of soft hydrated biomaterials such as hydrogels and extracellular matrix derived tissue scaffolds.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000460820600048 Publication Date 2019-03-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 12 Open Access Not_Open_Access
  Notes National Research Foundation of Korea, NRF-2016K1A4A3914113 ; Australian Research Council, DP16010498 ; This work was supported by the National Research Foundation of Korea (NRF) Grant No. NRF-2016K1A4A3914113 and in part by Kwangwoon University 2018, Korea. E.J.S., S.-H.H., and R.D.S. wish to thank the Australian Research Council for partially supporting this research through Discovery Project No. DP16010498 and UniSA through the Vice Chancellor Development Fund. Approved Most recent IF: 3.411
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158111 Serial 5159
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Oelsner, A.; Verbeeck, J.
  Title Spectroscopic coincidence experiments in transmission electron microscopy Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 114 Issue 14 Pages 143101
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We demonstrate the feasibility of coincidence measurements on a conventional transmission electron microscope, revealing the temporal

correlation between electron energy loss spectroscopy (EELS) and energy dispersive X-ray (EDX) spectroscopy events. We make use of a

delay line detector with ps-range time resolution attached to a modified EELS spectrometer. We demonstrate that coincidence between both

events, related to the excitation and deexcitation of atoms in a crystal, provides added information not present in the individual EELS or

EDX spectra. In particular, the method provides EELS with a significantly suppressed or even removed background, overcoming the many

difficulties with conventional parametric background fitting as it uses no assumptions on the shape of the background, requires no user input

and does not suffer from counting noise originating from the background signal. This is highly attractive, especially when low concentrations

of elements need to be detected in a matrix of other elements.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000464450200022 Publication Date 2019-04-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 18 Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek, G093417 ; Horizon 2020 Framework Programme, 823717 ESTEEM3 ; Helmholtz Association, VH-NG-1327 ; Approved Most recent IF: 3.411
  Call Number EMAT @ emat @UA @ admin @ c:irua:159155 Serial 5168
Permanent link to this record
 

 
Author Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J.
  Title Electron Bessel beam diffraction for precise and accurate nanoscale strain mapping Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 114 Issue 24 Pages 243501
  Keywords A1 Journal article; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)
  Abstract Strain has a strong effect on the properties of materials and the performance of electronic devices. Their ever shrinking size translates into a constant demand for accurate and precise measurement methods with a very high spatial resolution. In this regard, transmission electron microscopes are key instruments thanks to their ability to map strain with a subnanometer resolution. Here, we present a method to measure strain at the nanometer scale based on the diffraction of electron Bessel beams. We demonstrate that our method offers a strain sensitivity better than 2.5 × 10−4 and an accuracy of 1.5 × 10−3, competing with, or outperforming, the best existing methods with a simple and easy to use experimental setup.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472599100019 Publication Date 2019-06-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 17 Open Access OpenAccess
  Notes Deutsche Forschungsgemeinschaft, RO2057/12-2 ; Fonds Wetenschappelijk Onderzoek, G.0934.17N ; Approved Most recent IF: 3.411
  Call Number EMAT @ emat @UA @ admin @ c:irua:160119 Serial 5181
Permanent link to this record
 

 
Author Li, L.L.; Peeters, F.M.
  Title Strain engineered linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 114 Issue 24 Pages 243102
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate theoretically the linear dichroism and the Faraday rotation of strained few-layer phosphorene, where strain is applied uniaxially along the armchair or zigzag direction of the phosphorene lattice. We calculate the optical conductivity tensor of uniaxially strained few-layer phosphorene by means of the Kubo formula within the tight-binding approach. We show that the linear dichroism and the Faraday rotation of few-layer phosphorene can be significantly modulated by the applied strain. The modulation depends strongly on both the magnitude and direction of strain and becomes more pronounced with increasing number of phosphorene layers. Our results are relevant for mechano-optoelectronic applications based on optical absorption and Hall effects in strained few-layer phosphorene.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472599100029 Publication Date 2019-06-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 12 Open Access
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.411
  Call Number UA @ admin @ c:irua:161327 Serial 5428
Permanent link to this record
 

 
Author Zarenia, M.; Conti, S.; Peeters, F.M.; Neilson, D.
  Title Coulomb drag in strongly coupled quantum wells : temperature dependence of the many-body correlations Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 115 Issue 20 Pages 202105
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate the effect of the temperature dependence of many-body correlations on hole-hole Coulomb drag in strongly coupled GaAs/GaAlAs double quantum wells. For arbitrary temperatures, we obtained the correlations using the classical-map hypernetted-chain approach. We compare the temperature dependence of the resulting drag resistivities rho D(T) at different densities with rho D(T) calculated assuming correlations fixed at zero temperature. Comparing the results with those when correlations are completely neglected, we confirm that correlations significantly increase the drag. We find that the drag becomes sensitive to the temperature dependence of T greater than or similar to 2TF, twice the Fermi temperature. Our results show excellent agreement with available experimental data. Published under license by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000498619400007 Publication Date 2019-11-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited 2 Open Access
  Notes Approved Most recent IF: 3.411
  Call Number UA @ admin @ c:irua:165135 Serial 6291
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Faraji, M.; Yagmurcukardes, M.; Fadlallah, M.M.; Jappor, H.R.; Ghergherehchi, M.; Feghhi, S.A.H.
  Title A Dirac-semimetal two-dimensional BeN4 : thickness-dependent electronic and optical properties Type A1 Journal article
  Year 2021 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
  Volume 118 Issue 20 Pages 203103
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Motivated by the recent experimental realization of a two-dimensional (2D) BeN4 monolayer, in this study we investigate the structural, dynamical, electronic, and optical properties of a monolayer and few-layer BeN4 using first-principles calculations. The calculated phonon band dispersion reveals the dynamical stability of a free-standing BeN4 layer, while the cohesive energy indicates the energetic feasibility of the material. Electronic band dispersions show that monolayer BeN4 is a semi-metal whose conduction and valence bands touch each other at the Sigma point. Our results reveal that increasing the layer number from single to six-layers tunes the electronic nature of BeN4. While monolayer and bilayer structures display a semi-metallic behavior, structures thicker than that of three-layers exhibit a metallic nature. Moreover, the optical parameters calculated for monolayer and bilayer structures reveal that the bilayer can absorb visible light in the ultraviolet and visible regions better than the monolayer structure. Our study investigates the electronic properties of Dirac-semimetal BeN4 that can be an important candidate for applications in nanoelectronic and optoelectronic. Published under an exclusive license by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000691329900002 Publication Date 2021-05-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 3.411
  Call Number UA @ admin @ c:irua:181725 Serial 6980
Permanent link to this record
 

 
Author Bafekry, A.; Sarsari, I.A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Karbasizadeh, S.; Nguyen, V.; Ghergherehchi, M.
  Title Electronic and magnetic properties of two-dimensional of FeX (X = S, Se, Te) monolayers crystallize in the orthorhombic structures Type A1 Journal article
  Year 2021 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
  Volume 118 Issue 14 Pages 143102
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract In this Letter, we explore the lattice, dynamical stability, and electronic and magnetic properties of FeTe bulk and FeX (X=S, Se, Te) monolayers using the density functional calculations. The phonon dispersion relation, elastic stability criteria, and cohesive energy results show the stability of studied FeX monolayers. The mechanical properties reveal that all FeX monolayers have a brittle nature. Furthermore, these structures are stable as we move down the 6A group in the periodic table, i.e., from S, Se, and Te. The stability and work function decrease as the electronegativity decreases. The spin-polarized electronic structures demonstrate that the FeTe monolayer has a total magnetization of 3.8 mu (B), which is smaller than the magnetization of FeTe bulk (4.7 mu (B)). However, FeSe and FeS are nonmagnetic monolayers. The FeTe monolayer can be a good candidate material for spin filter applications due to its electronic and magnetic properties. This study highlights the bright prospect for the application of FeX monolayers in electronic structures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000637703700001 Publication Date 2021-04-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.411 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 3.411
  Call Number UA @ admin @ c:irua:177731 Serial 6985
Permanent link to this record
 

 
Author Dong, H.M.; Tao, Z.H.; Duan, Y.F.; Li, L.L.; Huang, F.; Peeters, F.M.
  Title Substrate dependent terahertz magneto-optical properties of monolayer WS2 Type A1 Journal article
  Year 2021 Publication Optics Letters Abbreviated Journal Opt Lett
  Volume 46 Issue 19 Pages 4892-4895
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Terahertz (THz) magneto-optical (MO) properties of monolayer (ML) tungsten disulfide (WS2), placed on different substrates and subjected to external magnetic fields, are studied using THz time-domain spectroscopy (TDS). We find that the THz MO conductivity exhibits a nearly linear response in a weak magnetic field, while a distinctly nonlinear/oscillating behavior is found in strong magnetic fields owing to strong substrate-induced random impurity scattering and interactions. The THz MO response of ML WS2 depends sensitively on the choice of the substrates, which we trace back to electronic localization and the impact of the substrates on the Landau level (LL) spectrum. Our results provide an in-depth understanding of the THz MO properties of ML WS2/substrate systems, especially the effect of substrates, which can be utilized to realize atomically thin THz MO nano-devices. (C) 2021 Optical Society of America
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000702746400048 Publication Date 2021-09-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0146-9592 ISBN Additional Links UA library record; WoS full record
  Impact Factor (up) 3.416 Times cited 2 Open Access OpenAccess
  Notes Approved Most recent IF: 3.416
  Call Number UA @ admin @ c:irua:182526 Serial 7023
Permanent link to this record
 

 
Author Martens, T.; Bogaerts, A.; Brok, W.; van Dijk, J.
  Title Computer simulations of a dielectric barrier discharge used for analytical spectrometry Type A1 Journal article
  Year 2007 Publication Analytical and bioanalytical chemistry Abbreviated Journal Anal Bioanal Chem
  Volume 388 Issue 8 Pages 1583-1594
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos 000248373300005 Publication Date 2007-04-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1618-2642;1618-2650; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.431 Times cited 28 Open Access
  Notes Approved Most recent IF: 3.431; 2007 IF: 2.867
  Call Number UA @ lucian @ c:irua:65036 Serial 466
Permanent link to this record
 

 
Author Jaroszewicz, J.; de Nolf, W.; Janssens, K.; Michalski, A.; Falkenberg, G.
  Title Advantages of combined mu-XRF and mu-XRD for phase characterization of Ti-B-C ceramics compared with conventional X-ray diffraction Type A1 Journal article
  Year 2008 Publication Analytical and bioanalytical chemistry Abbreviated Journal Anal Bioanal Chem
  Volume 391 Issue 4 Pages 1129-1133
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000256088700005 Publication Date 2008-05-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.431 Times cited 7 Open Access
  Notes Approved Most recent IF: 3.431; 2008 IF: 3.328
  Call Number UA @ admin @ c:irua:69317 Serial 5459
Permanent link to this record
 

 
Author Cagno, S.; Janssens, K.; Mendera, M.
  Title Compositional analysis of Tuscan glass samples: in search of raw materials fingerprints Type A1 Journal article
  Year 2008 Publication Analytical and bioanalytical chemistry Abbreviated Journal Anal Bioanal Chem
  Volume 391 Issue 4 Pages 1389-1395
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000256088700035 Publication Date 2008-02-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.431 Times cited 26 Open Access
  Notes Approved Most recent IF: 3.431; 2008 IF: 3.328
  Call Number UA @ admin @ c:irua:69320 Serial 5545
Permanent link to this record
 

 
Author Janssens, K.; van Espen, P.; Van 't dack, L.
  Title Euroanalysis 14: the European Conference on Analytical Chemistry Type Editorial
  Year 2008 Publication Analytical and bioanalytical chemistry Abbreviated Journal Anal Bioanal Chem
  Volume 391 Issue 4 Pages 1107-1108
  Keywords Editorial; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Chemometrics (Mitac 3)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000256088700001 Publication Date 2008-05-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record
  Impact Factor (up) 3.431 Times cited Open Access
  Notes Approved Most recent IF: 3.431; 2008 IF: 3.328
  Call Number UA @ admin @ c:irua:69316 Serial 5608
Permanent link to this record
 

 
Author Bugani, S.; Camaiti, M.; Morselli, L.; Van de Casteele, E.; Janssens, K.
  Title Investigating morphological changes in treated vs. untreated stone building materials by x-ray micro-CT Type A1 Journal article
  Year 2008 Publication Analytical and bioanalytical chemistry Abbreviated Journal Anal Bioanal Chem
  Volume 391 Issue 4 Pages 1343-1350
  Keywords A1 Journal article; Vision lab; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000256088700030 Publication Date 2008-03-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.431 Times cited 25 Open Access
  Notes Approved Most recent IF: 3.431; 2008 IF: 3.328
  Call Number UA @ admin @ c:irua:69319 Serial 5673
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: