toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Lu, A.K.A.; Pourtois, G.; Agarwal, T.; Afzalian, A.; Radu, I.P.; Houssa, M. doi  openurl
  Title Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study Type A1 Journal article
  Year (down) 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 108 Issue 4 Pages 043504  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs. (C) 2016 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000375217200061 Publication Date 2016-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:144750 Serial 4677  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: