toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author de Mondt, R.; Adriaensen, L.; Vangaever, F.; Lenaerts, J.; van Vaeck, L.; Gijbels, R.
  Title Empirical evaluation of metal deposition for the analysis of organic compounds with static secondary ion mass spectrometry (S-SIMS) Type A1 Journal article
  Year 2006 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 252 Issue 19 Pages 6652-6655
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000240609900063 Publication Date 2006-05-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 9 Open Access
  Notes Approved Most recent IF: 3.387; 2006 IF: 1.436
  Call Number UA @ lucian @ c:irua:58812 Serial 1034
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
  Title First-principles electronic functionalization of silicene and germanene by adatom chemisorption Type A1 Journal article
  Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 291 Issue Pages 104-108
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract This study presents first-principles results on the electronic functionalization of silicene and germanene monolayers by means of chemisorption of adatom species H, Li, F, Sc, Ti, V. Three general adatom-monolayer configurations are considered, each having its distinct effect on the electronic structure, yielding metallic or semiconducting dispersions depending on the adatom species and configuration. The induced bandgap is a (in)direct F gap ranging from 0.2 to 2.3 eV for both silicene and germanene. In general the alternating configuration was found to be the most energetically stable. The boatlike and chairlike conformers are degenerate with the former having anisotropic effective carrier masses. The top configuration leads to the planar monolayer and predominately to a gapped dispersion. The hollow configuration with V adatoms retains the Dirac cone, but with strong orbital planar hybridization at the Fermi level. We also observe a planar surface state the Fermi level for the latter systems. (C) 2013 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000329327700023 Publication Date 2013-09-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 32 Open Access
  Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
  Call Number UA @ lucian @ c:irua:113766 Serial 1208
Permanent link to this record
 

 
Author Lenaerts, J.; Gijbels, R.; van Vaeck, L.; Verlinden, G.; Geuens, I.
  Title Imaging TOF-SIMS for the surface analysis of silver halide microcrystals Type A1 Journal article
  Year 2003 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 203/204 Issue Pages 614-619
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000180527300138 Publication Date 2002-12-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 7 Open Access
  Notes Approved Most recent IF: 3.387; 2003 IF: 1.284
  Call Number UA @ lucian @ c:irua:51974 Serial 1556
Permanent link to this record
 

 
Author de Witte, H.; Conard, T.; Vandervorst, W.; Gijbels, R.
  Title Ion-bombardment artifact in TOF-SIMS analysis of ZrO2/SiO2/Si stacks Type A1 Journal article
  Year 2003 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 203 Issue Pages 523-526
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We analyzed ultra-thin ZrO2/SiO2/Si gate dielectrics under post-deposition anneals in dry O-2 at temperatures from 500 to 700 degreesC. TOF-SIMS profiling of ZrO2/SiO2/Si stacks is hampered by many sputter induced artifacts. The depletion of oxygen leads to a decrease in SIMS intensities. However, preferential sputtering is accompanied by transport of the depleted species towards the surface. Due to recoil implantation oxygen gets piled-up near the ZrO2/SiO2 interface. Either normal or radiation-enhanced diffusion transports oxygen back to the surface. Simultaneously also segregation of zirconium towards and through the interface is observed, resulting in a large zirconium tail in the underlying silicon substrate. (C) 2002 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Elsevier science bv Place of Publication Amsterdam Editor
  Language Wos 000180527300119 Publication Date 2002-12-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 15 Open Access
  Notes Approved Most recent IF: 3.387; 2003 IF: 1.284
  Call Number UA @ lucian @ c:irua:51975 Serial 1743
Permanent link to this record
 

 
Author Vasiliev, A.L.; Stepantsov, E.A.; Ivanov, Z.G.; Verbist, K.; Van Tendeloo, G.; Olsson, E.
  Title The microstructure and interfaces of intermediate layers in sapphire bicrystals Type A1 Journal article
  Year 1997 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 119 Issue Pages 215-218
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1997YC74900006 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 2 Open Access
  Notes Approved Most recent IF: 3.387; 1997 IF: 0.873
  Call Number UA @ lucian @ c:irua:21450 Serial 2055
Permanent link to this record
 

 
Author Adriaensen, L.; Vangaever, F.; Gijbels, R.
  Title Organic SIMS: the influence of time on the ion yield enhancement by silver and gold deposition Type A1 Journal article
  Year 2004 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 231/232 Issue Pages 256-260
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000222427700049 Publication Date 2004-04-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 10 Open Access
  Notes Approved Most recent IF: 3.387; 2004 IF: 1.497
  Call Number UA @ lucian @ c:irua:46804 Serial 2510
Permanent link to this record
 

 
Author Adriaensen, L.; Vangaever, F.; Lenaerts, J.; Gijbels, R.
  Title S-SIMS and MetA-SIMS study of organic additives in thin polymer coatings Type A1 Journal article
  Year 2006 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 252 Issue 19 Pages 6628-6631
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000240609900057 Publication Date 2006-06-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 3 Open Access
  Notes Approved Most recent IF: 3.387; 2006 IF: 1.436
  Call Number UA @ lucian @ c:irua:60083 Serial 2937
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Ealet, B.; Pourtois, G.; Chiappe, D.; Cinquanta, E.; Grazianetti, C.; Fanciulli, M.; Molle, A.; Afanas’ev, V.V.; Stesmans, A.;
  Title Theoretical aspects of graphene-like group IV semiconductors Type A1 Journal article
  Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 291 Issue Pages 98-103
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Silicene and germanene are the silicon and germanium counterparts of graphene, respectively. Recent experimental works have reported the growth of silicene on (1 1 1)Ag surfaces with different atomic configurations, depending on the growth temperature and surface coverage. We first theoretically study the structural and electronic properties of silicene on (1 1 1) Ag surfaces, focusing on the (4 x 4) silicene/Ag structure. Due to symmetry breaking in the silicene layer (nonequivalent number of top and bottom Si atoms), the corrugated silicene layer, with the Ag substrate removed, is predicted to be semiconducting, with a computed energy bandgap of about 0.3 eV. However, the hybridization between the Si 3p orbitals and the Ag 5s orbital in the silicene/(1 1 1)Ag slab model leads to an overall metallic system, with a distribution of local electronic density of states, which is related to the slightly disordered structure of the silicene layer on the (1 1 1)Ag surface. We next study the interaction of silicene and germanene with different hexagonal non-metallic substrates, namely ZnS and ZnSe. On reconstructed (0 0 0 1)ZnS or ZnSe surfaces, which should be more energetically stable for very thin layers, silicene and germanene are found to be semiconducting. Remarkably, the nature and magnitude of their energy bandgap can be controlled by an out-of-plane electric field, an important finding for the potential use of these materials in nanoelectronic devices. (C) 2013 Elsevier B. V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000329327700022 Publication Date 2013-09-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 20 Open Access
  Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
  Call Number UA @ lucian @ c:irua:113765 Serial 3603
Permanent link to this record
 

 
Author Scalise, E.; Cinquanta, E.; Houssa, M.; van den Broek, B.; Chiappe, D.; Grazianetti, C.; Pourtois, G.; Ealet, B.; Molle, A.; Fanciulli, M.; Afanas’ev, V.V.; Stesmans, A.;
  Title Vibrational properties of epitaxial silicene layers on (111) Ag Type A1 Journal article
  Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 291 Issue Pages 113-117
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The electronic and vibrational properties of three different reconstructions of silicene on Ag(1 1 1) are calculated and compared to experimental results. The 2D epitaxial silicon layers, namely the (4 x 4), (root 13 x root 13) and (2 root 3 x 2 root 3) phases, exhibit different electronic and vibrational properties. Few peaks in the experimental Raman spectrum are identified and attributed to the vibrational modes of the silicene layers. The position and behavior of the Raman peaks with respect to the excitation energy are shown to be a fundamental tool to investigate and discern different phases of silicene on Ag( 1 1 1). (C) 2013 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000329327700025 Publication Date 2013-09-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 36 Open Access
  Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
  Call Number UA @ lucian @ c:irua:113767 Serial 3843
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
  Title A comparative DFT study on CO oxidation reaction over Si-doped BC2N nanosheet and nanotube Type A1 Journal article
  Year 2018 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 439 Issue 439 Pages 934-945
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this study, we performed density functional theory (DFT) calculations to investigate different reaction mechanisms of CO oxidation catalyzed by the Si atom embedded defective BC2N nanostructures as well as the analysis of the structural and electronic properties. The structures of all the complexes are optimized and characterized by frequency calculations at the M062X/6-31G* computational level. Also, The electronic structures and thermodynamic parameters of adsorbed CO and O-2 molecules over Si-doped BC2N nanostructures are examined in detail. Moreover, to investigate the curvature effect on the CO oxidation reaction, all the adsorption and CO oxidation reactions on a finite-sized armchair (6,6) Si-BC2NNT are also studied. Our results indicate that there can be two possible pathways for the CO oxidation with O-2 molecule: O-2(g) + CO(g) -> O-2(ads) + CO(ads) -> CO2(g) + O-(ads) and O-(ads) + CO(g) -> CO2(g). The first reaction proceeds via the Langmuir-Hinshelwood (LH) mechanism while the second goes through the Eley-Rideal (ER) mechanism. On the other hand, by increasing the tube diameter, the energy barrier increases due to the strong adsorption energy of the O-2 molecule which is related to its dissociation over the tube surface. Our calculations indicate that the two step energy barrier of the oxidation reaction over Si-BC2NNS is less than that over the Si-BC2NNT. Hence, Si-BC2NNS may serve as an efficient and highly activated substrate to CO oxidation rather than (4,4) Si-BC2NNT. (C) 2018 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000427457100112 Publication Date 2018-01-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 8 Open Access Not_Open_Access
  Notes Approved Most recent IF: 3.387
  Call Number UA @ lucian @ c:irua:150745 Serial 4960
Permanent link to this record
 

 
Author Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R.T.; Sahin, H.; Selamet, Y.
  Title Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes Type A1 Journal article
  Year 2018 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
  Volume 428 Issue 428 Pages 1010-1017
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4“bis(diphenylamino)-1, 1':3”-terpheny1-5' carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-y1-1,1':3'1'-terpheny1-5' carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13,1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as n-n interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode. (C) 2017 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000415227000128 Publication Date 2017-09-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 2 Open Access
  Notes ; This work was supported by TUBITAK (The Scientific and Technical Research Council of Turkey) with project number 112T946. We also thank AQuReC (Applied Quantum Research Center) for Raman measurements. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Bilim Akademisi The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.387
  Call Number UA @ lucian @ c:irua:154608UA @ admin @ c:irua:154608 Serial 5101
Permanent link to this record
 

 
Author Sathiyamoorthy, S.; Girijakumari, G.; Kannan, P.; Venugopal, K.; Thiruvottriyur Shanmugam, S.; Veluswamy, P.; De Wael, K.; Ikeda, H.
  Title Tailoring the functional properties of polyurethane foam with dispersions of carbon nanofiber for power generator applications Type A1 Journal article
  Year 2018 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 449 Issue 449 Pages 507-513
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract To produce effective thermoelectric nanocomposites, carbon nanofibers (CNF) incorporated polyurethane (PU) foams with nanocomposites are prepared via in-situ polymerization method to create a synergy that would produce a high thermopower. The formation mechanism of foams, the reaction kinetics, and the physical properties such as density and water absorption studied before and after CNF incorporation. The microscopy images showed a uniform dispersion of CNF in the PU matrix of the prepared foams. Spectroscopic studies such as X-ray photoelectron and laser Raman spectroscopy suggested the existence of a tight intermolecular binding interaction between the carbon nanofibers and the PU matrix in the prepared composite foams. It found that the thermopower is directly dependent on the concentration of carbon nanofiber since, with rising concentration of 1%3%, the coefficient values increased from 1.2 μV/K to 11.9 μV/K respectively, a value higher than that of earlier report. This unique nanocomposite offers a new opportunity to recycle waste heat in portable/wearable electronics and other applications, which will broaden the development of low weight and mechanical flexibility.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000438025400064 Publication Date 2018-02-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 4 Open Access
  Notes ; ; Approved Most recent IF: 3.387
  Call Number UA @ admin @ c:irua:151287 Serial 5868
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
  Title Direct methane conversion to methanol on M and MN4 embedded graphene (M = Ni and Si): a comparative DFT study Type A1 Journal article
  Year 2019 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 496 Issue 496 Pages 143618
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The ever increasing global production and dispersion of methane requires novel chemistry to transform it into easily condensable energy carriers that can be integrated into the chemical infrastructure. In this context, single atom catalysts have attracted considerable interest due to their outstanding catalytic activity. We here use density functional theory (DFT) computations to compare the reaction and activation energies of M and MN4 embedded graphene (M = Ni and Si) on the methane-to-methanol conversion near room temperature. Thermodynamically, conversion of methane to methanol is energetically favorable at ambient conditions. Both singlet and triplet spin state of the studied systems are considered in all of the calculations. The DFT results show that the barriers are significantly lower when the complexes are in the triplet state than in the singlet state. In particular, Si-G with the preferred spin multiplicity of triplet seems to be viable catalysts for methane oxidation thanks to the corresponding lower energy barriers and higher stability of the obtained configurations. Our results provide insights into the nature of methane conversion and may serve as guidance for fabricating cost-effective graphene-based single atom catalysts.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000488957400004 Publication Date 2019-08-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 2 Open Access
  Notes Approved Most recent IF: 3.387
  Call Number UA @ admin @ c:irua:163695 Serial 6294
Permanent link to this record
 

 
Author Foumani, A.A.; Forster, D.J.; Ghorbanfekr, H.; Weber, R.; Graf, T.; Niknam, A.R.
  Title Atomistic simulation of ultra-short pulsed laser ablation of metals with single and double pulses : an investigation of the re-deposition phenomenon Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
  Volume 537 Issue Pages 147775
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The demand for higher throughput in the processing of materials with ultra-short pulsed lasers has motivated studies on the use of double pulses (DP). It has been observed in such studies that at relatively high time delays between the two pulses, the ablated volume is lower than that for a single pulse (SP). This has been attributed to the shielding of the second pulse and the re-deposition of the material removed by the first pulse. The investigation of re-deposition in copper with the aid of atomistic simulations is the main objective of this study. Nevertheless, a computational investigation of SP-ablation and experimental measurement of the SP-ablation depths and threshold fluence are also covered. The applied computational apparatus comprises a combination of molecular dynamics with the two-temperature model and the Helmholtz wave equation. The analysis of the simulation results shows that the derived quantities like the SP-ablation threshold fluence and the ratio of DP ablation depth to SP-ablation depth are in agreement with the experimental values. An important finding of this study is that the characteristics of the re-deposition process are highly dependent on the fluence.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000582798700006 Publication Date 2020-09-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 2 Open Access Not_Open_Access
  Notes ; The authors thank the Center for High-Performance Computing at Shahid Beheshti University of Iran (SARMAD) for making available the computational resources required for this work. ; Approved Most recent IF: 3.387
  Call Number UA @ admin @ c:irua:174299 Serial 6683
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M.; Kim, D.; Mortazavi, B.
  Title Electro-optical and mechanical properties of Zinc antimonide (ZnSb) monolayer and bilayer : a first-principles study Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
  Volume 540 Issue 1 Pages 148289
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Latest synthesis of ZnSb monolayer, encouraged us to conduct density functional theory (DFT) simulations in order to study the structural, magnetic, electronic/optical and mechanical features of the sp2-hybridized honeycomb ZnSb monolayer (ML-ZnSb) and bilayer (BL-ZnSb). Our structural optimizations reveal that ML-ZnSb is an anisotropic hexagonal structure while BL-ZnSb is composed of shifted ZnSb layers which are covalently binded. ML-ZnSb is found to be a ferromagnetic metal, in contrast BL-ZnSb has a non-magnetic indirect band gap semiconducting ground state. For the in-plane polarization, first absorption peak of ML-ZnSb and BL-ZnSb confirm the absorbance of the light within the infrared domain wand visible range, respectively. Moreover, our results reveal that the layer-layer chemical bonding in BL-ZnSb significantly enhances the mechanical response of ML-ZnSb whose in-plane stiness is the smallest among all 2D materials (2DM). Notably, the strong in-plane anisotropy of ML-ZnSb in its stiness reduces in BL-ZnSb.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000599883200005 Publication Date 2020-11-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited 1 Open Access Not_Open_Access
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). Computational resources were provided by the Flemish Supercomputer Center (VSC). M.Y. is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. B.M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 3.387
  Call Number UA @ admin @ c:irua:174956 Serial 6688
Permanent link to this record
 

 
Author Kahraman, Z.; Baskurt, M.; Yagmurcukardes, M.; Chaves, A.; Sahin, H.
  Title Stable Janus TaSe₂ single-layers via surface functionalization Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
  Volume 538 Issue Pages 148064
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract First-principles calculations are performed in order to investigate the formation of Janus structures of single layer TaSe2. The structural optimizations and phonon band dispersions reveal that the formation and stability of hydrogenated (HTaSe2), fluorinated (FTaSe2), and the one-side hydrogenated and one-side fluorinated (Janus-HTaSe2F) single-layers are feasible in terms of their phonon band dispersions. It is shown that bare metallic single-layer TaSe2 can be turned into a semiconductor as only one of its surface is functionalized while it remains as a metal via its two surfaces functionalization. In addition, the semiconducting nature of single-layers HTaSe2 and FTaSe2 and the metallic behavior of Janus TaSe2 are found to be robust under applied uniaxal strains. Further analysis on piezoelectric properties of the predicted single-layers reveal the enhanced in-plane and out of-plane piezoelectricity via formed Janus-HTaSe2F. Our study indicates that single-layer TaSe2 is a suitable host material for surface functionalization via fluorination and hydrogenation which exhibit distinctive electronic and vibrational properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000595860900001 Publication Date 2020-10-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited Open Access Not_Open_Access
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). HS acknowledges support from Turkiye Bilimler Akademisi -Turkish Academy of Sciences under the GEBIP program. This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.387
  Call Number UA @ admin @ c:irua:174964 Serial 6699
Permanent link to this record
 

 
Author Volykhov, A.A.; Frolov, A.S.; Neudachina, V.S.; Vladimirova, N.V.; Gerber, E.; Callaert, C.; Hadermann, J.; Khmelevsky, N.O.; Knop-Gericke, A.; Sanchez-Barriga, J.; Yashina, L.V.
  Title Impact of ordering on the reactivity of mixed crystals of topological insulators with anion substitution: Bi₂SeTe₂ and Sb₂SeTe₂ Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
  Volume 541 Issue Pages 148490
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Three-dimensional topological insulators are exotic materials with unique properties. Tetradymite type binary chalcogenides of bismuth and antimony, as well as their mixed crystals, belong to prototypical TIs. Potential device applications of these materials require in-depth knowledge of their stability in the ambient atmosphere and other media maintained during their processing. Here we investigated the reactivity of mixed crystals with anion substitution, Bi-2(Se1-xTex)(3) and Sb2(Se1-xTex)(3), towards molecular oxygen using both in situ and ex situ X-ray photoelectron spectroscopy. The results indicate that, in contrast to cation substitution, partial substitution of tellurium by selenium atoms leads to anomalously high surface reactivity, which even exceeds that of the most reactive binary constituent. We attribute this effect to anion ordering that essentially modifies the bond geometry, especially the respective bond angles as modeled by DFT.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000608492900003 Publication Date 2020-11-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 3.387
  Call Number UA @ admin @ c:irua:176067 Serial 6728
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Ziabari, A.A.; Khatibani, A.B.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D.
  Title Adsorption of habitat and industry-relevant molecules on the MoSi₂N₄ monolayer Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
  Volume 564 Issue Pages 150326
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The adsorption of various environmental gas molecules, including H-2, N-2, CO, CO2, O-2, NO, NO2, SO2 H2O, H2S, NH3 and CH4, on the surface of the recently synthesized two dimensional MoSi2N4 (MSN) monolayer has been investigated by means of spin-polarized first-principles calculations. The most stable adsorption configuration, adsorption energy, and charge transfer have been computed. Due to the weak interaction between molecules studied with the MSN monolayer surface, the adsorption energy is small and does not yield any significant distortion of the MSN lattice, i.e., the interaction between the molecules and MSN monolayer surface is physisorption. We find that all molecules are physisorbed on the MSM surface with small charge transfer, acting as either charge acceptors or donors. The MSN monolayer is a semiconductor with an indirect band gap of 1.79 eV. Our theoretical estimations reveal that upon adsorption of H-2, N-2, CO, CO2, NO, H2O, H2S, NH3 and CH4 molecules, the semiconducting character of MSN monolayer is preserved and the band gap value is decreased to similar to 1.5 eV. However, the electronic properties of the MSN monolayer can be significantly altered by adsorption of O-2, NO and SO2, and a spin polarization with magnetic moments of 2, 1, 2 mu(B), respectively, can be introduced. Furthermore, we demonstrate that the band gap and the magnetic moment of adsorbed MSN monolayer can be significantly modulated by the concentration of NO and SO2 molecules. As the concentration of NO2 molecule increases, the magnetic moment increase from 1 mu(B) to 2 and 3 mu(B). In the case of the SO2 molecule with increasing of concentration, the band gap decreases from 1.2 eV to 1.1 and 0.9 eV. Obviously, our theoretical studies indicate that MSN monolayer-based sensor has a high application potential for O-2, NO, NO2 and SO2 detection.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000675534500002 Publication Date 2021-06-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 3.387
  Call Number UA @ admin @ c:irua:180421 Serial 6970
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Khatibani, A.B.; Ziabari, A. abdolahzadeh; Ghergherehchi, M.; Nedaei, S.; Shayesteh, S.F.; Gogova, D.
  Title Tunable electronic and magnetic properties of MoSi₂N₄ monolayer via vacancy defects, atomic adsorption and atomic doping Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
  Volume 559 Issue Pages 149862
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The two dimensional MoSi2N4 (MSN) monolayer exhibiting rich physical and chemical properties was synthesized for the first time last year. We have used the spin-polarized density functional theory to study the effect of different types of point defects on the structural, electronic, and magnetic properties of the MSN monolayer. Adsorbed, substitutionally doped (at different lattice sites), and some kind of vacancies have been considered as point defects. The computational results show all defects studied decrease the MSN monolayer band gap. We found out the H-, O-, and P-doped MSN are n-type conductors. The arsenic-doped MSN, and MSN with vacancy defects have a magnetic moment. The MSN with a Si vacancy defect is a half-metallic which is favorable for spintronic applications, while the MSN with a single N vacancy or double vacancy (N + S) defects are metallic, i. e., beneficial as spin filters and chemical sensors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000655645300001 Publication Date 2021-05-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.387 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 3.387
  Call Number UA @ admin @ c:irua:179098 Serial 7038
Permanent link to this record
 

 
Author Van Holsbeke, C.; Vos, W.; van Hoorenbeeck, K.; Boudewyns, A.; Salgado, R.; Verdonck, P.R.; Ramet, J.; de Backer, J.; De Backer, W.; Verhulst, S.L.
  Title Functional respiratory imaging as a tool to assess upper airway patency in children with obstructive sleep apnea Type A1 Journal article
  Year 2013 Publication Sleep Medicine Abbreviated Journal Sleep Med
  Volume 14 Issue 5 Pages 433-439
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)
  Abstract Objective: We aim to investigate if anatomical and functional properties of the upper airway using computerized 3D models derived from computed tomography (CT) scans better predict obstructive sleep apnea (OSA) severity than standard clinical markers. Methods: Consecutive children with suspected OSA underwent polysomnography, clinical assessment of upper airway patency, and a CT scan while awake. A three-dimensional (3D) reconstruction of the pharyngeal airway was built from these images, and computational fluid dynamics modeling of low inspiratory flow was performed using open-source software. Results: Thirty-three children were included (23 boys; mean age, was 6.0 +/- 3.2 y). OSA was diagnosed in 23 patients. Children with OSA had a significantly lower volume of the overlap region between tonsils and the adenoids (median volume, 1408 mm compared to 2173 mm; p = 0.04), a lower mean cross-sectional area at this location (median volume, 69.3 mm(2) compared to 114.3 mm(2); p = 0.04), and a lower minimal cross-sectional area (median volume, 17.9 mm(2) compared to 25.9 mm(2); p = 0.05). Various significant correlations were found between several imaging parameters and the severity of OSA, most pronounced for upper airway conductance (r = -0.46) (p < 0.01) for correlation between upper airway conductance and the apnea-hypopnea index. No differences or significant correlations were observed with clinical parameters of upper airway patency. Preliminary data after treatment showed that none of the patients with residual OSA had their smallest cross-sectional area located in segment 3, and this frequency was significantly lower than in their peers whose sleep study normalized (64%; p = 0.05). Conclusion: Functional imaging parameters are highly correlated with OSA severity and are a more powerful correlate than clinical scores of upper airway patency. Preliminary data also showed that we could identify differences in the upper airway of those subjects who did not benefit from a local upper airway treatment. (c) 2013 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000318612100009 Publication Date 2013-03-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1389-9457; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.391 Times cited 18 Open Access
  Notes ; ; Approved Most recent IF: 3.391; 2013 IF: 3.100
  Call Number UA @ lucian @ c:irua:109015 Serial 1302
Permanent link to this record
 

 
Author Guerrero, A.; Pfannmöller, M.; Kovalenko, A.; Ripolles, T.S.; Heidari, H.; Bals, S.; Kaufmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G.
  Title Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity Type A1 Journal article
  Year 2015 Publication Organic electronics: physics, materials, applications Abbreviated Journal Org Electron
  Volume 16 Issue 16 Pages 227-233
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Organic photovoltaic (OPV) devices are on the verge of commercialization being long-term stability a key challenge. Morphology evolution during lifetime has been suggested to be one of the main pathways accounting for performance degradation. There is however a lack of certainty on how specifically the morphology evolution relates to individual electrical parameters on operating devices. In this work a case study is created based on a thermodynamically unstable organic active layer which is monitored over a period of one year under non-accelerated degradation conditions. The morphology evolution is revealed by compositional analysis of ultrathin cross-sections using nanoscale imaging in scanning transmission electron microscopy (STEM) coupled with electron energy-loss spectroscopy (EELS). Additionally, devices are electrically monitored in real-time using the non-destructive electrical techniques capacitance-voltage (C-V) and Impedance Spectroscopy (IS). By comparison of imaging and electrical techniques the relationship between nanoscale morphology and individual electrical parameters of device operation can be conclusively discerned. It is ultimately observed how the change in the cathode contact properties occurring after the migration of fullerene molecules explains the improvement in the overall device performance. (C) 2014 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000345649500029 Publication Date 2014-11-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1566-1199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.399 Times cited 24 Open Access OpenAccess
  Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 3.399; 2015 IF: 3.827
  Call Number c:irua:122169 Serial 2267
Permanent link to this record
 

 
Author Vanschoenwinkel, J.; Moretti, M.; Van Passel, S.
  Title The effect of policy leveraging climate change adaptive capacity in agriculture Type A1 Journal Article
  Year 2020 Publication European Review Of Agricultural Economics Abbreviated Journal Eur Rev Agric Econ
  Volume Issue Pages
  Keywords A1 Journal Article; Engineering Management (ENM)
  Abstract Agricultural adaptation to climate change is indispensable. However, the degree of adaptation depends on adaptive capacity levels and it only takes place if the appropriate resources are present. Cross-sectional climate response models ignore this requirement. This paper adapts the Ricardian method to control for a generic territorial adaptive capacity index. The results for a sample of over 60.000 European farms show a significant non-linear positive relationship between adaptive capacity and climate responsiveness and that some regions in Europe can increase their climate responsiveness significantly. This confirms that improvement of adaptive capacity is an important policy tool to enhance adaptation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000558982300007 Publication Date 2019-03-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0165-1587 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.4 Times cited Open Access
  Notes This paper was supported by the Horizon 2020 project SUFISA (Grant Agreement No. 635577). Approved Most recent IF: 3.4; 2020 IF: 1.6
  Call Number ENM @ enm @c:irua:167258 Serial 6350
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Reith, P.; Halisdemir, U.; Jannis, D.; Spreitzer, M.; Huijben, M.; Abel, S.; Fompeyrine, J.; Verbeeck, J.; Hilgenkamp, H.; Rijnders, G.; Koster, G.
  Title Thermal-strain-engineered ferromagnetism of LaMnO3/SrTiO3 heterostructures grown on silicon Type A1 Journal article
  Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials
  Volume 4 Issue 2 Pages 024406
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The integration of oxides on Si remains challenging, which largely hampers the practical applications of oxide-based electronic devices with superior performance. Recently, LaMnO3/SrTiO3 (LMO/STO) heterostructures have gained renewed interest for the debating origin of the ferromagnetic-insulating ground state as well as for their spin-filter applications. Here we report on the structural and magnetic properties of high-quality LMO/STO heterostructures grown on silicon. The chemical abruptness across the interface was investigated by atomic-resolution scanning transmission electron microscopy. The difference in the thermal expansion coefficients between LMO and Si imposed a large biaxial tensile strain to the LMO film, resulting in a tetragonal structure with c/a∼ 0.983. Consequently, we observed a significantly suppressed ferromagnetism along with an enhanced coercive field, as compared to the less distorted LMO film (c/a∼1.004) grown on STO single crystal. The results are discussed in terms of tensile-strain enhanced antiferromagnetic instabilities. Moreover, the ferromagnetism of LMO on Si sharply disappeared below a thickness of 5 unit cells, in agreement with the LMO/STO case, pointing to a robust critical behavior irrespective of the strain state. Our results demonstrate that the growth of oxide films on Si can be a promising way to study the tensile-strain effects in correlated oxides, and also pave the way towards the integration of multifunctional oxides on Si with atomic-layer control.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000513552900003 Publication Date 2020-02-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.4 Times cited 6 Open Access Not_Open_Access
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Vlaamse regering; Fonds Wetenschappelijk Onderzoek, G093417N ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; European Commission, H2020-ICT-2016-1-732642 ; Approved Most recent IF: 3.4; 2020 IF: NA
  Call Number EMAT @ emat @c:irua:167782 Serial 6375
Permanent link to this record
 

 
Author Araizi-Kanoutas, G.; Geessinck, J.; Gauquelin, N.; Smit, S.; Verbeek, X.H.; Mishra, S.K.; Bencok, P.; Schlueter, C.; Lee, T.-L.; Krishnan, D.; Fatermans, J.; Verbeeck, J.; Rijnders, G.; Koster, G.; Golden, M.S.
  Title Co valence transformation in isopolar LaCoO3/LaTiO3 perovskite heterostructures via interfacial engineering Type A1 Journal article
  Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials
  Volume 4 Issue 2 Pages 026001
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We report charge transfer up to a single electron per interfacial unit cell across nonpolar heterointerfaces from the Mott insulator LaTiO3 to the charge transfer insulator LaCoO3. In high-quality bi- and trilayer systems grown using pulsed laser deposition, soft x-ray absorption, dichroism, and scanning transmission electron microscopy-electron energy loss spectroscopy are used to probe the cobalt-3d electron count and provide an element-specific investigation of the magnetic properties. The experiments show the cobalt valence conversion is active within 3 unit cells of the heterointerface, and able to generate full conversion to 3d7 divalent Co, which displays a paramagnetic ground state. The number of LaTiO3/LaCoO3 interfaces, the thickness of an additional, electronically insulating “break” layer between the LaTiO3 and LaCoO3, and the LaCoO3 film thickness itself in trilayers provide a trio of control knobs for average charge of the cobalt ions in LaCoO3, illustrating the efficacy of O−2p band alignment as a guiding principle for property design in complex oxide heterointerfaces.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000513551200007 Publication Date 2020-02-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.4 Times cited 13 Open Access OpenAccess
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Horizon 2020, 730872 ; Department of Science and Technology, Ministry of Science and Technology, SR/NM/Z-07/2015 ; Jawaharlal Nehru Centre for Advanced Scientific Research; Approved Most recent IF: 3.4; 2020 IF: NA
  Call Number EMAT @ emat @c:irua:167787 Serial 6376
Permanent link to this record
 

 
Author Bogaerts, A.; Centi, G.
  Title Plasma Technology for CO2 Conversion: A Personal Perspective on Prospects and Gaps Type A1 Journal article
  Year 2020 Publication Frontiers in energy research Abbreviated Journal Front. Energy Res.
  Volume 8 Issue Pages
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract There is increasing interest in plasma technology for CO2 conversion because it can operate at mild conditions and it can store fluctuating renewable electricity into

value-added compounds and renewable fuels. This perspective paper aims to provide a view on the future for non-specialists who want to understand the role of plasma

technology in the new scenario for sustainable and low-carbon energy and chemistry. Thus, it is prepared to give a personal view on future opportunities and challenges. First, we introduce the current state-of-the-art and the potential of plasma-based CO2 conversion. Subsequently, we discuss the challenges to overcome the current limitations and to apply plasma technology on a large scale. The final section discusses the general context and the potential benefits of plasma-based CO2 conversion for our life and the impact on climate change. It also includes a brief analysis on the future scenario for energy and chemical production, and how plasma technology may realize new paths for CO2 utilization.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000553392300001 Publication Date 2020-07-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2296-598X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.4 Times cited Open Access OpenAccess
  Notes We acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810182 – SCOPE ERC Synergy project). We thank A. Berthelot, M. Ramakers, R. Snoeckx, G. Trenchev, and V. Vermeiren for providing the figures used in this article. Approved Most recent IF: 3.4; 2020 IF: NA
  Call Number PLASMANT @ plasmant @c:irua:170136 Serial 6390
Permanent link to this record
 

 
Author Bogaerts, A.; Tu, X.; Whitehead, J.C.; Centi, G.; Lefferts, L.; Guaitella, O.; Azzolina-Jury, F.; Kim, H.-H.; Murphy, A.B.; Schneider, W.F.; Nozaki, T.; Hicks, J.C.; Rousseau, A.; Thevenet, F.; Khacef, A.; Carreon, M.
  Title The 2020 plasma catalysis roadmap Type A1 Journal article
  Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
  Volume 53 Issue 44 Pages 443001
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, CH4 activation into hydrogen, higher hydrocarbons or oxygenates, and NH3 synthesis. Other applications are already more established, such as for air pollution control, e.g. volatile organic compound remediation, particulate matter and NOx removal. In addition, plasma is also very promising for catalyst synthesis and treatment. Plasma catalysis clearly has benefits over ‘conventional’ catalysis, as outlined in the Introduction. However, a better insight into the underlying physical and chemical processes is crucial. This can be obtained by experiments applying diagnostics, studying both the chemical processes at the catalyst surface and the physicochemical mechanisms of plasma-catalyst interactions, as well as by computer modeling. The key challenge is to design cost-effective, highly active and stable catalysts tailored to the plasma environment. Therefore, insight from thermal catalysis as well as electro- and photocatalysis is crucial. All these aspects are covered in this Roadmap paper, written by specialists in their field, presenting the state-of-the-art, the current and future challenges, as well as the advances in science and technology needed to meet these challenges.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000563194400001 Publication Date 2020-10-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.4 Times cited Open Access OpenAccess
  Notes U.S. Department of Energy, DE-FE0031862 DE-FG02-06ER15830 ; U.S. Air Force Office of Scientific Research, FA9550-18-1-0157 ; University of Antwerp, 32249 ; JSPS KAKENSHI, JP18H01208 ; UK EPSRC Impact Acceleration Account; National Science Foundation, EEC-1647722 ; H2020 Marie Skłodowska-Curie Actions, 823745 ; Horizon 2020 Framework Programme, 810182 – SCOPE ERC Synergy pr ; This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182—SCOPE ERC Synergy project). Approved Most recent IF: 3.4; 2020 IF: 2.588
  Call Number PLASMANT @ plasmant @c:irua:171915 Serial 6408
Permanent link to this record
 

 
Author Vanderveken, F.; Ahmad, H.; Heyns, M.; Sorée, B.; Adelmann, C.; Ciubotaru, F.
  Title Excitation and propagation of spin waves in non-uniformly magnetized waveguides Type A1 Journal article
  Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
  Volume 53 Issue 49 Pages 495006
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The characteristics of spin waves in ferromagnetic waveguides with non-uniform magnetization have been investigated for situations where the shape anisotropy field of the waveguide is comparable to the external bias field. Spin-wave generation was realized by the magnetoelastic effect by applying normal and shear strain components, as well as by the Oersted field emitted by an inductive antenna. The magnetoelastic excitation field has a non-uniform profile over the width of the waveguide because of the non-uniform magnetization orientation, whereas the Oersted field remains uniform. Using micromagnetic simulations, we indicate that both types of excitation fields generate quantised width modes with both odd and even mode numbers as well as tilted phase fronts. We demonstrate that these effects originate from the average magnetization orientation with respect to the main axes of the magnetic waveguide. Furthermore, it is indicated that the excitation efficiency of the second-order mode generally surpasses that of the first-order mode due to their symmetry. The relative intensity of the excited modes can be controlled by the strain state as well as by tuning the dimensions of the excitation area. Finally, we demonstrate that the nonreciprocity of spin-wave radiation due to the chirality of an Oersted field generated by an inductive antenna is absent for magnetoelastic spin-wave excitation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000575331600001 Publication Date 2020-08-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.4 Times cited 1 Open Access
  Notes ; This work has been supported by imec's industrial affiliate program on beyond-CMOS logic. It has also received funding from the European Union's Horizon 2020 research and innovation program within the FET-OPEN project CHIRON under grant agreement No. 801055. F V acknowledges financial support from the Research Foundation -Flanders (FWO) through grant No. 1S05719N. ; Approved Most recent IF: 3.4; 2020 IF: 2.588
  Call Number UA @ admin @ c:irua:172641 Serial 6515
Permanent link to this record
 

 
Author Heirman, P.; Verloy, R.; Baroen, J.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A.
  Title Liquid treatment with a plasma jet surrounded by a gas shield: effect of the treated substrate and gas shield geometry on the plasma effluent conditions Type A1 Journal article
  Year 2024 Publication Journal of physics: D: applied physics Abbreviated Journal J. Phys. D: Appl. Phys.
  Volume 57 Issue 11 Pages 115204
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
  Abstract The treatment of a well plate by an atmospheric pressure plasma jet is common for<italic>in vitro</italic>plasma medicine research. Here, reactive species are largely produced through the mixing of the jet effluent with the surrounding atmosphere. This mixing can be influenced not only by the ambient conditions, but also by the geometry of the treated well. To limit this influence and control the atmosphere, a shielding gas is sometimes applied. However, the interplay between the gas shield and the well geometry has not been investigated. In this work, we developed a 2D-axisymmetric computational fluid dynamics model of the kINPen plasma jet, to study the mixing of the jet effluent with the surrounding atmosphere, with and without gas shield. Our computational and experimental results show that the choice of well type can have a significant influence on the effluent conditions, as well as on the effectiveness of the gas shield. Furthermore, the geometry of the shielding gas device can substantially influence the mixing as well. Our results provide a deeper understanding of how the choice of setup geometry can influence the plasma treatment, even when all other operating parameters are unchanged.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001127372200001 Publication Date 2024-03-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record
  Impact Factor (up) 3.4 Times cited Open Access Not_Open_Access
  Notes Fund for Scientific Research Flanders, 1100421N ; Approved Most recent IF: 3.4; 2024 IF: 2.588
  Call Number PLASMANT @ plasmant @c:irua:201999 Serial 8977
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Akgenc, B.; Ghergherehchi, M.; Nguyen, C.
  Title Van der Waals heterostructures of MoS₂ and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC₃, C₃N, C₃N₄ and C₄N₃) nanosheets: a first-principles study Type A1 Journal article
  Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
  Volume Issue Pages 1-10
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract In this work, we extensively investigate the structural and electronic properties of van der Waals heterostructures (HTs) constructed by MoS${2}$/$BC3$, MoS${2}$/$C3N$, MoS${2}$/$C3N4$, MoS${2}$/$C4N3$ and those using Janus MoSSe instead of MoS$2$ by performing density functional theory calculations. The electronic band structure calculations and the corresponding partial density of states reveal that the significant changes are driven by quite strong layer-layer interaction between the constitutive layers. Our results show that although all monolayers are semiconductors as free-standing layers, the MoS${2}$/$C3N$ and MoS${2}$/$C4N3$ bilayer HTs display metallic behavior as a consequence of transfer of charge carriers between two constituent layers. In addition, it is found that in MoSSe/$C3N$ bilayer HT, the degree of metallicity is affected by the interface chalcogen atom type when Se atoms are facing to $C3N$ layer, the overlap of the bands around the Fermi level is smaller. Moreover, the half-metallic magnetic $C4N3$ is shown to form magnetic half-metallic trilayer HT with MoS$2$ independent of the stacking sequence, i.e. whether it is sandwiched or two $C4N3$ layer encapsulate MoS$2$ layer. We further analyze the trilayer HTs in which MoS$2$ is encapsulated by two different monolayers and it is revealed that at least with one magnetic monolayer, it is possible to construct a magnetic trilayer. While the trilayer of $C4N3$/MoS${2}$/$BC3$ and $C4N3$/MoS${2}$/$C3N4$ exhibit half-metallic characteristics, $C4N3$/MoS${_2}$/$C3$N possesses a magnetic metallic ground state. Overall, our results reveal that holly structures of BCN crystals are suitable for heterostructure formation even over van der Waals type interaction which significantly changes electronic nature of the constituent layers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000543344800001 Publication Date 2020-04-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.4 Times cited Open Access
  Notes Approved Most recent IF: 3.4; 2020 IF: 2.588
  Call Number UA @ admin @ c:irua:169754 Serial 6651
Permanent link to this record
 

 
Author Lin, S.-C.; Kuo, C.-T.; Shao, Y.-C.; Chuang, Y.-D.; Geessinck, J.; Huijben, M.; Rueff, J.-P.; Graff, I.L.; Conti, G.; Peng, Y.; Bostwick, A.; Gullikson, E.; Nemsak, S.; Vailionis, A.; Gauquelin, N.; Verbeeck, J.; Ghiringhelli, G.; Schneider, C.M.; Fadley, C.S.
  Title Two-dimensional electron systems in perovskite oxide heterostructures : role of the polarity-induced substitutional defects Type A1 Journal article
  Year 2020 Publication Physical review materials Abbreviated Journal
  Volume 4 Issue 11 Pages 115002
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The discovery of a two-dimensional electron system (2DES) at the interfaces of perovskite oxides such as LaAlO3 and SrTiO3 has motivated enormous efforts in engineering interfacial functionalities with this type of oxide heterostructures. However, the fundamental origins of the 2DES are still not understood, e.g., the microscopic mechanisms of coexisting interface conductivity and magnetism. Here we report a comprehensive spectroscopic investigation on the depth profile of 2DES-relevant Ti 3d interface carriers using depthand element-specific techniques like standing-wave excited photoemission and resonant inelastic scattering. We found that one type of Ti 3d interface carriers, which give rise to the 2DES are located within three unit cells from the n-type interface in the SrTiO3 layer. Unexpectedly, another type of interface carriers, which are polarity-induced Ti-on-Al antisite defects, reside in the first three unit cells of the opposing LaAlO3 layer (similar to 10 angstrom). Our findings provide a microscopic picture of how the localized and mobile Ti 3d interface carriers distribute across the interface and suggest that the 2DES and 2D magnetism at the LaAlO3/SrTiO3 interface have disparate explanations as originating from different types of interface carriers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000592432200004 Publication Date 2020-11-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.4 Times cited 7 Open Access OpenAccess
  Notes ; We thank G. M. De Luca and L. Braicovich for discussions. Charles S. Fadley was deceased on August 1, 2019. We are grateful for his significant contributions to this work. We thank Advanced Light Source for the access to Beamline 8.0.3 (qRIXS) via Proposal No. 09892 and beamline 7.0.2 (MAESTRO) via Proposal No. RA-00291 that contributed to the results presented here. We thank synchrotron SOLEIL (via Proposal No. 99180118) for the access to Beamline GALAXIES. This work was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231 (Advanced Light Source), and by DOE Contract No. DE-SC0014697 through the University of California, Davis (S.-C.L., C.-T.K, and C.S.F.), and from the Julich Research Center, Peter Grunberg Institute, PGI-6. I. L. G. wishes to thank Brazilian scientific agencies CNPQ (Project No. 200789/2017-1) and CAPES (CAPES-PrInt-UFPR) for their financial support. J.V. and N.G. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the European Union's horizon 2020 research and innovation program ES-TEEM3 under grant agreement no 823717. The Qu-Ant-EM microscope used in this study was partly funded by the Hercules fund from the Flemish Government. ; esteem3TA; esteem3reported Approved Most recent IF: 3.4; 2020 IF: NA
  Call Number UA @ admin @ c:irua:174316 Serial 6713
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: