toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Gordon, K.; Baúlde, S.; Mychinko, M.; Heyvaert, W.; Obelleiro-Liz, M.; Criado, A.; Bals, S.; Liz-Marzán, L.M.; Mosquera, J. pdf  url
doi  openurl
  Title Tuning the Growth of Chiral Gold Nanoparticles Through Rational Design of a Chiral Molecular Inducer Type A1 Journal Article
  Year 2023 Publication Nano Letters Abbreviated Journal Nano Lett.  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The bottom-up production of chiral gold nanomaterials holds great potential for the advancement of biosensing and nano-optics, among other applications. Reproducible preparations of colloidal nanomaterials with chiral morphology have been reported, using cosurfactants or chiral inducers such as thiolated amino acids. However, the underlying growth mechanisms for these nanomaterials remain insufficiently understood. We introduce herein a purposely devised chiral inducer, a cysteine modified with a hydrophobic chain, as a versatile chiral inducer. The amphiphilic and chiral features of this molecule provide control over the chiral morphology and the chiroptical signature of the obtained nanoparticles by simply varying the concentration of chiral inducer. These results are supported by circular dichroism and electromagnetic modeling as well as electron tomography to analyze structural evolution at the facet scale. Our observations suggest complex roles for the factors involved in chiral synthesis: the chemical nature of the chiral inducers and the influence of cosurfactants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001092787000001 Publication Date 2023-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (down) 10.8 Times cited Open Access OpenAccess  
  Notes J.M. Taboada and F. Obelleiro are thanked for support with electromagnetic simulations. The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S. Bals; ERC AdG No. 787510, 4DbioSERS to L.M.L.-M.) and from MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020-117779RB-I00 to L.M.L.-M., Grant RYC2020-030183-I to A.C., and Grants RYC2019-027842-I, PID2020-117885GA-I00 to J.M.). Approved Most recent IF: 10.8; 2023 IF: 12.712  
  Call Number EMAT @ emat @c:irua:200590 Serial 8963  
Permanent link to this record
 

 
Author Schrenker, N.J.; Braeckevelt, T.; De Backer, A.; Livakas, N.; Yu, C.-P.; Friedrich, T.; Roeffaers, M.B.J.; Hofkens, J.; Verbeeck, J.; Manna, L.; Van Speybroeck, V.; Van Aert, S.; Bals, S. url  doi
openurl 
  Title Investigation of the Octahedral Network Structure in Formamidinium Lead Bromide Nanocrystals by Low-Dose Scanning Transmission Electron Microscopy Type A1 Journal Article
  Year 2024 Publication Nano Letters Abbreviated Journal Nano Lett.  
  Volume 24 Issue 35 Pages 10936-10942  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Metal halide perovskites (MHP) are highly promising semiconductors. In this study, we focus on FAPbBr3 nanocrystals, which are of great interest for green light-emitting diodes. Structural parameters significantly impact the properties of MHPs and are linked to phase instability, which hampers long-term applications. Clearly, there is a need for local and precise characterization techniques at the atomic scale, such as transmission electron microscopy. Because of the high electron beam sensitivity of MHPs, these investigations are extremely challenging. Here, we applied a low-dose method based on four-dimensional scanning transmission electron microscopy. We quantified the observed elongation of the projections of the Br atomic columns, suggesting an alternation in the position of the Br atoms perpendicular to the Pb–Br–Pb bonds. Together with molecular dynamics simulations, these results remarkably reveal local distortions in an on-average cubic structure. Additionally, this study provides an approach to prospectively investigating the fundamental degradation mechanisms of MHPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links  
  Impact Factor (down) 10.8 Times cited Open Access  
  Notes The authors acknowledge financial support from the Research Foundation-Flanders (FWO) through project fundings (G0A7723N) and a postdoctoral fellowship to N.J.S. (FWO Grants 1238622N and V413524N). The authors acknowledge financial support from iBOF-21-085 PERSIST. S.B. and S.V.A. acknowledge financial support from the European Commission by ERC Consolidator Grant 815128 (REALNANO) and Grant 770887 (PICOMETRICS). L.M. acknowledges financial support from the European Commission by ERC Advanced Grant 101095974 (NEHA). V.V.S. furthermore acknowledges the Research Fund of Ghent University (BOF) for its financial support. The computational resources and services used in this work were provided by VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO), and the Flemish Government. Approved Most recent IF: 10.8; 2024 IF: 12.712  
  Call Number EMAT @ emat @ Serial 9273  
Permanent link to this record
 

 
Author Zhang, Y.; Grunewald, L.; Cao, X.; Abdelbarey, D.; Zheng, X.; Rugeramigabo, E.P.; Verbeeck, J.; Zopf, M.; Ding, F. url  doi
openurl 
  Title Unveiling the 3D morphology of epitaxial GaAs/AlGaAs quantum dots Type A1 Journal article
  Year 2024 Publication Nano letters Abbreviated Journal  
  Volume 24 Issue 33 Pages 10106-10113  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Strain-free GaAs/AlGaAs semiconductor quantum dots (QDs) grown by droplet etching and nanohole infilling (DENI) are highly promising candidates for the on-demand generation of indistinguishable and entangled photon sources. The spectroscopic fingerprint and quantum optical properties of QDs are significantly influenced by their morphology. The effects of nanohole geometry and infilled material on the exciton binding energies and fine structure splitting are well-understood. However, a comprehensive understanding of GaAs/AlGaAs QD morphology remains elusive. To address this, we employ high-resolution scanning transmission electron microscopy (STEM) and reverse engineering through selective chemical etching and atomic force microscopy (AFM). Cross-sectional STEM of uncapped QDs reveals an inverted conical nanohole with Al-rich sidewalls and defect-free interfaces. Subsequent selective chemical etching and AFM measurements further reveal asymmetries in element distribution. This study enhances the understanding of DENI QD morphology and provides a fundamental three-dimensional structural model for simulating and optimizing their optoelectronic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (down) 10.8 Times cited Open Access  
  Notes Approved Most recent IF: 10.8; 2024 IF: 12.712  
  Call Number UA @ admin @ c:irua:207525 Serial 9326  
Permanent link to this record
 

 
Author Ennaert, T.; Geboers, J.; Gobechiya, E.; Courtin, C.M.; Kurttepeli, M.; Houthoofd, K.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Bals, S.; Jacobs, P.A.; Sels, B.F. pdf  url
doi  openurl
  Title Conceptual frame rationalizing the self-stabilization of H-USY zeolites in hot liquid water Type A1 Journal article
  Year 2015 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 5 Issue 5 Pages 754-768  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The wide range of liquid-phase reactions required for the catalytic conversion of biomass compounds into new bioplatform molecules defines a new set of challenges for the development of active, selective, and stable catalysts. The potential of bifunctional Ru/H-USY catalysts for conversions in hot liquid water (HLW) is assessed in terms of physicochemical stability and long-term catalytic performance of acid sites and noble metal functionality, as probed by hydrolytic hydrogenation of cellulose. It is shown that zeolite desilication is the main zeolite degradation mechanism in HLW. USY zeolite stability depends on two main parameters, viz., framework and extra-framework aluminum content. The former protects the zeolite lattice by counteracting hydrolysis of framework bonds, and the latter, when located at the external crystal surface, prevents solubilization of the zeolite framework which is the result of its low water-solubility. Hence, the hot liquid water stability of commercial H-USY zeolites, in contrast to their steam stability, increased with decreasing Si/AI ratio. As a result, mildly steamed USY zeolites containing a high amount of both Al species exhibit the highest resistance to HLW. During an initial period of transformations, Al-rich zeolites form additional protective extra-framework Al species at the outer surface, self-stabilizing the framework. A critical bulk Si/AI ratio of 3 was determined whereby USY zeolites with a lower Si/AI ratio will self-stabilize over time. Besides, due to the initial transformation period, the accessibility of the catalytic active sites is extensively enhanced resulting in a material that is more stable and drastically more accessible to large substrates than the original zeolite. When these findings are applied in the hydrolytic hydrogenation of cellulose, unprecedented nearly quantitative hexitol yields were obtained with a stable catalytic system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349275300031 Publication Date 2014-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435;2155-5435; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 10.614 Times cited 65 Open Access OpenAccess  
  Notes 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 10.614; 2015 IF: 9.312  
  Call Number c:irua:125288 Serial 474  
Permanent link to this record
 

 
Author Mei, B.; Wiktor, C.; Turner, S.; Pougin, A.; Van Tendeloo, G.; Fischer, R.A.; Muhler, M.; Strunk, J. pdf  doi
openurl 
  Title Evidence for metalsupport interactions in Au modified TiOx/SBA-15 materials prepared by photodeposition Type A1 Journal article
  Year 2013 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 3 Issue 12 Pages 3041-3049  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gold nanoparticles have been efficiently photodeposited onto titanate-loaded SBA-15 (Ti(x)/SBA-15) with different titania coordination. Transmission electron microscopy shows that relatively large Au nanoparticles are photodeposited on the outer surface of the Ti(x)/SBA-15 materials and that TiOx tends to form agglomerates in close proximity to the Au nanoparticles, often forming coreshell Au/TiOx structures. This behavior resembles typical processes observed due to strong-metal support interactions. In the presence of gold, the formation of hydrogen on Ti(x)/SBA-15 during the photodeposition process and the performance in the hydroxylation of terephthalic acid is greatly enhanced. The activity of the Au/Ti(x)/SBA-15 materials is found to depend on the TiOx loading, increasing with a larger amount of initially isolated TiO4 tetrahedra. Samples with initially clustered TiOx species show lower photocatalytic activities. When isolated zinc oxide (ZnOx) species are present on Ti(x)/SBA-15, gold nanoparticles are smaller and well dispersed within the pores. Agglomeration of TiOx species and the formation of Au/TiOx structures is negligible. The dispersion of gold and the formation of Au/TiOx in the SBA-15 matrix seem to depend on the mobility of the TiOx species. The mobility is determined by the initial degree of agglomeration of TiOx. Effective hydrogen evolution requires Au/TiOx coreshell composites as in Au/Ti(x)/SBA-15, whereas hydroxylation of terephthalic acid can also be performed with Au/ZnOx/TiOx/SBA-15 materials. However, isolated TiOx species have to be grafted onto the support prior to the zinc oxide species, providing strong evidence for the necessity of TiOSi bridges for high photocatalytic activity in terephthalic acid hydroxylation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328231400044 Publication Date 2013-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435;2155-5435; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 10.614 Times cited 22 Open Access  
  Notes 262348 ESMI; FWO; 246791 COUNTATOMS; IAP-PAI; Hercules Approved Most recent IF: 10.614; 2013 IF: 7.572  
  Call Number UA @ lucian @ c:irua:112502 Serial 1094  
Permanent link to this record
 

 
Author Geboes, B.; Ustarroz, J.; Sentosun, K.; Vanrompay, H.; Hubin, A.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Electrochemical behavior of electrodeposited nanoporous Pt catalysts for the oxygen reduction reaction Type A1 Journal article
  Year 2016 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 6 Issue 6 Pages 5856-5864  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Nanoporous Pt based nanoparticles (NP's) are promising fuel cell catalysts due to their high surface area and increased electrocatalytic activity toward the ORR In this work a direct double-pulse electrodeposition procedure at room temperature is applied to obtain dendritic Pt structures (89 nm diameter) with a high level of porosity (ca. 25%) and nanopores of 2 nm protruding until the center of the NP's. The particle morphology is characterized using aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and electron tomography (ET) combined with field emission scanning electron microscopy (FESEM) and macroscopic electrochemical measurements to assess their activity and stability toward the ORR. Macroscopic determination of the active surface area through hydrogen UPD measurements in combination with FESEM and ET showed that a considerable amount of the active sites inside the pores of the low overpotential NP's were accessible to oxygen species. As a result of this accessibility, up to a 9-fold enhancement of the Pt mass corrected ORR activity at 0.85 V vs RHE was observed at the highly porous structures. After successive potential cycling upward to 1.5 V vs RHE in a deaerated HClO4 solution a negative shift of 71 mV in half-wave potential occurred. This decrease in ORR activity could be correlated to the partial collapse of the nanopores, visible in both the EASA values and 3D ET reconstructions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382714000025 Publication Date 2016-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 10.614 Times cited 48 Open Access OpenAccess  
  Notes ; The Quanta 250 FEG microscope of the Electron Microscopy for Material Science group at the University of Antwerp was funded by the Hercules foundation of the Flemish Government. The authors acknowledge financial support from the Fonds Wetenschappelijk Onderzoek in Flanders (FWOAL708). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_Sara Approved Most recent IF: 10.614  
  Call Number UA @ lucian @ c:irua:135703 Serial 4302  
Permanent link to this record
 

 
Author Verduyckt, J.; Van Hoof, M.; De Schouwer, F.; Wolberg, M.; Kurttepeli, M.; Eloy, P.; Gaigneaux, E.M.; Bals, S.; Kirschhock, C.E.A.; De Vos, D.E. url  doi
openurl 
  Title PdPb-catalyzed decarboxylation of proline to pyrrolidine : highly selective formation of a biobased amine in water Type A1 Journal article
  Year 2016 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 6 Issue 6 Pages 7303-7310  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Amino acids have huge potential as platform chemicals in the biobased industry. Pd-catalyzed decarboxylation is a very promising route for the valorization of these natural compounds derived from protein waste or fermentation. We report that the highly abundant and nonessential amino acid L-proline is very reactive in the Pd-catalyzed decarboxylation. Full conversions are obtained with Pd/C and different Pd/MeOx catalysts; this allowed the identification of the different side reactions and the mapping of the reaction network. Due to the high reactivity of pyrrolidine, the selectivity for pyrrolidine was initially low. By carefully modifying Pd/ZrO2 with Pb in a controlled manner-via two incipient wetness impregnation steps-the selectivity increased remarkably. Finally, a thorough investigation of the reaction parameters resulted in an increased activity of this modified catalyst and an even further enhanced selectivity under a low H-2 pressure of 4 bar at 235 degrees C in water. This results in a very selective and sustainable production route for the highly interesting pyrrolidine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387306100005 Publication Date 2016-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 10.614 Times cited 27 Open Access OpenAccess  
  Notes ; J.V. and F.D.S. thank Fonds Wetenschappelijk Onderzoek (FWO) and Agency for Innovation by Science and Technology (IWT) for doctoral fellowships. D.D.V. acknowledges IWT and FWO for research project funding. D.D.V. and C.E.A.K. acknowledge the Flemish government for long-term structural funding through Methusalem. D.D.V. and S.B. acknowledge Belspo (IAP-PAI 7/05) for financial support. S.B. is grateful for funding by the European Research Council (ERC starting grant no. 335078-COLOURATOMS). The authors also thank the Department of Chemistry, University of Cologne, Germany for use of their XRD equipment. Finally, the assistance of Karel Duerinckx, Werner Wouters, Walter Vermandel, Ivo Stassen, Dries Jonckheere, Sabina Accardo and Bart Bueken with 11-1 NMR, pressure reactors, CO chemisorption, N<INF>2</INF> physisorption, SEM, gas phase FTIR and high-throughput XRD, respectively, is very much appreciated. ; ecas_Sara Approved Most recent IF: 10.614  
  Call Number UA @ lucian @ c:irua:139171 Serial 4445  
Permanent link to this record
 

 
Author Theofanidis, S.A.; Galvita, V.V.; Poelman, H.; Dharanipragada, N.V.R.A.; Longo, A.; Meledina, M.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B. url  doi
openurl 
  Title Fe-containing magnesium aluminate support for stability and carbon control during methane reforming Type A1 Journal article
  Year 2018 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 8 Issue 7 Pages 5983-5995  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report a MgFexAl2-xO4 synthetic spinel, where x varies from 0 to 0.26, as support for Ni-based catalysts, offering stability and carbon control under various conditions of methane reforming. By incorporation of Fe into a magnesium aluminate spine!, a support is created with redox functionality and high thermal stability, as concluded from temporal analysis of products (TAP) experiments and redox cycling, respectively. A diffusion coefficient of 3 x 10(-17) m(2) s(-1) was estimated for lattice oxygen at 993 K from TAP experiments. X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) modeling identified that the incorporation of iron occurs as Fe3+ in the octahedral sites of the spinel lattice, replacing aluminum. Simulation of the X-ray absorption near edge structure (XANES) spectrum of the reduced support showed that 60 +/- 10% of iron was reduced from 3+ to 2+ at 1073 K, while there was no formation of metallic iron. A series of Ni/MgFexAl2-xO4 catalysts, where x varies from 0 to 0.26, was synthesized and reduced, yielding a supported Ni-Fe alloy. The evolution of the catalyst structure during H-2 temperature-programmed reduction (TPR) and CO2 temperature-programmed oxidation (TPO) was examined using time-resolved in situ XRD and XANES. During reforming, iron in both the support and alloy keeps control of carbon accumulation, as confirmed by O-2-TPO on the spent catalysts. By fine tuning the amount of Fe in MgFexAl2-xO4, a supported alloy was obtained with a Ni/Fe molar ratio of similar to 10, which was active for reforming and stable. By comparison of the performance of Ni-based catalysts with Fe either incorporated into or deposited onto the support, the location of Fe within the support proved crucial for the stability and carbon mitigation under reforming conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000438475100034 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 10.614 Times cited 18 Open Access OpenAccess  
  Notes ; This work was supported by the FAST industrialization by Catalyst Research and Development (FASTCARD) project, which is a Large Scale Collaborative Project supported by the European Commission in the 7th Framework Programme (GA no 604277), the “Long Term Structural Methusalem Funding by the Flemish Government”, the Interuniversity Attraction Poles Programme, IAP7/5, Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) in supplying financing of travel costs and beam time at the DUBBLE beamline of the ESRF. The authors acknowledge the assistance from the DUBBLE (ESRF, XAS campaign 26-01-1048) and ROCK staff (SOLEIL, proposal 201502561). The authors equally acknowledge support from a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d'Avenir” program (reference: ANR-10-EQPX-45) for the ROCK beamline and from Lukas Buelens and Rakesh Batchu (Laboratory for Chemical Technology, Ghent University) for the STEM measurements and TAP experiments, respectively. ; Approved Most recent IF: 10.614  
  Call Number UA @ lucian @ c:irua:153178 Serial 5102  
Permanent link to this record
 

 
Author Tang, Z.; Liu, P.; Cao, H.; Bals, S.; Heeres, H.J.; Pescarmona, P.P. url  doi
openurl 
  Title Pr/ZrO2 prepared by atomic trapping : an efficient catalyst for the conversion of glycerol to lactic acid with concomitant transfer hydrogenation of cyclohexene Type A1 Journal article
  Year 2019 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 9 Issue 9 Pages 9953-9963  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A series of heterogeneous catalysts consisting of highly dispersed Pt nanoparticles supported on nanosized ZrO2 (20 to 60 nm) was synthesized and investigated for the one-pot transfer hydrogenation between glycerol and cyclohexene to produce lactic acid and cyclohexane, without any additional H-2. Different preparation methods were screened, by varying the calcination and reduction procedures with the purpose of optimizing the dispersion of Pt species (i.e., as single-atom sites or extra-fine Pt nanoparticles) on the ZrO2 support. The Pt/ZrO2 catalysts were characterized by means of transmission electron microscopy techniques (HAADF-STEM, TEM), elemental analysis (ICP-OES, EDX mapping), N-2-physisorption, H-2 temperature-programmed-reduction (H-2-TPR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Based on this combination of techniques it was possible to correlate the temperature of the calcination and reduction treatments with the nature of the Pt species. The best catalyst consisted of subnanometer Pt clusters (<1 nm) and atomically dispersed Pt (as Pt2+ and Pt4+) on the ZrO2 support, which were converted into extra-fine Pt nanoparticles (average size = 1.4 nm) upon reduction. These nanoparticles acted as catalytic species for the transfer hydrogenation of glycerol with cyclohexene, which gave an unsurpassed 95% yield of lactic acid salt at 96% glycerol conversion (aqueous glycerol solution, NaOH as promoter, 160 degrees C, 4.5 h, at 20 bar N-2). This is the highest yield and selectivity of lactic acid (salt) reported in the literature so far. Reusability experiments showed a partial and gradual loss of activity of the Pt/ZrO2 catalyst, which was attributed to the experimentally observed aggregation of Pt nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000494549700025 Publication Date 2019-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 10.614 Times cited 46 Open Access OpenAccess  
  Notes Zhenchen Tang acknowledges the financial support from the China Scholarship Council for his Ph.D. grant. All the authors are grateful for the technical support from Erwin Wilbers, Anne Appeldoorn, and Marcel de Vries, the TEM support from Dr. Marc Stuart, and the ICP-OES support from Johannes van der Velde. Pei Liu and Sara Bals acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of grant agreement No. 731019 EUSMI. Approved Most recent IF: 10.614  
  Call Number UA @ admin @ c:irua:164643 Serial 6326  
Permanent link to this record
 

 
Author Coeck, R.; Meeprasert, J.; Li, G.; Altantzis, T.; Bals, S.; Pidko, E.A.; De Vos, D.E. pdf  url
doi  openurl
  Title Gold and silver-catalyzed reductive amination of aromatic carboxylic acids to benzylic amines Type A1 Journal article
  Year 2021 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 11 Issue 13 Pages 7672-7684  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The reductive amination of benzoic acid and its derivatives would be an effective addition to current synthesis methods for benzylamine. However, with current technology it is very difficult to keep the aromaticity intact when starting from benzoic acid, and salt wastes are often generated in the process. Here, we report a heterogeneous catalytic system for such a reductive amination, requiring solely H-2 and NH3 as the reactants. The Ag/TiO2 or Au/TiO2 catalysts can be used multiple times, and very little noble metal is required, only 0.025 mol % Au. The catalysts are bifunctional: the support catalyzes the dehydration of both the ammonium carboxylate to the amide and of the amide to the nitrile, while the sites at the metal-support interface promote the hydrogenation of the in situ generated nitrile. Yields of up to 92% benzylamine were obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670659900005 Publication Date 2021-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 10.614 Times cited 16 Open Access OpenAccess  
  Notes R.C. thanks the FWO for his SB PhD fellowship. D.E.D.V. acknowledges FWO for research project funding, as well as KU Leuven for funding in the Metusalem program Casas. S.B. acknowledges support from the European Research Council (ERC Consolidator grant #815128 REALNANO). T.A. acknowledges funding from the University of Antwerp Research fund (BOF). E.A.P. acknowledges the support from the European Research Council (ERC Consolidator grant #725686 DeliCAT). J.M. acknowledges financial support through the Royal Thai Government Scholarship. DFT calculations on SURFsara supercomputer facilities were performed with support from the Netherlands Organization for Scientific Research (NWO).; sygmaSB Approved Most recent IF: 10.614  
  Call Number UA @ admin @ c:irua:179851 Serial 6840  
Permanent link to this record
 

 
Author Zhang, Z.; Chen, X.; Shi, X.; Hu, Y.; Huang, J.; Liu, S.; Ren, Z.; Huang, H.; Han, G.; Van Tendeloo, G.; Tian, H. pdf  doi
openurl 
  Title Morphotropic phase boundary in pure perovskite lead titanate at room temperature Type A1 Journal article
  Year 2022 Publication Materials Today Nano Abbreviated Journal  
  Volume 20 Issue Pages 100275-5  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract For many decades, great efforts have been devoted to pursue a large piezoelectric response by an intelligent design of morphotropic phase boundaries (MPB) in solid solutions, where tetragonal (T) and rhombohedral (R) structures coexist. For example, classical PbZrxTi1-xO3 and Pb(Mg1/3Nb2/3)O-3-PbTiO3 single crystals demonstrate a giant piezoelectric response near MPB. However, as the end member of these solids, perovskite-structured PbTiO3 always adopts the T phase at room temperature. Here, we report a pathway to create room temperature MPB in a single-phase PbTiO3. The uniaxial stress along the c-axis drives a T-R phase transition bridged by a monoclinic (M) phase, which facilitates a polarization rotation in the monodomain PbTiO3. Meanwhile, we demonstrate that the coexistence of T and R phases at room temperature can be achieved via an extremely mismatched heterointerface system. The uniaxial pressure is proved as an efficient way to break the inherent symmetry and able to substantially tailor the phase transition temperature Tc. These findings provide new insights into MPB, offering the opportunity to explore the giant piezoelectric response in single-phase materials. (c) 2022 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000906548600002 Publication Date 2022-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2588-8420 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 10.3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 10.3  
  Call Number UA @ admin @ c:irua:193477 Serial 7324  
Permanent link to this record
 

 
Author Carrasco, S.; Orcajo, G.; Martínez, F.; Imaz, I.; Kavak, S.; Arenas-Esteban, D.; Maspoch, D.; Bals, S.; Calleja, G.; Horcajada, P. url  doi
openurl 
  Title Hf/porphyrin-based metal-organic framework PCN-224 for CO2 cycloaddition with epoxides Type A1 Journal article
  Year 2023 Publication Materials Today Advances Abbreviated Journal  
  Volume 19 Issue Pages 100390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Herein, we describe for the first time the synthesis of the highly porous Hf-tetracarboxylate porphyrin-based metal-organic framework (MOF) (Hf)PCN-224(M) (M = H2, Co2+). (Hf)PCN-224(H2) was easily and efficiently prepared following a simple microwave-assisted procedure with good yields (56–67%; space-time yields: 1100–1270 kg m−3·day−1), high crystallinity and phase purity by using trifluoromethanesulfonic acid and benzoic acid as modulators in less than 30 min. By simply introducing a preliminary step (10 min), 5,10,15,20-(tetra-4-carboxyphenyl)porphyrin linker (TCPP) was quantitatively metalated with Co2+ without additional purification and/or time consuming protection/deprotection steps to further obtain (Hf)PCN-224(Co). (Hf)PCN-224(Co) was then tested as catalyst in CO2 cycloaddition reaction with different epoxides to yield cyclic carbonates, showing the best catalytic performance described to date compared to other PCNs, under mild conditions (1 bar CO2, room temperature, 18–24 h). Twelve epoxides were tested, obtaining from moderate to excellent conversions (35–96%). Moreover, this reaction was gram scaled-up (x50) without significant loss of yield to cyclic carbonates. (Hf)PCN-224(Co) maintained its integrity and crystallinity even after 8 consecutive runs, and poisoning was efficiently reverted by a simple thermal treatment (175 °C, 6 h), fully recovering the initial catalytic activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001025764000001 Publication Date 2023-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2590-0498 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 10 Times cited 1 Open Access OpenAccess  
  Notes S.C. acknowledges the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie (MSCA-COFUND) grant agreement No 754382 (GOT Energy Talent). S.C. and P.H. acknowledge “Comunidad de Madrid” and European Regional Development Fund-FEDER 2014-2020-OE REACT-UE 1 for their financial support to VIRMOF-CM project associated to R&D projects in response to COVID-19. The authors acknowledge H2020-MSCA-ITN-2019 HeatNMof (ref. 860942), the M-ERA-NET C-MOF-cell (grant PCI2020-111998 funded by MCIN/AEI /10.13039/501100011033 and European Union NextGenerationEU/PRTR) project, and Retos Investigación MOFSEIDON (grant PID2019-104228RB-I00 funded by MCIN/AEI/10.13039/501100011033) project. This work has been also supported by the Regional Government of Madrid (Project ACES2030-CM, S2018/EMT-4319) and the Universidad Rey Juan Carlos IMPULSO Project (grant MATER M − 3000). S.K acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (1181122 N). Approved Most recent IF: 10; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:197198 Serial 8800  
Permanent link to this record
 

 
Author Ding, Y.; Wang, C.; Bandaru, S.; Pei, L.; Zheng, R.; Hau Ng, Y.; Arenas Esteban, D.; Bals, S.; Zhong, J.; Hofkens, J.; Van Tendeloo, G.; Roeffaers, M.B.J.; Chen, L.-H.; Su, B.-L. pdf  url
doi  openurl
  Title Cs3Bi2Br9 nanoparticles decorated C3N4 nanotubes composite photocatalyst for highly selective oxidation of benzylic alcohol Type A1 Journal Article
  Year 2024 Publication Journal of Colloid and Interface Science Abbreviated Journal Journal of Colloid and Interface Science  
  Volume 672 Issue Pages 600-609  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Solar-light driven oxidation of benzylic alcohols over photocatalysts endows significant prospects in value-added organics evolution owing to its facile, inexpensive and sustainable process. However, the unsatisfactory performance of actual photocatalysts due to the inefficient charge separation, low photoredox potential and sluggish surface reaction impedes the practical application of this process. Herein, we developed an innovative Z-Scheme Cs3BiBr9 nanoparticles@porous C3N4 tubes (CBB-NP@P-tube-CN) heterojunction photocatalyst for highly selective benzyl alcohol oxidation. Such composite combining increased photo-oxidation potential, Z-Scheme charge migration route as well as the structural advantages of porous tubular C3N4 ensures the accelerated mass and ions diffusion kinetics, the fast photoinduced carriers dissociation and sufficient photoredox potentials. The CBB-NP@P-tube-CN photocatalyst demonstrates an exceptional performance for selective photo-oxidation of benzylic alcohol into benzaldehyde with 19, 14 and 3 times higher benzylic alcohols conversion rate than those of C3N4 nanotubes, Cs3Bi2Br9 and Cs3Bi2Br9@bulk C3N4 photocatalysts, respectively. This work offers a sustainable photocatalytic system based on lead-free halide perovskite toward large scale solar-light driven value-added chemicals production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001251644100001 Publication Date 2024-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.9 Times cited Open Access  
  Notes This work is financially supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ24E020011), and National Natural Science Foundation of China (No. 12374372, 52072101)., Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) of the Chinese Ministry of Education and Program of Introducing Talents of Discipline to Universities-Plan 111 (Grant No. B20002) from the Ministry of Science and Technology and the Ministry of Education of China. This research is also supported by the European Commission Interreg V France-Wallonie-Vlaanderen project “DepollutAir”. Approved Most recent IF: 9.9; 2024 IF: 4.233  
  Call Number EMAT @ emat @c:irua:206675 Serial 9250  
Permanent link to this record
 

 
Author Yuan, M.-M.; Wang, L.-D.; Zhang, J.; Ran, M.-J.; Wang, K.; Hu, Z.-Y.; Van Tendeloo, G.; Li, Y.; Su, B.-L. pdf  doi
openurl 
  Title Cut-off voltage influencing the voltage decay of single crystal lithium-rich manganese-based cathode materials in lithium-ion batteries Type A1 Journal article
  Year 2024 Publication Journal of colloid and interface science Abbreviated Journal  
  Volume 674 Issue Pages 238-248  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The voltage decay of Li -rich layered oxide cathode materials results in the deterioration of cycling performance and continuous energy loss, which seriously hinders their application in the high-energy – density lithium -ion battery (LIB) market. However, the origin of the voltage decay mechanism remains controversial due to the complex influences of transition metal (TM) migration, oxygen release, indistinguishable surface/bulk reactions and the easy intra/inter-crystalline cracking during cycling. We investigated the direct cause of voltage decay in micrometer -scale single -crystal Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 (SC-LNCM) cathode materials by regulating the cut-off voltage. The redox of TM and O 2- ions can be precisely controlled by setting different voltage windows, while the cracking can be restrained, and surface/bulk structural evaluation can be monitored because of the large single crystal size. The results show that the voltage decay of SC-LNCM is related to the combined effect of cation rearrangement and oxygen release. Maintaining the discharge cutoff voltage at 3 V or the charging cutoff voltage at 4.5 V effectively mitigates the voltage decay, which provides a solution for suppressing the voltage decay of Lirich and Mn-based layered oxide cathode materials. Our work provides significant insights into the origin of the voltage decay mechanism and an easily achievable strategy to restrain the voltage decay for Li -rich and Mn-based cathode materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001261 Publication Date 2024-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; 1095-7103 ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor (down) 9.9 Times cited Open Access  
  Notes Approved Most recent IF: 9.9; 2024 IF: 4.233  
  Call Number UA @ admin @ c:irua:207026 Serial 9281  
Permanent link to this record
 

 
Author Windels, S.; Diefenhardt, T.; Jain, N.; Marquez, C.; Bals, S.; Schlummer, M.; De Vos, D.E. pdf  doi
openurl 
  Title Catalytic upcycling of PVC waste-derived phthalate esters into safe, hydrogenated plasticizers Type A1 Journal article
  Year 2022 Publication Green chemistry : cutting-edge research for a greener sustainable future Abbreviated Journal Green Chem  
  Volume 24 Issue 2 Pages 754-766  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Recycling of end-of-life polyvinyl chloride (PVC) calls for solutions to deal with the vast amounts of harmful phthalate plasticizers that have historically been incorporated in PVC. Here, we report on the upcycling of such waste-extracted phthalate esters into analogues of the much safer diisononyl 1,2-cyclohexanedicarboxylate plasticizer (DINCH), via a catalytic one-pot (trans)esterification-hydrogenation process. For most of the virgin phthalates, Ru/Al2O3 is a highly effective hydrogenation catalyst, yielding >99% ring-hydrogenated products under mild reaction conditions (0.1 mol% Ru, 80 degrees C, 50 bar H-2). However, applying this reaction to PVC-extracted phthalates proved problematic, (1) as benzyl phthalates are hydrogenolyzed to benzoic acids that inhibit the Ru-catalyst, and (2) because impurities in the plasticizer extract (PVC, sulfur) further retard the hydrogenation. These complications were solved by coupling the hydrogenation to an in situ (trans)esterification with a higher alcohol, and by pretreating the extract with an activated carbon adsorbent. In this way, a real phthalate extract obtained from post-consumer PVC waste was eventually completely (>99%) hydrogenated to phthalate-free, cycloaliphatic plasticizers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000726865200001 Publication Date 2021-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.8 Times cited 8 Open Access Not_Open_Access  
  Notes This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 821366 (programma acronym: Circular Flooring). D. E. D. V. thanks FWO for project funding (SBO project S001819N Triple Cycle); N. J. and S. B. acknowledge the financial support from FWO and FNRS (EOS 30489208). Finally, the authors also thank S. Smolders for assistance with the TGA-MS experiments and D. Paredaens for his experimental contribution Approved Most recent IF: 9.8  
  Call Number UA @ admin @ c:irua:184746 Serial 6958  
Permanent link to this record
 

 
Author Tian, H.; Schryvers, D.; Claeys, P. pdf  doi
openurl 
  Title Nanodiamonds do not provide unique evidence for a Younger Dryas impact Type A1 Journal article
  Year 2011 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 108 Issue 1 Pages 40-44  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Microstructural, δ13C isotope and C/N ratio investigations were conducted on excavated material from the black Younger Dryas boundary in Lommel, Belgium, aiming for a characterisation of the carbon content and structures. Cubic diamond nanoparticles are found in large numbers. The larger ones with diameters around or above 10 nm often exhibit single or multiple twins. The smaller ones around 5 nm in diameter are mostly defect-free. Also larger flake-like particles, around 100 nm in lateral dimension, with a cubic diamond structure are observed as well as large carbon onion structures. The combination of these characteristics does not yield unique evidence for an exogenic impact related to the investigated layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000285915000012 Publication Date 2010-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424;1091-6490; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.661 Times cited 32 Open Access  
  Notes Approved Most recent IF: 9.661; 2011 IF: 9.681  
  Call Number UA @ lucian @ c:irua:88733 Serial 2254  
Permanent link to this record
 

 
Author Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martín, V.F.; Solís, D.M.; Bals, S.; Cortajarena, A.L.; Castilla, J.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality Type A1 Journal article
  Year 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 115 Issue 115 Pages 3225-3230  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Amyloid fibrils, which are closely associated with various neurodegenerative

diseases, are the final products in many protein aggregation pathways. The identification of fibrils at low concentration is, therefore, pivotal in disease diagnosis and development of therapeutic strategies. We report a methodology for the specific identification of amyloid fibrils using chiroptical effects in plasmonic nanoparticles. The formation of amyloid fibrils based on α-synuclein was probed using gold nanorods, which showed no

apparent interaction with monomeric proteins but effective adsorption onto fibril structures via noncovalent interactions. The amyloid structure drives a helical nanorod arrangement, resulting in intense optical activity at the surface plasmon resonance wavelengths. This sensing technique was successfully applied to human brain homogenates of patients affected by Parkinson’s disease,

wherein protein fibrils related to the disease were identified through chiral signals from Au nanorods in the visible and near IR, whereas healthy brain samples did not exhibit any meaningful optical activity. The technique was additionally extended to the specific detection of infectious amyloids formed by prion proteins, thereby confirming the wide potential of the technique. The intense chiral response driven by strong dipolar coupling in helical Au nanorod arrangements allowed us to detect amyloid fibrils down to nanomolar concentrations.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428382400032 Publication Date 2018-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.661 Times cited 187 Open Access OpenAccess  
  Notes We thank Prof. Dr. J.-P. Timmermans and the Antwerp Centre of Advanced Microscopy for providing access to the Tecnai G2 Spirit BioTWIN TEM. We also thank the Basque Biobank (Basque Foundation for Health Innovation and Research, BIOEF) for providing us with Parkinson’s disease-affected brain samples. J.K. acknowledges financial support from the European Commission under Marie Sklodowska-Curie Program H2020- MSCA-IF-2015708321. S.B. and A.L.C. acknowledge European Research Council Grants 335078 COLOURATOM and 648071 ProNANO. S.B. and L.M.L.-M. acknowledge funding from European Commission Grant EUSMI 731019. A.L.C., J.C., and L.M.L.-M. acknowledge funding from Spanish Ministry of Economy and Competitiveness (MINECO) Grants MAT2013-46101- R, AGL2015-65046-C2-1-R, and BIO2016-77367-C2-1-R. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:restricted); saraecas; ECASSara; Approved Most recent IF: 9.661  
  Call Number EMAT @ emat @c:irua:150355UA @ admin @ c:irua:150355 Serial 4918  
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
  Year 2018 Publication America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 115 Issue 38 Pages 9515-9520  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447224900057 Publication Date 2018-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.661 Times cited 50 Open Access OpenAccess  
  Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved Most recent IF: 9.661  
  Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial 5059  
Permanent link to this record
 

 
Author Agrawal, H.; Patra, B.K.; Altantzis, T.; De Backer, A.; Garnett, E.C. url  doi
openurl 
  Title Quantifying Strain and Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy Type A1 Journal article
  Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 12 Issue 7 Pages 8788-8794  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Nanoparticle self-assembly and epitaxy are utilized extensively to make 1D and 2D structures with complex shapes. High-resolution transmission electron microscopy (HRTEM) has shown that single-crystalline interfaces can form, but little is known about the strain and dislocations at these interfaces. Such information is critically important for applications: drastically reducing

dislocation density was the key breakthrough enabling widespread implementation of light-emitting diodes, while strain engineering has been fundamental to modern high-performance transistors, solar cells, and thermoelectrics. In this work, the interfacial defect and strain formation after selfassembly and room temperature epitaxy of 7 nm Pd nanocubes capped with polyvinylpyrrolidone (PVP) is examined. It is observed that, during ligand removal, the cubes move over large distances on the substrate, leading to both spontaneous self-assembly and epitaxy to form single crystals. Subsequently, atomically resolved images are used to quantify the strain and dislocation density at the epitaxial interfaces between cubes with different lateral and angular misorientations. It is shown that dislocation- and strain-free interfaces form when the nanocubes align parallel to each other. Angular misalignment between adjacent cubes does not necessarily lead to grain boundaries but does cause dislocations, with higher densities associated with larger rotations.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515214300101 Publication Date 2020-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.5 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; H2020 Research Infrastructures, 731019 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 14846 ; The work at AMOLF is part of the research program of the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO). This work was supported by the NWO VIDI grant (project no. 14846). The authors would like to thank Reinout Jaarsma and Dr. Sven Askes for helping with the XPS measurements. A.D.B. acknowledges a postdoctoral grant from the research foundation Flanders (FWO). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement no. 731019 EUSMI. Approved Most recent IF: 9.5; 2020 IF: 7.504  
  Call Number EMAT @ emat @c:irua:167770 Serial 6398  
Permanent link to this record
 

 
Author Ben Dkhil, S.; Perkhun, P.; Luo, C.; Mueller, D.; Alkarsifi, R.; Barulina, E.; Quiroz, Y.A.A.; Margeat, O.; Dubas, S.T.; Koganezawa, T.; Kuzuhara, D.; Yoshimoto, N.; Caddeo, C.; Mattoni, A.; Zimmermann, B.; Wuerfel, U.; Pfannmöller, M.; Bals, S.; Ackermann, J.; Videlot-Ackermann, C. pdf  url
doi  openurl
  Title Direct correlation of nanoscale morphology and device performance to study photocurrent generation in donor-enriched phases of polymer solar cells Type A1 Journal article
  Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 12 Issue 25 Pages 28404-28415  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-b]-thiophene-alt-benzodithiophene (PTB7):[6,6]phenyl C-71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 1:1.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 1:0.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7:PC71BM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543780900058 Publication Date 2020-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.5 Times cited 7 Open Access OpenAccess  
  Notes ; J.A., O.M., and C.V.-A. acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (Grant Number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, Grant Number: 287594). J.A., C.V.-A., and E.B. acknowledge the Association Nationale de la Recherche et de la Technologie (ANRT) and the Ministere de l'Enseignement Superieur, de la Recherche et de l'Innovation, awarded through the company Dracula Technologies (Valence, France), for framework of a CIFRE Ph.D. grant 2017/0529. J.A. and P.P. received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant agreement no. 713750. They further acknowledge support of the Regional Council of Provence-Alpes-Cote d'Azur, A*MIDEX (no. ANR-11-IDEX-0001-02), and the Investissements d'Avenir project funded by the French Government, managed by the French National Research Agency (ANR). J.A. and Y.A.A.Q. acknowledge the French Research Agency for funding through the project NFA-15 (ANR-17-CE05-0020-01). N.Y. acknowledges that the synchrotron radiation experiments were performed at BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2017B1629 and 2018B1791). S.B. acknowledges financial support from the European Research Council (ERC Consolidator Grant 815128-REALNANO) and from FWO (G.0381.16N). M.P. gratefully acknowledges funding by the Ministerium fur Wissenschaft, Forschung und Kunst Baden-Wurttemberg through the HEiKA materials research centre FunTECH-3D (MWK, 33-753-30-20/3/3) and the Large-Scale-Data-Facility (LSDF) sds@hd through grant INST 35/1314-1 FUGG. A.M. acknowledges Italian MIUR for funding through the project PON04a2 00490 M2M Netergit, PRACE, for awarding access to Marconi KNL at CINECA, Italy, through projects DECONVOLVES (2018184466) and PROVING-IL (2019204911). C.C. acknowledges the CINECA award under the ISCRA initiative for the availability of high-performance computing resources and support (project MITOMASC). ; sygma Approved Most recent IF: 9.5; 2020 IF: 7.504  
  Call Number UA @ admin @ c:irua:170703 Serial 6484  
Permanent link to this record
 

 
Author Kertik, A.; Wee, L.H.; Şentosun, K.; Navarro, J.A.R.; Bals, S.; Martens, J.A.; Vankelecom, I.F.J. url  doi
openurl 
  Title High-performance CO2-selective hybrid membranes by exploiting MOF-breathing effects Type A1 Journal article
  Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 12 Issue 2 Pages 2952-2961  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Conventional CO2 separation in the petrochemical industry via cryogenic distillation or amine-based absorber-stripper units is energy-intensive and environmentally unfriendly. Membrane-based gas separation technology, in contrast, has contributed significantly to the development of energy-efficient systems for processes such as natural gas purification. The implementation of commercial polymeric membranes in gas separation processes is restricted by their permeability-selectivity trade-off and by their insufficient thermal and chemical stability. Herein, we present the fabrication of a Matrimid-based membrane loaded with a breathing metal-organic framework (MOF) (NH2-MIL-53(Al)) which is capable of separating binary CO2/CH4 gas mixtures with high selectivities without sacrificing much of its CO2 permeabilities. NH2-MIL-53(Al) crystals were embedded in a polyimide (PI) matrix, and the mixed-matrix membranes (MMMs) were treated at elevated temperatures (up to 350 degrees C) in air to trigger PI cross-linking and to create PI-MOF bonds at the interface to effectively seal the grain boundary. Most importantly, the MOF transitions from its narrow-pore form to its large-pore form during this treatment, which allows the PI chains to partly penetrate the pores and cross-link with the amino functions at the pore mouth of the NH2-MIL-53(Al) and stabilizes the open-pore form of NH2-MIL-53(Al). This cross-linked MMM, with MOF pore entrances was made more selective by the anchored PI-chains and achieves outstanding CO2/CH4 selectivities. This approach provides significant advancement toward the design of selective MMMs with enhanced thermal and chemical stabilities which could also be applicable for other potential applications, such as separation of hydrocarbons (olefin/paraffin or isomers), pervaporation, and solvent-resistant nanofiltration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508464500108 Publication Date 2019-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.5 Times cited 26 Open Access OpenAccess  
  Notes ; A.K. is grateful to the Erasmus Mundus Doctorate in Membrane Engineering (EUDIME) programme. L.H.W. thanks the FWO-Vlaanderen for a postdoctoral research fellowships under contract number 12M1418N. We thank Methusalem and IAP-PAI for research funding. S.B. acknowledges financial support from European Research Council (ERC) (ERC Starting Grant No. 335078-COLOURATOM). We are also grateful to Frank Mathijs (KU Leuven) for the mechanical tests, Bart Goderis and Olivier Verkinderen for the DSC measurements, and Huntsman (Switzerland) for providing the Matrimid polymer. ; Approved Most recent IF: 9.5; 2020 IF: 7.504  
  Call Number UA @ admin @ c:irua:166576 Serial 6534  
Permanent link to this record
 

 
Author Cunha, D.M.; Gauquelin, N.; Xia, R.; Verbeeck, J.; Huijben, M. url  doi
openurl 
  Title Self-assembled epitaxial cathode-electrolyte nanocomposites for 3D microbatteries Type A1 Journal article
  Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 14 Issue 37 Pages 42208-42214  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The downscaling of electronic devices requires rechargeable microbatteries with enhanced energy and power densities. Here, we evaluate self-assembled vertically aligned nano-composite (VAN) thin films as a platform to create high-performance three-dimensional (3D) microelectrodes. This study focuses on controlling the VAN formation to enable interface engineering between the LiMn2O4 cathode and the (Li,La)TiO3 solid electrolyte. Electrochemical analysis in a half cell against lithium metal showed the absence of sharp redox peaks due to the confinement in the electrode pillars at the nanoscale. The (100)-oriented VAN thin films showed better rate capability and stability during extensive cycling due to the better alignment to the Li-diffusion channels. However, an enhanced pseudocapacitive contribution was observed for the increased total surface area within the (110)-oriented VAN thin films. These results demonstrate for the first time the electrochemical behavior of cathode-electrolyte VANs for lithium-ion 3D microbatteries while pointing out the importance of control over the vertical interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000852647100001 Publication Date 2022-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.5 Times cited 4 Open Access OpenAccess  
  Notes This research was carried out with the support from the Netherlands Organization for Scientific Research (NWO) under VIDI grant no. 13456. Approved Most recent IF: 9.5  
  Call Number UA @ admin @ c:irua:190619 Serial 7206  
Permanent link to this record
 

 
Author Bhatia, H.; Martin, C.; Keshavarz, M.; Dovgaliuk, I.; Schrenker, N.J.; Ottesen, M.; Qiu, W.; Fron, E.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Roeffaers, M.B.J.; Hofkens, J.; Debroye, E. pdf  doi
openurl 
  Title Deciphering the role of water in promoting the optoelectronic performance of surface-engineered lead halide perovskite nanocrystals Type A1 Journal article
  Year 2023 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume 15 Issue 5 Pages 7294-7307  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Lead halide perovskites are promising candidates for applicability is limited by their structural instability toward moisture. Although a deliberate addition of water to the precursor solution has recently been shown to improve the crystallinity and optical properties of perovskites, the corresponding thin films still do not exhibit a near-unity quantum yield. Herein, we report that the direct addition of a minute amount of water to post-treated substantially enhances the stability while achieving a 95% photoluminescence quantum yield in a NC thin film. We unveil the mechanism of how moisture assists in the formation of an additional NH4Br component. Alongside, we demonstrate the crucial role of moisture in assisting localized etching of the perovskite crystal, facilitating the partial incorporation of NH4+, which is key for improved performance under ambient conditions. Finally, as a proof-of-concept, the application of post-treated and watertreated perovskites is tested in LEDs, with the latter exhibiting a superior performance, offering opportunities toward commercial application in moisture-stable optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000931729400001 Publication Date 2023-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.5 Times cited 3 Open Access Not_Open_Access  
  Notes H.B. would like to express her sincere gratitude to Dr. Peter Erk (formerly BASF SE, Germany) for very insightful discussions. The authors acknowledge financial support from the Research Foundation-Flanders (FWO grant numbers S002019N, 1514220N, G.0B39.15, G.0B49.15, G098319N, and ZW15_09-GOH6316) , the KU Leuven Research Fund (C14/19/079, iBOF-21-085 PERSIST, and STG/21/010) , the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) , the Hercules Founda-tion (HER/11/14) , and the ERC through the Marie Curie ITN iSwitch Ph.D. fellowship to H.B. (grant number 642196) . C.M. acknowledges the financial support from grants PID2021-128761OA-C22 funded by MCIN/AEI/10.13039/501100011033 by the ?European Union? and SBPLY/21/180501/000127 funded by JCCM and by the EU through Fondo Europeo de Desarollo Regional? (FEDER) . Martin Bremholm and Martin Ottesen acknowledge funding from the Danish Council for Independent Research, Natural Sciences, under the Sapere Aude program (grant no. 7027-00077B) and VILLUM FONDEN through the Centre of Excellence for Dirac Materials (grant no. 11744) . Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged.-N.J.S. acknowledges financial support from the research foundation Flanders (FWO) through a postdoctoral fellowship (FWO grant no. 1238622N) . S.B. acknowledges financial support from the European Commission by the ERC Consolidator grant REALNANO (no. 815128) . Approved Most recent IF: 9.5; 2023 IF: 7.504  
  Call Number UA @ admin @ c:irua:195375 Serial 7293  
Permanent link to this record
 

 
Author Mulder, J.T.; Meijer, M.S.; van Blaaderen, J.J.; du Fosse, I.; Jenkinson, K.; Bals, S.; Manna, L.; Houtepen, A.J. url  doi
openurl 
  Title Understanding and preventing photoluminescence quenching to achieve unity photoluminescence quantum yield in Yb:YLF nanocrystals Type A1 Journal article
  Year 2023 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume 15 Issue 2 Pages 3274-3286  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ytterbium-doped LiYF4 (Yb:YLF) is a commonly used material for laser applications, as a photon upconversion medium, and for optical refrigeration. As nanocrystals (NCs), the material is also of interest for biological and physical applications. Unfortunately, as with most phosphors, with the reduction in size comes a large reduction of the photoluminescence quantum yield (PLQY), which is typically associated with an increase in surface-related PL quenching. Here, we report the synthesis of bipyramidal Yb:YLF NCs with a short axis of similar to 60 nm. We systematically study and remove all sources of PL quenching in these NCs. By chemically removing all traces of water from the reaction mixture, we obtain NCs that exhibit a near-unity PLQY for an Yb3+ concentration below 20%. At higher Yb3+ concentrations, efficient concentration quenching occurs. The surface PL quenching is mitigated by growing an undoped YLF shell around the NC core, resulting in near-unity PLQY values even for fully Yb3+-based LiYbF4 cores. This unambiguously shows that the only remaining quenching sites in core-only Yb:YLF NCs reside on the surface and that concentration quenching is due to energy transfer to the surface. Monte Carlo simulations can reproduce the concentration dependence of the PLQY. Surprisingly, Fo''rster resonance energy transfer does not give satisfactory agreement with the experimental data, whereas nearest-neighbor energy transfer does. This work demonstrates that Yb3+-based nanophosphors can be synthesized with a quality close to that of bulk single crystals. The high Yb3+ concentration in the LiYbF4/LiYF4 core/shell nanocrystals increases the weak Yb3+ absorption, making these materials highly promising for fundamental studies and increasing their effectiveness in bioapplications and optical refrigeration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000912997300001 Publication Date 2023-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.5 Times cited 3 Open Access OpenAccess  
  Notes This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 766900 (Testing the Large-Scale Limit of Quantum Mechanics). A.J.H. and I.d.F. further acknowledge the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand) for financial support. The authors thank Freddy Rabouw and Andries Meijerink (Utrecht University) for very fruitful discussions and extremely useful advice. The author s thank Jos Thieme for his help with the laser setups used . The authors furthermore thank Niranjan Saikumar for proofreading the manuscript. Approved Most recent IF: 9.5; 2023 IF: 7.504  
  Call Number UA @ admin @ c:irua:194317 Serial 7348  
Permanent link to this record
 

 
Author Van den Hoek, J.; Daems, N.; Arnouts, S.; Hoekx, S.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title Improving stability of CO₂ electroreduction by incorporating Ag NPs in N-doped ordered mesoporous carbon structures Type A1 Journal article
  Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume 16 Issue 6 Pages 6931-6947  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The electroreduction of carbon dioxide (eCO2RR) to CO using Ag nanoparticles as an electrocatalyst is promising as an industrial carbon capture and utilization (CCU) technique to mitigate CO2 emissions. Nevertheless, the long-term stability of these Ag nanoparticles has been insufficient despite initial high Faradaic efficiencies and/or partial current densities. To improve the stability, we evaluated an up-scalable and easily tunable synthesis route to deposit low-weight percentages of Ag nanoparticles (NPs) on and into the framework of a nitrogen-doped ordered mesoporous carbon (NOMC) structure. By exploiting this so-called nanoparticle confinement strategy, the nanoparticle mobility under operation is strongly reduced. As a result, particle detachment and agglomeration, two of the most pronounced electrocatalytic degradation mechanisms, are (partially) blocked and catalyst durability is improved. Several synthesis parameters, such as the anchoring agent, the weight percentage of Ag NPs, and the type of carbonaceous support material, were modified in a controlled manner to evaluate their respective impact on the overall electrochemical performance, with a strong emphasis on operational stability. The resulting powders were evaluated through electrochemical and physicochemical characterization methods, including X-ray diffraction (XRD), N2-physisorption, Inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy (SEM-EDS), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-EDS, electron tomography, and X-ray photoelectron spectroscopy (XPS). The optimized Ag/soft-NOMC catalysts showed both a promising selectivity (∼80%) and stability compared with commercial Ag NPs while decreasing the loading of the transition metal by more than 50%. The stability of both the 5 and 10 wt % Ag/soft-NOMC catalysts showed considerable improvements by anchoring the Ag NPs on and into a NOMC framework, resulting in a 267% improvement in CO selectivity after 72 h (despite initial losses) compared to commercial Ag NPs. These results demonstrate the promising strategy of anchoring Ag NPs to improve the CO selectivity during prolonged experiments due to the reduced mobility of the Ag NPs and thus enhanced stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001158812100001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.5 Times cited Open Access Not_Open_Access: Available from 21.06.2024  
  Notes Approved Most recent IF: 9.5; 2024 IF: 7.504  
  Call Number UA @ admin @ c:irua:202309 Serial 9045  
Permanent link to this record
 

 
Author Guerrero, R.M.; Lemir, I.D.; Carrasco, S.; Fernández-Ruiz, C.; Kavak, S.; Pizarro, P.; Serrano, D.P.; Bals, S.; Horcajada, P.; Pérez, Y. url  doi
openurl 
  Title Scaling-Up Microwave-Assisted Synthesis of Highly Defective Pd@UiO-66-NH2Catalysts for Selective Olefin Hydrogenation under Ambient Conditions Type A1 Journal Article
  Year 2024 Publication ACS Applied Materials & Interfaces Abbreviated Journal ACS Appl. Mater. Interfaces  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal–organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m–3·day–1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m–3·day–1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001227929100001 Publication Date 2024-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.5 Times cited Open Access  
  Notes The authors gratefully acknowledge financial support from “Comunidad de Madrid” and European Regional Development Fund-FEDER through the project HUB MADRID+CIRCULAR; the State Research Agency (MCIN/AEI /10.13039/501100011033) through the grant with reference number CEX2019-000931-M received in the 2019 call for “Severo Ochoa Centres of Excellence” and “María de Maeztu Units of Excellence” of the State Programme for Knowledge Generation and Scientific and Technological Strengthening of the R&D&I System; and MICIU through the project “NAPOLION” (PID2022-139956OB-I00). S.K. acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (1181124N). Approved Most recent IF: 9.5; 2024 IF: 7.504  
  Call Number EMAT @ emat @c:irua:206322 Serial 9126  
Permanent link to this record
 

 
Author Ni, S.; Houwman, E.; Gauquelin, N.; Chezganov, D.; Van Aert, S.; Verbeeck, J.; Rijnders, G.; Koster, G. url  doi
openurl 
  Title Stabilizing perovskite Pb(Mg0.33Nb0.67)O3-PbTiO3 thin films by fast deposition and tensile mismatched growth template Type A1 Journal article
  Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume 16 Issue 10 Pages 12744-12753  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Because of its low hysteresis, high dielectric constant, and strong piezoelectric response, Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) thin films have attracted considerable attention for the application in PiezoMEMS, field-effect transistors, and energy harvesting and storage devices. However, it remains a great challenge to fabricate phase-pure, pyrochlore-free PMN-PT thin films. In this study, we demonstrate that a high deposition rate, combined with a tensile mismatched template layer can stabilize the perovskite phase of PMN-PT films and prevent the nucleation of passive pyrochlore phases. We observed that an accelerated deposition rate promoted mixing of the B-site cation and facilitated relaxation of the compressively strained PMN-PT on the SrTiO3 (STO) substrate in the initial growth layer, which apparently suppressed the initial formation of pyrochlore phases. By employing La-doped-BaSnO3 (LBSO) as the tensile mismatched buffer layer, 750 nm thick phase-pure perovskite PMN-PT films were synthesized. The resulting PMN-PT films exhibited excellent crystalline quality close to that of the STO substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001176343700001 Publication Date 2024-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (down) 9.5 Times cited Open Access  
  Notes We would like to acknowledge the Netherlands Organization for Scientific Research (NWO) for the financial support of this work. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717-ESTEEM3. Approved Most recent IF: 9.5; 2024 IF: 7.504  
  Call Number UA @ admin @ c:irua:204754 Serial 9174  
Permanent link to this record
 

 
Author Corbel, G.; Attfield, J.P.; Hadermann, J.; Abakumov, A.M.; Alekseeva, A.M.; Rozova, M.G.; Antipov, E.V. pdf  doi
openurl 
  Title Anion rearrangements in fluorinated Nd2CuO3.5 Type A1 Journal article
  Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 15 Issue Pages 189-195  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000180368000029 Publication Date 2003-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.466 Times cited 9 Open Access  
  Notes Approved Most recent IF: 9.466; 2003 IF: 4.374  
  Call Number UA @ lucian @ c:irua:40348 Serial 123  
Permanent link to this record
 

 
Author Casavola, M.; van Huis, M.A.; Bals, S.; Lambert, K.; Hens, Z.; Vanmaekelbergh, D. pdf  doi
openurl 
  Title Anisotropic cation exchange in PbSe/CdSe core/shell nanocrystals of different geometry Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 2 Pages 294-302  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a study of Cd2+-for-Pb2+ exchange in PbSe nanocrystals (NCs) with cube, star, and rod shapes. Prolonged temperature-activated cation exchange results in PbSe/CdSe heterostructured nanocrystals (HNCs) that preserve their specific overall shape, whereas the PbSe core is strongly faceted with dominance of {111} facets. Hence, cation exchange proceeds while the Se anion lattice is preserved, and well-defined {111}/{111} PbSe/CdSe interfaces develop. Interestingly, by quenching the reaction at different stages of the cation exchange new structures have been isolated, such as coreshell nanorods, CdSe rods that contain one or two separated PbSe dots and fully zinc blende CdSe nanorods. The crystallographically anisotropic cation exchange has been characterized by a combined HRTEM/HAADF-STEM study of heterointerface evolution over reaction time and temperature. Strikingly, Pb and Cd are only intermixed at the PbSe/CdSe interface. We propose a plausible model for the cation exchange based on a layer-by-layer replacement of Pb2+ by Cd2+ enabled by a vacancy-assisted cation migration mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000299367500008 Publication Date 2011-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.466 Times cited 136 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:94211 Serial 124  
Permanent link to this record
 

 
Author Abakumov, A.M.; Batuk, D.; Hadermann, J.; Rozova, M.G.; Sheptyakov, D.V.; Tsirlin, A.A.; Niermann, D.; Waschowski, F.; Hemberger, J.; Van Tendeloo, G.; Antipov, E.V. doi  openurl
  Title Antiferroelectric (Pb,Bi)1-xFe1+xO3-y perovskites modulated by crystallographic shear planes Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 2 Pages 255-265  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate for the first time a possibility to vary the anion content in perovskites over a wide range through a long-range-ordered arrangement of crystallographic shear (CS) planes. Anion-deficient perovskites (Pb,Bi)1−xFe1+xO3−y with incommensurately modulated structures were prepared as single phases in the compositional range from Pb0.857Bi0.094Fe1.049O2.572 to Pb0.409Bi0.567Fe1.025O2.796. Using a combination of electron diffraction and high-resolution scanning transmission electron microscopy, we constructed a superspace model describing a periodic arrangement of the CS planes. The model was verified by refinement of the Pb0.64Bi0.32Fe1.04O2.675 crystal structure from neutron powder diffraction data ((3 + 1)D S.G. X2/m(α0γ), X = [1/2,1/2,1/2,1/2], a = 3.9082(1) Å, b = 3.90333(8) Å, c = 4.0900(1) Å, β = 91.936(2)°, q = 0.05013(4)a* + 0.09170(3)c* at T = 700 K, RP = 0.036, RwP = 0.048). The (Pb,Bi)1−xFe1+xO3−y structures consist of perovskite blocks separated by CS planes confined to nearly the (509)p perovskite plane. Along the CS planes, the perovskite blocks are shifted with respect to each other over the 1/2[110]p vector that transforms the corner-sharing connectivity of the FeO6 octahedra in the perovskite framework to an edge-sharing connectivity of the FeO5 pyramids at the CS plane, thus reducing the oxygen content. Variation of the chemical composition in the (Pb,Bi)1−xFe1+xO3−y series occurs mainly because of a changing thickness of the perovskite block between the interfaces, that can be expressed through the components of the q vector as Pb6γ+2αBi1−7γ−αFe1+γ−αO3−3γ−α. The Pb, Bi, and Fe atoms are subjected to strong displacements occurring in antiparallel directions on both sides of the perovskite blocks, resulting in an antiferroelectric-type structure. This is corroborated by the temperature-, frequency-, and field-dependent complex permittivity measurements. Pb0.64Bi0.32Fe1.04O2.675 demonstrates a remarkably high resistivity >0.1 T Ω cm at room temperature and orders antiferromagnetically below TN = 608(10) K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000286160800018 Publication Date 2010-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 9.466 Times cited 29 Open Access  
  Notes Approved Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:88651 Serial 136  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: